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Summary—1. This note provides a critical discussion of methods for the analysis of steady state visual

evoked potentials.

2. To take advantage of the linearity of the Fourier transform, the results of submitting VEP data to
a Fourier analysis are discussed in terms of a vector representation of the VEP frequency components.

3. Methods for averaging VEP data and for assessing VEP variability are described. ‘“Vector averaging”
of spectral data is found preferable over “scalar averaging.”

4. The influence of noise on VEP amplitude is discussed.

5. Changes in temporal phase of the VEP response can be interpreted as changes in delay or latency
provided the appropriate precautions in data analysis are taken.

6. Phase information can also be used to improve the VEP signal-to-noise ratio. This is the goal of

phase-sensitive analysis.

7. Synchronous demodulation is a method for narrow bandpass filtering. It is shortly described.
8. Finally it is shown that the techniques of VEP analysis at issue are closely related; the correspon-

dences are pointed out.

Key words—Evoked potentials; steady state; Fourier analysis; averaging; VEP reliability; signal-to-noise

ratio.

INTRODUCTION

Since Campbell and Maffei’s (1970) “electro-
physiological evidence for the existence of orien-
tation and size detectors in the human visual
system”, the technique of acquiring steady state
visual evoked potentials (SSVEP) has gained
increasing acceptance. The fact that steady state
VEPs can be obtained at much higher recording
speeds than transient VEPs made this technique
a good candidate for application in basic
research as well as in clinical context. Applica-
tions where the steady state method seems es-
pecially promising are those where the response
to a variation of visual stimuli is of interest
unlike the usual approach with transient stimu-
lation where one tries to work with just a few,
“ideal”, stimuli.

Regan (e.g. 1975b, 1977b, c) has pointed out
many such applications and has discussed
methods for analysing the results (1977a,c).
Except for his seminal work, however, the
review and further development of methods
for the analysis of SSVEPs has been largely
neglected. Besides averaging, several other
techniques of analysis have been used, the most
important of them being Fourier analysis,
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narrow bandpass filtering, filtering based on
synchronous demodulation, and phase-locked
analysis. For the practical application this raises
many questions. Which method is appropriate
in a given case or should several be combined to
ensure most efficient data processing? How can
results from different methods be compared,
and which of them gives the higher signal-to-
noise ratio? What measures of reliability are
available? What kinds of data representation
are appropriate?

Thus the present study focuses on aspects that
have been neglected in previous treatments of
steady-state VEP analysis and which are not
commonly found in signal processing textbooks.
The material is presented in the form of a
tutorial to aid readers unfamiliar with the field
to make practical use of it.

First, since Fourier analysis and averaging
are often used together (e.g. Campbell and
Maffei, 1970; Florentini et al., 1983; Petrig,
1980; and many others), their relationship is
discussed. We will then discuss methods for
averaging Fourier analysis results and address
the hitherto neglected question of reliability of
spectral data. These issues are easily treated
when a vector representation of the Fourier
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analysis results is used. Such a representation,
which is known from the theory of complex
numbers, is also helpful in drawing conclusions
for the influence of noise on SSVEP amplitude
data. A discussion of the role of temporal phase
leads to the concept of phase-locked analysis.
The difference between phase-locked and phase-
insensitive analysis is illustrated for the example
of determining the contrast threshold by means
of Campbell and Maffei’s (1970) regression
technique, and data is shown. Finally it is shown
how the various methods for SSVEP analysis
faveraging, Fourier analysis of averaged and
non-averaged data, narrow band-pass filtering,
and phase-locked (synchroneous) filtering],
can be classified into phase-locked and phase-
insensitive methods. A more rigorous use of
signal processing concepts allows for avoiding
confusion (e.g. Regan 1977a,c) between such
techniques.

The idea of analysing few VEP parameters in
response to a wide variety of stimuli rather than
trying to extract a lot of information from
responses to just a few stimuli can be taken
one step further by applying a sweep technique.
Well known in electrical engineering, sweep
techniques have been introduced to the acqui-
sition of VEPs by Regan (1975a) and Tyler
(1979). The data analysis techniques discussed
in the present report can all be used together
with swept stimulation. A discussion of sweep
techniques is omitted in the present report,
however, since it seems more concerned with
stimulus presentation techniques than with data
analysis. The reader is referred to Strasburger
and Rentschler (1986) where we describe a
practical VEP acquisition system taking into
account the issues of the current report.

