The healthy visual field of recognition

H Strasburger, J Gothe, K Lutz (Institut für Psychologie, Universität Magdeburg, Universitätsplatz 1, D 39106 Magdeburg, Germany; Institut für Medizinische Psychologie, Universität Magdeburg, Leipzigerstrasse 44, D 39120 Magdeburg, Germany; fax: +49 894 899 7770; e-mail: hans@imp.med.uni-muenchen.de)

The fovea and perifovea are the locus of highest contrast sensitivity for pattern recognition (Strasburger and Rentschler, 1996 European Journal of Neuroscience 8 1787–1791). Outside this small centre, recognition contrast sensitivity declines, and at medium to high eccentricities at a rate steeper than would be expected from the mere detectability of stimuli. Low-contrast stimuli are therefore detected but not recognised peripherally.

We have now directly and in a finely-spaced raster compared contrast sensitivity for recognition to that for detection in the full central 20-deg radius field for a group of young healthy observers (n = 20). Detection stimuli were Gabor patterns (1 cycle deg⁻¹, σ = 1.5°); recognition stimuli were the digits 0–9 (size 2.4 deg), the contrast thresholds of which were determined at 65 positions in a polar raster. Overall, we acquired close to 100,000 observer responses. Contrast thresholds were obtained by a maximum-likelihood adaptive procedure (R_Contrast, ML-PEST). All subjects showed stable, inter-individually somewhat different sensitivity surfaces. Contrast thresholds for detection and recognition increased linearly with eccentricity (up to 10 deg eccentricity by 0.03 log unit deg⁻¹). Recognition contrast thresholds were systematically higher than those for detection. We thus show normative data for character-recognition contrast sensitivity in the visual field, for young normal observers.