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The stimulus for vision is light distributed over space, time,
and wavelength, The distribution in cach of these dimensions
influences our visual experience, This chapter focuses upon the
temporal dimension. The time course of the stimulus affects
our experience in two ways: it affects our sensitivity to the
stimulus, for example, whether we see it or not, and it affects
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the appearance of the stimuli that are seen, for example, by
controlling the apparent time course of the sensation. Both are
important, but this chapter deals primarily with the first sort
of effect, which is called temporal sensitivity.

This chapter begins with a brief description of the stimuli
that are used to measure temporal sensitivity. A set of terms
is introduced that serves to describe in a congistent way a wide
variety of possible configurations. Some mathematical notation
is specified for luminous stimuli distributed over space and
time.

The study of temporal sensitivity has always made extensive
use of mathematics, primarily Linear Systems Theory. Models
of gengitivity and of the underlying mechanisms are frequently
couched in these terms, To provide a point of reference, a brief
survey of Linear Systems Theory is provided.

Because so many of the phenomena of temporal sensitivity
can be explained by a simple generic model, and because this
model has appeared piecemeal in the work of a number of au-
thors, a “working model” is given concrete form in Section 4.
A working model is one that provides a reasonable quantitative
account of the available data, but whose mathematical structure
is somewhat arbitrary and whose details are subject to change
in the light of new evidence. Wherever possible in the remainder
of the chapter, empirical results are compared to the predictions
of the working model.

Sections 5-8 review empirical and theoretical analyses of
the visibility of a number of particular temporal wave forms:
sinusoids, pulses, and pairs of pulses. These wave forms are
sclected because they have received the bulk of experimental
attention, and because they reveal important aspects of temporal
sensitivity.

Ag will be evident, the temporal dimension of a stimulus
cannot be studied entirely in isolation from the other dimensions,
For example, statements regarding temporal sensitivity can
rarely be made independently of the spatial distribution of the
stimulus. This interdependence is acknowledged throughout
the chapter, and is addressed directly in Section 10.

In natural imagery, as distinet from the artificial stimulus
creations of the laboratory, temporal variation arises primarily
through image motion, whether through motion of the observer,
of the eyes, or of the objects viewed. [mage motion is a special
sort of temporal variation in which the time wave form is a
function of spatial position. In Section 11, the temporal variations
induced by image motion are considered, and some basic results
on sensitivity to moving patterns are reviewed. The relation of
temporal sensitivity to motion sensitivity is also discussed.

Asg the ambient level of illumination is raised, the eye ex-
changes sensitivity for temporal resolution. Overall sensitivity
is reduced, but the ability to see rapid fluctuations is relatively
enhanced. Section 12 reviews the empirical effeets of light
adaptation upon temporal sensitivity, and considers some the-
orctical models for these effects.

1. THE TEMPORAL STIMULUS

At its most general, the stimulus for vision includes anything
that influences our visual sensations and reactions. This might
include our state of light adaptation, our distance from a viewed
object, what we had for Junch, and to whom we last spoke. In
order to draw the line at a point that will best serve the purpose
of this chapter, the stimulus is considered to be a distribution
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of light lying in a plane orthogonal to the line of sight and in
front of the observer. This image covers some portion of the
visual field and endures for seme finite amount of time.

1.1. Intensity

Because we are only rarely concerned with variations in the
wavelength of light, it is sufficient to specify the intensity of
the light at each point in the image. This intensity distribution
can be written I (x, v, ), where x and y are horizontal and
vertical coordinates of the image measured in degrees of visual
angle (degrees), and ¢ is time. Three measures of intensity are
uscd here, The (irst is luminance, expressed in units of candelas
per square meter. The precise definition of luminance is quite
complicated (Wyszecki & Stiles, 1967). But given our earlier
definition of an image, luminance is then the amount of light
emitted or reflected toward the eve per unit area of the source,
weighted by the photopic luminous efficiency function, The optics
of the eye transform the image luminance distribution into a
distribution of light upon the retina. This transformation in-
volves many factors, including spatial blurring, chromatic ab-
erration, and attenuation by the pupil. The last effect is taken
into account by a second measurc, the so-called retinal llu-
minance. It is defined as the luminance (cd-m 2) multiplied by
the area of the pupil (mm?), and is given in units of trolands
{td). This measure is used when the precise level of illumination
on the retina is important, as in investigations of light adap-
tation. A third measure, most commonly used in studies of color
vision, specifies image intensity in quanta per square degree
per second at some particular wavelength or at each wavelength
in a spectrally extended source. The troland value can be de-
termined from this measure by way of formulas given by Wy-
szecki and Stiles (1967) (see also Chapter b by Hood & Finkelstein
and Chapter 8 by Pokorny & Smith).