SPECTRAL ANALYSIS OF STEADY
STATE VEP

At the outset it seems appropriate to define
the precise difference between transient and
steady state stimulation. The distinction is not
clear cut, however. In transient stimulation, one
attempts to capture the EEG response to a
single event yet one uses repeated stimulation
as a means to enhance the generally small
response. In the other case, the visual system is
repeatedly stimulated with a higher temporal
rate in an attempt to put it into a “steady state”;
rhythmical EEG components are then taken as
response. To differentiate the two methods one
might define a critical stimulation period taken
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as the time after which a response has decayed
(ca 500 ms). There are, however, methods avail-
able for obtaining a transient response at higher
stimulation rates. It is more the intended
response description—in the time domain, or
in the frequency domain—which distincts
transient from steady-state stimulation; both
methods should be viewed as complementary
for investigating a given dynamic system.

Since a periodic stimulation is most sparsely
described in the frequency domain it seems
natural to also describe steady state results in
the frequency domain. As a common way of
analysis, however, the averaging procedure
familiar from transient VEPs is used for analysis
with the period T set to an integer multiple of
the stimulation period (e.g. Campbell and
Maffei, 1970; Fiorentini et al., 1983; Petrig,
1980). Figure 1(a) shows an example of an
averaged SSVEP which had been obtained with
a low sampling rate. Like in the example, the
resulting VEP often resembles a sinusoidal
wave-form with twice the frequency of the
stimulation frequency. This type of response
does not necessarily reflect the spectral purity
of the underlying signal, but is brought about
by the fact that averaging acts as a comb filter,
comparable to a combination of several narrow
band pass filters tuned to integer multiples of
the averaging frequency 1/T. With a stimulation
rate of 8 Hz and an averaging period of 125 ms
as in Fig. 1(a), only frequency components of 8,
16, 24 Hz, etc. pass through the averaging filter.
In case that the signal is sent through a low-pass
filter with a cutoff frequency of|, say, 22 Hz, then
there remain only a 16 Hz component and an
attenuated 24 Hz component. Yin et al. (1983),
for example, use a bandpass with corner fre-
quencies of 12 and 22 Hz. The sinusoidal purity
of their signal stems from averaging and is not
mainly brought about by the steepness of their
analog filters, as they assume.

For estimating the strength of the averaged
signal, peak and trough amplitudes have been
measured similarly to the common analysis of
transient VEPs (see for example Campbell and
Maffei, 1970). Yet, since the higher harmonics
that pass through the comb filter contaminate
the result, Fourier analysis of the averaged
signal has been advocated (Regan, 1977a). This
is iflustrated in Fig. 1(b), (c) which shows ampli-
tude and temporal phase data for the averaged
signal of Fig. 1(a). ~

Here the question arises whether these two
methods, Fourier analysis and averaging, some-
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Fig. 1. A plot of an averaged SSVEP (a) and its spectral
content (b) and (c). Stimulus modulation frequency is 8 Hz
(16 rps) and a low sampling rate of 64 Hz has been chosen
since it suffices to capture the spectral energy up to the 3rd
harmonic (24 Hz). Note that the “jagginess” in the temporal
plot resulting from the low sampling rate has no effect
on the accuracy of spectral data. The lowest occurring
frequency (8 Hz) is related to the chosen temporal window
(125ms). No information is present at the Nyquist
frequency (32 Hz).

how interact and whether, perhaps, the Fourier
analysis should be enacted on the raw signal
directly. The issue is resolved by the assertion
that both averaging and Fourier analysis are
linear operations, so that the order in which
they are applied is irrelevant. In other words, a
Fourier transform of an averaged signal yields
the same result as the average over Fourier
transforms which are enacted on the individual
sections S; of length 7. Note that a Fourier
transform of a signal of length T, like averag-
ing, yields only spectral components which are
integer multiples of 1/7, resulting in the same
number of components. In our example this
section of length T is quite short (125 ms), and
so there are only a few resulting components.

The quantity 1/T is termed ““frequency resolu-
tion.” It is also the lowest frequency component
that can occur. When, for example, a stimu-
lation rate of 8 Hz and an averaging section
length of 125 ms are used, the lowest occurring
frequency will be the stimulus fundamental of

247

8 Hz, showing as one period of a sine wave in
the averaging window of Fig. 1. Sometimes
investigators have used a longer averaging sec-
tion length to cover several stimulation cycles.
The resulting averaged wave forms then show
several response cycles of the fundamental,
where a difference in the relative height of these
cycles reflects the presence of a lower frequency
component (i.e. a subharmonic).

AVERAGING OF SPECTRAL DATA

Polar representation of FFT results

For the following description of methods for
averaging spectral data, a polar representation
of spectral data is most convenient. Fourier
analysis is usually based on calculating a digital
Fourier transform of the sampled signal using
an algorithm called the Fast Fourier Transform
(FFT). The result is a set of pairs of amplitude
and phase angle values with each amplitude/
phase pair corresponding to a particular fre-
quency component. The total number of com-
ponents is (r/2)-1 plus a D.C.-component, with
n denoting the number of sample points. Thus,
each component constitutes a vector s = (x, y)
in a two-dimensional domain with the length of
amplitude 4 and the orientation of (temporal)
phase angle . Alternatively, the data can
be described by using the projections of these
vectors onto the axes of the plane of complex
numbers

x=Acos )

y =Asin(y).
For reconversion, the phase angle is obtained by
using the arctangent of y/x, and the amplitude
is given by the Pythagorean theorem.

A polar representation is also useful for rep-
resenting experimental results, since it combines
amplitude and phase information in one graph.
Figure 2(b) shows results from an experiment
where subjects were presented with phase-
alternating sine-wave gratings of varying
spatial frequency (i.e. varying bar width). The
graph shows the 2nd harmonic component
(16 Hz). It can be seen that the temporal phase
increases monotonically with increasing spatial
frequency, and amplitude first increases to reach
a maximum, and then decreases.

Vector averaging of frequency components and
reliability

The linearity of the Fourier transform is ob-
vious from its definition. The linearity applies,
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Fig. 2. Polar representation of spectral data. Subject A.S.
is a 27-year-old emmetropic female with Landolt-C acuity
of 1.3, binocularly viewing vertical sine-wave gratings of
varying spatial frequency. Pattern contrast is sinusoidally
modulated at 8 Hz resulting in stimuli where light and dark
bars interchange at 16 reversals per second. The 16-Hz
component from a spectral analysis is plotted in dependency
on pattern spatial frequency.

however, only to the sine/cosine representation
(both the arctangent and the r.m.s.-function are
highly non-linear, i.e. not even well aproximated
by a linear function). Consequently, for aver-
aging over the same frequency component from
several signal sections S;, vector addition has to
be used. If (x;,y;) is a given frequency com-
ponent of section S, the average component is
obtained by

X, Y) = ((Zxi/n), (Zy,/n))
The resulting phase angle is

@ =arctan (Y/X).

i=1,n.

To assess how meaningful differences in spectral
results obtained under different experimental
conditions are, it is necessary to have a measure
of statistical variability. Surprisingly, reliability

HANs STRASBURGER

results have been omitted in most experimental
SSVEP studies. Using a polar representation, it
is, however, straightforward to derive a useful
measure.

Let 5, and s, denote the standard deviations
of x;, and y,, respectively

=_2(xi—X)2 s2=20’i— Yy
n—1 ’ n—-1 "~

2
x

The variability of the mean projections X and Y
decreases with increasing n with the square root
of n, and so the standard errors are given by

Sy = sx/\/; Sy= sy/\/;.

A deviation vector D = (s,,s,) can be defined
which has the length

length (D) = ,/s2+ s
and the angle
angle (D) = arctan (s, /s,).

It can be seen from Fig. 3, however, that this
vector D cannot directly be used as a measure
of amplitude and phase variability, since it does
not necessarily point in the same direction as
X, 7).

According to the Central Limit Theorem (e.g.
Hays, 1963) the means X and Y will be asymp-
totically normally distributed for sufficiently
large n, so that it is possible to calculate an
interval of confidence for the means X and Y by

ey=+£1.96s,//n
and

cy=+196s,//n (P=5%)

In other words, with a probability of 95% the
mean vectors will point inside a rectangle of size
2¢,2¢, with the center (X, Y) (Fig. 3).

-Cy=

X

Fig. 3. Confidence intervals for the mean projections X and
Y, and for the mean amplitude and mean phase.
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Thus, a conservative estimate of the interval
of confidence for the amplitude is half the

rectangle’s diagonal
¢, = +1.96-/s%+ 5%

For a less conservative estimate one can calcu-
late the vector sum of (X, Y) and 1.96-D

JE =P+ (Y —¢y)’ <A<

VX + e+ (Y + )

If the rectangle does not overlap with the co-
ordinate system’s origin then the mean vector is
significantly different from zero. In this case
an interval of confidence ¢, for the mean com-
ponent’s phase angle can be derived, which is
most easily done geometrically from Fig. 3.* A
still less conservative method could use a two-
dimensional normal distribution for the x;, y;,
leading to a confidence ellipsis rather than a
rectangle.