1.2. Spatial Configuration and Contrast

The spatial configuration of the stimulus has important effects
upon temporal sensitivity. As noted above, our general descrip-
tion of an image is its complete three-dimensional intensity
distribution, Ii(x, ¥, t). However, the stimuli used in the majority
of laboratory experiments can be described in less general but
simpler form, Figure 6.1 iHustrates this discussion.

An area of intensity Iy is desighated as the background. A
larger arca, extending outward from the limit of the background
and with intensity g, is called the surround. Surround intensity
is most often set equal to background intensity, or is absent
altogether. Authors rarely specify lighting conditions beyond
the borders of the surround.

Superposed on and coextensive with the background is the
target with an intensity given by the function Iy (x, v, ). We
allow the target intensity to have negative values, as when
light is subtracted from the background, but of course the sum
of target and background must be positive. Conérast is defined
as the ratio of target intensity to background intensity,

T7(x,y, )

Clx,v,t) Is

(D)

Note that contrast may have negative as well as positive values,
though it may never be less than —1. Combining background
and target, the intensity within the target area is given by
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He,v,t) = Iy + Ire,yt) = Ipll + Cle,v, ). (2)
The segregation of the stimulus into contrast and backgreund
terms 1s a tradition that arose from the observation that sen-
sitivity is more nearly invariant with respect to contrast than
with respect to intensity. The background intensity must be
specified, however, for it controls the state of adaptation which
in turn governs sensitivity. Various definitions of background
intensity are used, among them the unvarying level upon which
the target is superposed, the space-average intensity of the
image, the space-time average, or the average of the maximum
and minimum intensities in the image. Each of these may be
appropriate in some circumstance, but it is important that the
expression for contrast be correct relative to the definition of
background used,

1.3. Separability

In many experimental situations, the spatial contrast distri-
bution does not vary over time, and likewise the temporal dis-
tribution is the same at all points in the image. In this case
the spatial and temporal dimensions of the stimulus are said
to be separable and the overall digtribution can be written as
a product:

(j(x’yst) = Ct,y(xly)cl(t) - (3)

This condition holds, for example, for a disk target that is flashed
on briefly, or for a spatial grating that is counterphase modulated

£es)

Targoel
and
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Y {degr
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X {dogroees)
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Figure 6.1. Some terms used to describe visual stimult, (a) The spatial
configuration of the image. The tlarget and background are superposed on
some specified area, shown here as a disk, The surround lies outside the
target and background, (b} A horizontal cross-section through the intensity
distribution I (x, ¥,t) of the image. The surround has intensity I, the background
fg, and the target /) (x, v, ). Target contrast is the ratio f/.
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in time. It does not hold for one important class of stimuli,
namely, patterns in motion, In spite of this exception, most
work on temporal sensitivity has been confined to separable
stimuli, and for this reason we focus upon the time wave form
C(t}, abbreviated C(¢), If C'(£) is to continue to expross contrast
as defined above, then C, ,(x, ¥) must be normalized so as to
have an overall contrast of 1. This convention has been adopted
throughout this chapter. Where intensity rather than contrast
is considered, we will specify the intensity wave form I{).

In reducing the deseription of the stimulus to the temporal
wave form C(¢), it must be borne in mind that both background
intensity and spatial distribution (which are no longer reflected
in the wave form) can have important effects upon temporal
sensitivity. These effects are discussed in Sections 9 and 11,

1.4. Temporal Wave Forms

A wide range of temporal wave forms has been studied for their
effects upon visual sensitivity. For various reasons, not all en-
tirely sensible, certain wave forms have received most of the
attention. These are rectangular incremental pulses, decre-
mental pulses, pulse pairs, square waves, and sinusoids. Sen-
sitivity to cach of these wave forms is considered, and they are
sketched in Figure 6.2. A uscful distinction among these wave
forms is that the sinusoid and the square wave are periodic,
whereas the others are aperiodic. A periodic wave form is one
that repeats itself forever, Formally, it is a wave form I(#) such
that

ey — It — 1) for all ¢, (4)
where T'is the period of the wave form. No visual stimulus goes
on forever, but if the number of cycles in the wave form is large
enough so that adding more does not alter sensitivity, then it
is reasonable to treat the wave form as periodic.