In calculating the signal to noise ratio of FFT
results, the value corresponding to the number
of repetitions in conventional averaging is the
number n of stimulation periods. It is directly
related to the total duration ¢ of the recorded
signal

n=t/T

where T is the stimulation period. This is true
independently of whether averaging, the FFT,
or a combination of both is used. When Fourier
analysis is used, the improvement of the signal
to noise ratio is also reflected in frequency
resolution, which is (roughly) the bandwidth of
frequencies of the original signal contributing to
a certain frequency component. This frequency
resolution is expressed as

Af=1/T

*Batschelet (1965, p. 13) and Zar (1974, p. 314) give another
reliability measure for angles, the measure of dispersion
of angles s for circular distributions

s =./2(1 —r) with
r=(1/n) /(T cos ¥, + (T sin y,)%

This is, however, not applicable in our case. Since
amplitudes are specified, phase angles should not be
treated as circular distributions. A more detailed discus-
sion of the statistical properties of circular distributions
can be found in Batschelet (1965) and Zar (1974). Note
that we now have three notions of a mean angle: the two
definitions given for vector and scalar averaging, and the
concept of a mean angle for a circular distribution,
where individual angles are not weighted by amplitudes

& = arctan [(Z sin ¥,)/(Z cos ¥;)].

T denoting the duration over which the FFT
was calculated.

When the analysis is set up such that Fourier
analysis is performed after averaging, it is still
possible to obtain reliability data by running
several trials. The FFT is then performed over
each averaged trial separately and the resulting
components are submitted to vector addition.
As a consequence of linearity, the same rules
apply as stated before. n, in this case, is the
number of trials used.

Scalar averaging of spectral components

A method different from vector averaging
described above is used more commonly for
averaging spectral data. In what I call “scalar
averaging”, amplitude values are used directly
for averaging instead of using the projections;
i.e. if, for a given frequency, A, denotes the
component’s amplitude for a Fourier transform
of the signal section S;, one defines

A=2ZA;/n i=1n

A mean phase is usually not calculated, but one
could similarly try to define

=2 y,/n i=1,n

Although this method seems simpler at first
sight, two difficulties arise here. First, since
taking the length of a vector is a non-linear
operation, the useful property of averaging and
Fourier transformation commuting does not
apply and the mathematical properties of the
results are less obvious. Second, the mean phase
is not uniquely defined by the above formula
due to the circular nature of angles. Suppose as
an illustration that there are two phase angles
¢,=10deg and ¢,=350deg. Obviously, a
mean of 0 deg is meaningful, but simple averag-
ing would yield 180 deg. To use the mean angle
as a measure of the central tendency of a set of
angles, one can determine the smallest range
within which all angles lie ((—10, +10] in the
example), and express all angles within this
range prior to averaging (adding or subtracting
360 deg where necessary). Note that this is not
identical to taking all angles modulo 360 deg.
The difficulties with scalar averaging are most
prominent for noisy signals or when the number
of trials is large. This is illustrated in Fig. 4.
When all phase angles lie in a small range, scalar
and vector averaging give similar results. For a
range of angles of 90 deg, and constant ampli-
tude, the two phase means differ by less than
1 deg (Batschelet, 1965, p. 15).
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Fig. 4. The different effects of vector and scalar averaging are illustrated for recordings with (a) high and
(b) low noise present. The figure shows 16 Hz component data from six 2-sec trials recorded from a
28-yr-old emmetropic female subject. In the high-noise situation (a), the subject has her eyes closed; the
low-noise recording in (b) is obtained by stimulating with 8 Hz phase-alterating sine-wave gratings having
40% contrast and 0.5 c¢/deg spatial frequency. A vector average can be obtained in both cases (middle
row) whereas a mean phase angle is not uniquely defined for scalar averaging of noisy data (upper right).
Note, however, that even with low noise, the calculation of a scalar mean angle may be difficult, since
a single small vector pointing away from the vector bundle [as indicated by the dashed arrow in (b)] may
render the determination of a smallest range impossible, unless some additional assumption is introduced.
In the case of vector averaging, the presence of high noise in (a) shows itself by the resulting vector having
a small amplitude so that the confidence interval overlaps with the origin.

Influence of noise on amplitude data

It is interesting to apply the vector represent-
ation to the question how noise will influence
amplitude data. Due to the non-linearity of the
r.m.s. operation it will turn out that noise has a
more pronounced influence on small signals
than on strong ones.

The SSVEP can be thought of as the vector
sum of an underlying signal s and a noise vector
r. Let us assume that the noise vector is statisti-
cally independent of the signal (the phenom-
enon of the alpha-blockade, i.e. the suppression
of EEG alpha activity for eyes open, shows that
this is not always a valid assumption), and is
uniformly distributed (i.e. its vector average is
zero). The SSVEP v was derived as the vector
sum of the FFT results for the signal segments.
Let the individual vectors v, = (x;, y;) be com-
posed from signals s; and noise vectors r; =
(x,i, ¥,;)- The law of commutativity implies that

the signal s is the vector sum of the individual
vectors s;, and the noise vector r is the vector
sum of the r,.

SSVEP=v=s+Tr
s=2Xs;/n

r=Xr;/n.