2. LINEAR SYSTEMS THEORY IN THE TIME
DOMAIN

Linear Systems Theory (LST) is an important mathematical
tool in the analysis of human temporal sensitivity. Bracewell
{1978} provides an excellent introduction to this branch of
mathematics. The purpose of this section i to provide a brief,
intuitive overview of LST and to note a number of the important
results so that they may be referred to in the text.

The experimental analysis of a physical system often consists
of applying various inputs and measuring the resulting outputs.
The inputs we consider here are real-valued functions of time,
F{6). This funetion typically describes the luminance or contrast
of a visual stimulus over time (see Section 1). The output, or
response, is also some real-valued function of time, r{t). This
function might represent some internal state of excitation, for
example, the momentary discharge frequency of a visual neuron.
More often it is a purely hypothetical quantity, whose value
can be deduced from psychophysical responses only with the
aid of additional assumptions. These assumptions are considered
here. The system is that collection of physical processes that
intervenes between the input and the response. In the example
above, the system would include all those events between stim-
ulus and neural response, including optical imaging, trans-
duction, and transmission from neuron to neuron.

A complete empirical characterization of the system would
consist of a deseription of the output resulting from any input.
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When the number of possible inputs is infinite, as is true in
the case of temporal wave forms, a purely experimental approach
would require an infinite number of measurements. If the system
is linear, however, LST provides a way of characterizing the
system by measuring the response to a single input. LST also
supplies a set of mathematical tools for predicting, from this
characterization, the regponse to an arbitrary input.

2.1. Superposition

It ig useful to denote the action of the system mathematically
by an operator, L. Just as a function (¢} maps values of ¢ to
values of f(¢), so the operator maps the input function f{¢) into
the output function r(¢). We write this mapping in the form

LIF — rigy . (5

Where it is possible to do so without confusion, we omit the
function arguments and write f for f(#).

A system is lincar if it obeys the principle of superposition.
This principle states that for any two inputs f{ and fo, and any
constant a,

Llafil = aLl fil (6)

LIfi + fol = LIAL + Lifal . (7

Thus superposition entails two properties, homogeneity and
additivity. The gystem is homogeneous when multiplying an
input multiplies the output by the same amount. The system
is additive when the response to the sum of two inputs is the
sum of the responses to the individual inputs.

2.2. Time Invariance

Let r(t) — L| f(#)]. The system is time invartant if
LIftt — ol = ri¢ — 1), (8)

Note that f(+ — 7) is the input f{t} delayed by ; likewise r({ — 7)
is the responge r(¢) delayed by 7. Equation (8) states that delaying
the input by 1 delays the output by 7 but leaves it otherwise
unaltered. This means that the properties of the system do not
change over time.

2.3. Orthogonal Basis Functions
Two functions b;(£) and by(£) are orthogonel if their inner prodict
is zero:

bu(t) - boll) j% bytybot)dE = O . (9)

A basis is a set of functions that spans some set of functions;
that is, any member of the latter set can be constructed from
a linear combination of the basis functions. 1f we have a sct of
orthogonal basis functions {6;(t)} which span the set of real-
valued functionsg { f{r)}, then for any function £,

fiey = aibt) , (10

Jen
2
i= -

= -
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Some wave forms used 1o study visual temporal sensitivity, Fach wave form specifies the

target intensity as a function of time. An equation defining cach wave form is given on the left. From top
to bottom the wave forms are a rectangular pulse increment of intensity f and duration T; a pulse decrement
of intensity ! and duration T; a pulse pair with durations T, intensities 1y and l,, and delay between pulses

of [2; a square wavce of intensity { and frequency w;
may be a quantity such as luminance, retinal illuminance, or quanta-degree

and a sinuscid of intensity { and frequency w. Intensity
2o U at some wavelength,

Because light cannot have negative intensity, each wave form must be added to a background more
intense than the largest negative excursion in the wave form.

where the a; ave the coefficients of the linear combination, and
where both ¢ and & may be complex. Because the basis is or-
thogonal, the set of coefficients o; that go to make up a particular
[ are unique and easily determined.