Since according to the Central Limit Theorem
the means of the noise-projections x,; and y,
decrease with the square root of the number of
trials n, the amplitude of the mean noise vector
will also decrease with \/;

We can now look at how noise influences
small or strong signals. We illustrate this at the
dependency of SSVEP amplitude on pattern
contrast, where we obtain both high and low
signal amplitudes (Fig. 5). This example is of
particular interest because the VEP threshold
obtained by intersecting the regression line in
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} threshold
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Fig. 5. VEP amplitude vs log contrast. r denotes the average

noise vector. Note that the variability at low contrast levels

is greater by a factor of n/2. The dotted line denotes linear
regression.

this plot with the horizontal axis is a good
- predictor of the perceptual threshold (Keidel,
1965a, b; Campbell and Maffei, 1970). For high
contrast values, SSVEP amplitudes of several
microvolts are obtained. With decreasing con-
trast, VEP amplitude decreases more or less
monotonically. At a certain contrast level still
above the threshold, the signal will be smaller
than the noise, and the amplitude plot will level
out to a line parallel to the x-axis.

In the low contrast range of Fig. 5, the
response function represents noise amplitude
and will thus decrease with the square root of
the number of trials. Now, what does the ampli-
tude reponse function look like for medium
contrast, near the intersection of the regression
line with the x-axis, where a small signal buried
in noise is present, or for high contrast where
the signal is (presumably) large compared to the
noise?

Consider first a signal s which is large com-
pared to noise (i.e. the right part in Fig. 5). Let
r, be the projection of the noise vector onto the
signal, and r, the component perpendicular to
this. The amplitude 4 can be decomposed as

A=/(sl+r)y+r

where |s| denotes the amplitude of s. Since noise
was assumed as small, r can be neglected, and
the equation becomes

A =|s|+r,.

Therefore only the projection of the noise vector
onto the signal vector contributes to the meas-
ured amplitude. The variability of the amplitude
is not given by the noise amplitude (as might
be expected) but by its average projection onto
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the signal, which is (2/n)-|r| for circularly
uniformly distributed noise (i.e. noise where all
angles have equal probability).

Consider next a signal s which is small com-
pared to the noise (i.e. the center part in Fig. 5).
Now let s, be the projection of the signal onto
the noise vector r at this point, and s, the
signal’s perpendicular projection. The ampli-
tude A can then be decomposed as

A=/ +I|r|)}+s.

Since |s| is already small compared to |r|, s} can
be neglected and the equation becomes

A=s,+]r|

Only the projection of the signal onto the noise
vector contributes to the measured amplitude.
Depending on the angle between signal and
noise, the amplitude will be above or below
noise level.

Summarizing the influence of noise on ampli-
tude, we find that, due to the nonlinearity of
the r.m.s.-function, noise has less influence on
the amplitude of strong signals than might be
expected, only its projection onto the signal
contributing to variability. Similarly, for small
signals, the signal will be underestimated, since
only its projection onto noise contributes to the
measured amplitude.

INTERPRETATION OF TEMPORAL PHASE

Whereas for transient VEPs the latency data
are considered more useful than amplitude data,
the temporal phase of steady state VEPs, which
is the corresponding parameter, has received
little attention. Moreover, the ambiguous
nature of its absolute values has often been
overlooked. Levi and Harwerth (1978, Fig. 3),
for example, wanted to demonstrate an increase
in temporal phase, corresponding to an increase
in latency, for increasing spatial frequency, but
they plot phase such that between adjacent
points there is an increment of more than 360
deg. On one hand temporal phase results have
such been over-interpreted, but on the other
hand their interpretation was short stepped
when any relationship between phase and laten-
cies gathered from transient VEP recordings
was denied. The argument is usually founded by
reference to the fact that the system underlying
steady state evoked potentials is highly non-
linear. Although linearity of the system is a suffi-
cient condition for phase/latency conversion,
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it is not a necessary one.* Non-linearities result
in changing the spectral content of the output
signal (adding for example components that
were not present in the input signal) but do
not influence the phase of a given component.
A full-wave rectifier with an ideal parabola
transfer function, for example, adds a second
harmonic and, given a certain input amplitude,
completely suppresses the fundamental. Yet the
phase of the second harmonic is in a static
temporal relationship with that of the funda-
mental. A sounder argument is based on a
model where the visual system is conceptualized
as being composed of a pure delay system
(corresponding to the optical nerval pathways)
in series with an oscillatory system (correspond-
ing to higher visual processing in the cortex)
(e.g. Spekreijse et al., 1977). In this model, the
first observable response in the transient VEP
would correspond to the pure delay system,
while the temporal phase from the SSVEP
would also include the delay from the oscillat-
ory system. Nevertheless, it is still possible to
convert the SSVEP phase angle into this overall
delay time, as long as one keeps the different
meaning between the two delay time measures
in mind. When it comes to relating VEP delay
times to psychophysical reaction time data, it
might be speculated that SSVEP delays could
yield better predictions of the psychophysical
behavior, since a greater part of the visual
system is involved. It remains an empirical
question in any case, what relation exists
between transient latency times and SSVEP
phase angles.

Although phase angles are only defined
modulo 360 deg, it is still possible to show
relative phase differences exceeding 360 deg.
This is done by continuously changing an addi-
tional variable in a sweep technique, in which
case we can assume that phase will also vary
continuously. In a discrete sweep technique
(i.e. where several stimuli are shown quickly one
after the other), the step width in the swept

*For a linear system the concepts of latency and temporal
phase of a given frequency component are equivalent
modulo 27

y=1f2ntk-2n

where ¢ is phase in radians, 7 is latency in seconds and
fis frequency. So for a given phase value to derive the
corresponding latency a certain number of full periods
27 have to be added or subtracted. Diamond (1977)
provides a different conversion method based on the
slope of the phase vs temporal frequency function.
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Fig. 6. Construction of a temporal phase plot. The phase
value corresponding to the first data point is arbitrarily
allocated to the interval of 0-360deg. The phase value
corresponding to each succeeding spatial frequency value is
then determined by minimizing the distance to the preceed-
ing point, adding or subtracting 360 deg when necessary. In
this example there is a certain ambiguity at 2 c¢/deg since the
standard deviation of this point is quite large relative to the
other points. It is not clear whether a step of —108 deg to
the lower curve, or a step of +252deg to the upper trace
should be chosen. An additional measurement between 2
and 2.5c/deg could resolve this uncertainty.

variable must be chosen to be small enough.
Figure 6 illustrates how to proceed. The spatial
frequency of sinewave grating stimuli is the
swept variable in this case. Arbitrarily choosing
the first point (for 0.5c/deg), each succeeding
point to the right is transformed (by adding/
subtracting 360 deg) such that its distance to the
preceeding point is minimized. If such a choice
is not possible, the measurement has to be
repeated with a smaller step-width.

PHASE-LOCKED ANALYSIS

Besides studying temporal phase in its own
right, phase data can also be used to help in the
analysis of amplitude by improving the signal to
noise ratio. Assuming that the noise’s phase
angle is independent and generally different
from the phase of the signal, one can improve
the signal to noise ratio by restricting the
analysis to the phase angle which is known to be
the one of the signal in interest. This is the idea
underlying phase-locked analysis techniques.

The restriction to a certain phase is done by
using the projections onto some predefined
phase which is assumed to be that of the signal.
Let us illustrate this again at the example of the
SSVEP’s dependency on contrast.

For high contrasts, the VEP phase angle will
be mainly determined by the underlying signal.
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Fig. 7. Vector representation of VEP vs log contrast. The
horizontal and vertical axes span the complex plane of FFT
results. The contrast axis points away from the observer.
The complex plane is rotated around the contrast axis such
that the mean phase angle for suprathreshold values points
upwards. Noise vectors lie within a cylindrical tube around
the signal curve. Resulting vectors (signal + noise) do not
exactly point upwards but lie within a V-shaped range. One
sample vector is shown. Note that in contrast to Fig. 5, the
vertical axis is not amplitude. VEP amplitude is given by the
length of the vectors. Thus, an amplitude plot can be derived
by rotating all resulting vectors upwards.

If it is assumed that the signal’s phase angle is
independent of contrast changes, the variability
in phase angle in the right half of Fig. 5 is solely
brought about by background noise. With this
assumption it is warranted to calculate a mean
phase angle @ for suprathreshold contrasts and
thus the data leading to Fig. 5 can be replotted
in such a way that the projections of the VEP
onto this mean phase angle are drawn. This is
performed schematically in Fig. 7, where the
phase angle is drawn in a third dimension
perpendicular to the plane used in Fig. 5. For
the sake of clarity, the coordinate system has
been rotated such that the mean phase angle @
points upwards.

Because the projections of the noise vectors
onto the signal phase will always be smaller than
the noise vector’s amplitude, this will lead to an
improvement of the signal to noise ratio.

Two observations can be made here. The
phase-lock is not absolute as Regan (1977a,
p. 114) for example assumes. Unwanted signals
rather contribute with the cosine of their phase
difference from the measurement phase. Second,
phase-locked analysis only leads to a significant
improvement of the signal-to-noise ratio for low
signal amplitudes! This can be seen by compar-
ison to our previous observations about signal/
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noise decomposition. For high amplitudes,
phase-locked measurement does not lead to a
S/N-improvement.