Now we let fbe the input to a lincar system, Applying the
principle of superposition to Eq. {10), we see that the response
to fwill be '

i o=

> «Llbl .

b

Lifl = {1n

Thus if we knew the responsc to each basis function (L] &1},
we could calculate the response to any arbitrary input. The
procedure would be as follows: (1) evaluate the coeflicients a;
required to represent the input £, (2) multiply each basis response
L1 6,1 by the coefficient a;, and {3) add them up to produce the
responsc L[ ['].

2.4. Impulse and Impulse Response

One natural set of orthogonal basis functions is the set of impulses
located at different points in time. An impulse 8(7) is a pulse
with infinite height, infinitesimal width, and unit area, located
att = 0. The input is easily represented in terms of shifted and
scaled impulses,

S - [% PR — B dr — fi) + B() a2

where # indicates convolution. Note that this equation is the
continuous version of Eq. (10}, with f{r) playing the role of the
coefficients ;. Let the response of the system to an impulse be
h(t), the impulse response. We write

(&) = LI&) . (13}
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‘We can now follow the procedure above to determine the response
to f{#). Combining the preceding three equations, and applying
the principles of superposition and time invariance, we get

rt) = J“” kG — Dde = f@) ¢ R . (14)

w

Thus the response is equal to the convolution of the input and
the impulse response. If the impulse response is known, the
response to an arbitrary input can be calculated. Thus the im-
pulse response completely characterizes the system.

2.5. Eigenfunctions
An alternative derivation of 7{¢) is possible if each basis function
s an eigenfunction, satisfying the condition

LIbie)l = ebi(e) . (15)
The response to an eigenfunction is the function itself, multiplied
by some complex constant ¢;, known as the eigenvaliue. Fortu-
nately, for a linear, time-invariant system there exists a set of
eigenfunctions that are also orthogonal basis functions for the
set of real-valued functions {f()}. They are the complex expo-
nentials, o7t with frequency w. The function fis synthesized
from these exponentials in the manner described in Section 2.3,
as a linear combination with complex coefficients F(w),

fi) = fc Fuw)e2mw duy (16)

Because the complex exponentials are eigenfunctionsg, the re-
sponsge of the linear system to fis easily determined:

rt) = F H{w)F (o) 2™ diy amn

The system function H(w) (also called the transfer function}
specifies the complex constant (eigenvalue) by which the complex
exponential of frequency w is multiplied as it passes through
the system. Note that H(w), like the impulse response, completely
gpecifies the behavior of the system. All we need now are methods
for evaluating F(w) and H(w).

2.6. Fourier Transforms

The coefficients F{w) that are required to construct f(¢t) from
complex exponentialsg are obtained by the Fourier transform

) = BT[] = f T fe 2vwt gy 18)

There is also an inverse transform, by which the original wave
form is reconstituted from component exponentials with coef-
ficients F (),

f) — FT (Flw)l - f Y FQoye™ i qu . (19)

Fourier transforms are treated extensively by Bracewell (1978).
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2.7. The Convolution Theorem

A particularly valuable property of the Fourier transform i
that if f1(¢) and f2(t) are two functions, and F(w) and Folw) ar
their transforms, then

) = fot) = FTO|F () Falw)] . (20

Thus the complicated convolution operation is converted to th
simple multiplication operation in the frequency domain. A
an example, Eq. (14) shows that the response of a linear systen
is the convolution of the input and the impulse response. Ap
plying the convolution theorem,

r(t) = FT [F)FT| A (21
- f © F@FTLR ()25 du | (22
Comparison of this result with Eq. (17) shows that the transforn
of the impulse response is the system function,

FTA)] — H(w) . (23
A linear, time-invariant system can therefore be completel:
desgcribed by either its impulse response or its system functior
which are Fourier transforms of each other.