If the signal phase is not constant during
a measurement, e.g. if the phase depends
systematically on contrast in a contrast sweep
experiment, the projections onto phase angles
obtained at high-contrast lead to an under-
estimation of low contrast signals. This leads
to the regression lines having a steeper slope
and predictions of higher threshold contrasts
(=lower sensitivity). In sum, phase-locked
analysis will yield more reliable but possibly too
low contrast threshold estimates.

Figure 8 shows a contrast sensitivity function
for one subject together with VEP thresholds
from amplitude and projected data. In a series
of experiments conducted to study the depend-
ency of SSVEPs on spatial frequency and con-
trast (Strasburger et al., 1986) we found phase
variations in the order of 60 deg for a change of
contrast from 40 to 10%. This leads to an
underestimation of VEP amplitude of 50% at
10% contrast for projected ( = phase-sensitive)
data. Threshold sensitivity is then under-
estimated by approximately 0.5 log units.

The relative merit of phase-sensitive analysis
thus depends critically on the independence of
phase from the swept variable. A more refined
procedure would not assume a constant refer-
ence phase but had the reference phase be a
function of the swept variable. If such a system-
atic relationship can be established, the under-
estimation of the signal from using a “wrong”
phase can be avoided. This would combine
the higher S/N ratio of phase-locked analysis
with the better precision of phase-insensitive
analysis.

SYNCHRONOUS DEMODULATION

Synchronous demodulation is a method for
narrow bandpass filtering. It is shortly described
here for its close relatedness to the other dis-
cussed techniques (for a thorough discussion
of synchronous demodulation techniques see
Nelson et al., 1984). The method is widely used
for steady-state VEP analysis (e.g. Tyler, 1978;
Regan, 1975a) but is usually not specifically
named. The term synchronous demodulation was
introduced to evoked potentials work by Nelson
et al. (1984) from electrical engineering applica-
tions literature. Another term for this kind of
device is “heterodyne filter”.
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Fig. 8. Psychophysical contrast sensitivity function (CSF) for one subject together with VEP thresholds
from amplitude data and phase-locked (projected) data. Projected data tends to underestimate the
psychophysical CSF as a consequence of phase variations.

For a time dependent input signal I(z), two
signals X(z) and Y(¢) are calculated in real time
by multiplying the input with an externally
supplied sine and cosine wave, and subsequently
integrating with a low-pass filter

X(t)=f'

Y()= fl I(t)sin(wt)dr.

I(t)cos(wt)dt

These calculations extract those components
from the input signal having their frequency and
phase close to those of the reference signal. The
reference frequency and phase are chosen ap-
propriately by the experimenter. The integration
over a fixed length moving time window in the
preceeding formula is only an approximation to
the action of a low-pass filter. More precisely,
the input function is weighted with a continuous
function prior to integration which decreases for
time points further in the past.

From these signals X and Y, a polar signal
representation can be derived in a subsequent
“quadrature’ circuit

A=/ X))+ YX)
V(1) =arctan [Y(¢)/ X (2)].

From their definition it can be seen that these

*Such units are, for example, manufactured by Princeton
Applied Research, Princeton, N.J., or Ithaco, Ithaca,
N.Y. The high technical specifications of these units are,
however, not required for evoked potentials analysis.

calculations represent an aproximation to one
frequency component in a Fourier analysis,
calculated over a moving time window in real
time. Most of what has been said before there-
fore applies here as well. Unlike in a Fourier
analysis, however, which is calculated step-wise
over non-overlapping time sections of duration
T, in synchronous demodulation the time
windows overlap. A sudden change in the input
signal will thus only slowly change the output.
Whereas Fourier analysis yields results once
every T seconds, synchronous demodulation
gives continuous results but the effects are
“smeared” over time.

The calculations are usually performed by
analog circuitry. An electronic piece of equip-
ment performing such calculations is often
called a lock-in amplifier. In the simplest case, it
provides a square-wave instead of a sine wave as
a reference signal since then the multiplication
is reduced to a simple switching of signal
polarity. Such a unit acts as a parallel bank of
synchronous filters with center frequencies and
gains following the overtone series of a square-
wave. More sophisticated units supply a range
of reference signals and allow for automatic
determination of the reference phase (using a
phase-locked loop circuit).*

CORRESPONDENCE BETWEEN
ANALYSIS TECHNIQUES

Several different analysis techniques to deter-
mine SSVEP amplitude are in common use.
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Campbell and Maffei (1970), for instance, use
conventional analog bandpass filtering, Fiorentini
et al. (1983) and Petrig (1980) use Fourier
analysis of the averaged signal, while Tyler
(1978) and Regan (cf. 1975a) among others
prefer narrow bandpass filtering based on
synchronous demodulation. Nelson et al. (1984)
use phase-sensitive filtering via synchronous
demodulation.

Since all these techniques are closely related
and, under the right circumstances, give equiv-
alent results, the ongoing discussion as to which
method is “superior” to the other seems point-
less. At the same time an imprecise use of signal
processing terms has led to misleading or simply
wrong assertions. In conclusion, I therefore
want to point out the relationships and close
with some remarks about the terminology.

The techniques can be categorized into
phase-sensitive (“‘phase-locked”) and phase-
insensitive. For a specified bandwith, they give
equivalent results within a group. In the phase-
insensitive case, a narrow-band filter with center
frequency f and bandwidth Af, when fed with a
stationary signal, will yield the same output
amplitude and signal-to-noise ratio as given by
the amplitude of the frequency component at f
of a Fourier analysis with frequency resolution
Af. The FFT can be carried out over the raw
EEG, or over averaged data.* The band-pass
filter can be realized with conventional analog
high- and low-pass filters or by synchronous
demodulation, using, for example, a lock-in
amplifier, together with a “quadrature” circuit

*It thus makes little sense to say that Fourier analysis is
100 times faster than averaging (Regan, 1977a), or that
averaging is inappropriate for analyzing steady state
potentials (ib.). Fourier analysis and averaging can be
sensibly combined, e.g. to reduce processing time (cf.
previous paragraphs).

+Regan repeatedly states a bandwidth of his filter of “as
low” as 0.001 Hz (1970, 1972, 1977a p. 111, 1977b p.
1476). Such a filter would have a response lag of 16 min,
hardly what one would want for on-line VEP-tracking.

iLet b denote bandwidth and 7, denote rise-time defined as

1 oK
b =—f G(jw)dw

2 Jo

t,= I/Jwgz(t)dt,
0

where g(¢) is the impulse and G(jw) is the transfer
function. Then

and

1,=1/(2b)
(Kaufmann, 1959).
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calculating vector amplitude and phase. It can
also be implemented as a digital program (excel-
lent practical help for realizing digital filters is
found in IEEE’s “Programs for digital signal
processing”, 1979) or as firmware in a digital
signal processing chip. As far as the phase-
sensitive case is concerned, it is most interesting
to note that phase-sensitive filtering corresponds
to projecting vectors of FFT results onto some
predefined main phase. Again, the phase-sensi-
tive filter can be realized with analog multi-
pliers, or as a digital program. You can also use
a lock-in amplifier. One can turn phase-insensi-
tive to phase-locked results by calculating the
projections on some predefined phase angle, or
go back by calculating the “quadrature” (i.e.
r.m.s. or amplitude) function. Note that in the
phase-sensitive case signals are both positive
and negative, and noise is symmetric around
zero (cf. Fig. 7), while in the phase-insensitive
case the signal and noise are always positive (cf.
Fig. 5).

The S/N ratio of a phase-sensitive method is
better than for a comparable phase-insensitive
method because more noise is rejected; to pass,
noise must not only have the “right” frequency
but also the “right” phase. The higher noise
reduction is won by supplying additional knowl-
edge about the signal, namely its phase. When
the assumed phase is wrong, the method loses
its effectiveness as a noise filter; it then also
suppresses the signal.

The question remains what bandwidths and
center frequencies are obtained in each case.
The obtainable bandwidth is always inversely
related to the meassurement time. For an analog
filter this shows in its response lag,T for Fourier
analysis in the necessary time interval over
which the transform has to be calculated (cf. a
previous paragraph). The proportionality con-
stant of this relationship depends on the exact
filter characteristic} but usually ranges between
0.5 and 2.

More filter characteristics can be realized with
off-line processing than on-line. The reason lies
in “filter-causality”. During the measurement,
a filter only has information about the signal’s
past, not about its future. Later, more informa-
tion about the signal is available. The ideal rec-
tangular bandpass is one of the filter functions
which cannot be realized on-line.

Finally, some comments about the use of
signal processing terminology seem appropriate.
The distinction between Fourier analysis and
filtering should not be blurred. A filter is a
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dynamic system transforming a temporal signal
into another temporal signal, with the transfer
characteristic described in the frequency domain.
A Fourier transformation translates a descrip-
tion in the time domain into a description in the
frequency domain. Regan calls both his syn-
chronous filter (defined e.g. in Regan, 1975a)
and “a device based on a bank of narrow-band
filters” a “Fourier analyser” (1977a, p. 114).
The first use should be discouraged for the given
reason. As to the second use, a filter-bank
(together with its built-in integrators) should be
less specifically called a “spectral analyser”,
which is also the term used by the manufac-
turers. The reason is that the center frequencies
of the individual band-passes are hard-wired to
certain values which is not the case for Fourier
analysis.
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