2.8. Amplitude and Phase

The complex system function H{w) may be represented as th
sum of real and imaginary parts

H =R + il {24
where § = (—1)"* Each value of this function is a point in th
complex plane at a distance |H| from the origin and at an angl

<< H from the positive real axis, where

|H| = (R% + I%"% (28
_ i
< H = tan ' (2¢

Application of Euler’s theorem shows that
H = |H|e~H | (2

The advantage of this last expression is that the response t
an eigenfunction ¢27 is now simply

Lle#vwt) = |H(w)| expli[2rwt + <H@)]} . (2¢

With a more familiar real input of cos 2wwé, we see that th
output of the system is
Llcos 2nwtl = |H@w)| cos [2mwt + <HG@)l . (2¢

In other words, the response is also a cosine of the same frequenc
but altered in amplitude by the factor |H| and in phase hy a
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amount <H, Thus |H|, the amplitude response of the system,
describes the gain with which each froquency passes through
the system, and < H, the phase response, describes how much
each frequency 18 advanced or delayed.

2.9. Causality

In a passive physical system operating in the time domain, the
response never precedes the input, and the system is said to be
cansal. Formally,

H{) = 0 fort < 0. (30}
This has various consequences. Most important here is that
amplitude and phase responses are even and odd functions,
respectively, Accordingly, these functions need only be deter-
mined or specified for positive frequencies,

2.10. Some Simple System Functions

The system function of a linear combination of independent
systems is the linear combination of their separate system
functions. The cascade of two systems yields a system function
equal to the product of their individual system functions. By
means of these two rules, rather complicated systems can be
assembled from simple components. In the following sections
some simple systems are considered. For each, impulse response,
system function, amplitude response, and phase response are
noted in Table 6.1.

2.10.1.  Multiplication by a Constant. If a signal is mul-
tiplied by a constant %, but not otherwise altered, the transfer
function is a constant k. In electrical terms, this would be the
action of an ideal amplifier with a gain of k.

2.10.2. Delay. If the signal is delayed by a time 7, but
not otherwise altered, the amplitude response is equal to 1, and
the phase response to 2mwwr.

2.10.3. Differentiator. Differentiation of a signal with
respect to time is a linear operation, and may be represented
by an impulse response that is the derivative of the impulse
function, 8'(t), More generally, the nth time derivative may be
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represented by an impulse response that is the nth derivative
of the impulse. The transfer function is (i2ww)™.

2.10.4. Integrator. Integration over the interval | —o, ¢]
is equivalent to convolution with the unit step function, u(z).
Its system function is therefore the Fourier transform of the
step function, |5(te) — #/(mw) /2. Note that, except at 0, its action
is precisely the inverse of that of the differentiator, This is
logical, because except for their action on constants, differen-
tiation and integration are inverse operations.

2.10.5. leakyIntegrator. Rather than performing a perfect
integration, like that described in Section 2.10.4, many physical
devices integrate the inpul but leak at a rate proportional to
the amount accumulated. If the congtant of proportionality is
1/1, then the impulse response is

R — ult)e 7 (31)
where u{f) is the unit step function. If r identical leaky inte-
grators are cascaded, then

o 1
;(ﬂT)n 1(’, HT

@y = wo) T

(32)

and

Hwy — v™{i7wwr + 1) ", (33)

Amplitude and phase responses are

Hw)| = " [(2rwn? + 1) "2 (34)

<H{w) = —ntan'@rwr . (35)
These functions are drawn in Figure 6.3. Note that the system
acts as a low-pass filter. Beyond a frequency of (2w7) !, the
amplitude approaches an asymptote of (2mw) ", whereas below
(2mr) it asymptotes at " In log-log coordinates, the lower
limb is {lat whereas the upper limb falls with an asymptotic
slope of —n. This is sometimes called a resistance-capacitunce
filter, by analogy to an clectrical circuit composed of a resistor
and a capacitor,

Table 6.1.  Some Simple Linear Systems
Impulse Response,  Syslem Function, Amplitude Response,  Phase Response,
Syslem hit) H{w) |H ()| < H ()
Cascade hy * he H Iy |H| | UIZ‘ < Hy + <<Hy
Sum Ry + Ao Hy { Hy ‘111 + f{2| < | H\ 4 Iyl
Constant k B(t) k |k| 0
Delay 8 - ) ¢ HTww 1 S 2wt
nth derivative 3 () (i2mww)* (27 |w|)® nsgn{uw)/2
t
f ult) By  ilmw) [3(w} + L || sgnlew)m/2
W)t te T o L |
Low-pass filte . . - 2
ow-pass filter 1) Gomwr - 1M (rwn? 12 nlan {(Zwwr)
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Figure 6.3.  Responses of an r-stage low-pass filter with time constant 7 = 1. The columns show respectively

the impulse response, the amplitude response, and the phase response. Different rows are for dificrent
numbers of stages (m), as indicated. With increasing stages, the impulse response becomes longer, lower,
mare symmetrical, and its peak occurs later in time. All the impulse responses have the same integral
{arca) of 1. The falling limb of the amplitude response has an asympiolic log-log slope of —n. Al a given

frequency, the phase response is proportional to n.

3. BASIC THEORETICAL CONCEPTS

This section introduces a number of concepts that are used
frequently in discussions of temporal sensitivity,

3.1. Time-Invariant Linear Filter

Definitions of linear filters and time invariance are given in
Section 2. A time-invariant linear filter often plays the role of
the first element in models of the pathway between visual stim-
utus and psychophysical response. The filter input is the temporal
wave form of intensity or contrast, and the output is some hy-
pothetical internal response. Because the observer’s psycho-
physical response is usually discrete rather than time varying
{for example, the press of a button), it is neceszsary to assume
some additional, nsually nonlinear process between filter output
and psychophysical response. Several examples are given here.
The propertics of the linear filter inferred from psychophysical
data depend upon the the final response rule agsumed.
Temporal models are often expressed in terms of integration
or differentiation with respect to time. These operations may
also be represented as linear filters, as described in Section 2.
Oceasionally integration over some epoch 7 is considered. This

is equivalent to a filter whose impulse response is a rectangle
of height 1/t between times 0 and 1.

3.2. Threshold Mechanisms

The simplest link between filter output and cbserver response
is some sort of threshold mechanism, Commonly it is agssumed
that an excursion of the response that exceeds some threshold
value leads to a “correct” or “ves, I see it” response from the
observer, Depending on the model in question, the threshold
may be either a fixed property of the detection apparatus or a
statistical eriterion, which may be adjusted by the observer to
satisfy certain objectives. Because decrements as well as in-
crements can be detected, a threshold for negative excursions
of the filter output must also be assumed.

3.3. Probability Summation Over Time

Both the visual stimulus and the physical mechanisms that
mediate detection are subject to random perturbations. If the
internal response is subject to noise, one cannot be certain which
point in the response, if any, will exceed threshold. Accordingly,

the probability that each point exceeds threshold must be con-
sidered.
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A simple treatment of this situation is as follows. Suppose
that a response of some duration may be broken into a sequence
of n brief intervals, and that within each interval the response
is esgentially a constant r;. Assume the probability that the
response exceeds threshold in interval i, written p,, 1s indepen-
dent of all other intervals. Assume the signal is detected when-
ever the response in at least one interval exceeds threshold.
The probability of detection will then be

n

p— 1 [l - py.
i1

(36)

Quantitative predictions of sensilivity from this relation
depend upon the assumed relationship between p; and the value
of the response r;. One convenient and plausible assumption is
that

e lrit?

M= 1 - (37)
whete r; is the value of the internal response within interval
i. If this response is linear, r; is proportional to stimulus strength.
The probability of detection is then
— --)_'\r‘g‘ﬁ

p=1—-e . (38)
Thus for all stimuli at threshold {defined as some fixed value
of p)

r

1 = EJFJB

i=1

(39

Note that this expression defines the amplitude scale of the
internal response. If the relationship between the stimulus and
the internal response sequence r; is known (for example, if we
know the transfer function of an internal linear filter), then
this expression provides a method of calculating the effects of
probability summation over time.

A successful experimental test of predictions from this
analysis was provided by Watson (1979). Additional information
on this subject is contained in Sections 4.2, 5.6, and 6.5,2, Other
theoretical trealments of probability summation are possible.
Nachmias (1981) has shown that details of this analysis (in
particular the threshold assumption) are probably incorrect.
But this treatment has the virtue of simplicity and is undoubtedly
meore correct than neglecting probabilistic effects altogether.
3.4. Nonlinear Mechanisms
The threshold mechanism and probability summation are ex-
amples of nonlinear eperations in the chain of cvents between
stimulus and psychophysical response. Many other nonlinear
elements figure in models of temporal sensitivity. These may
be loosely divided into three types. The first, such as thresholds
and probability summation, are oufput nonlinearities, lying
between some internal response and the psychophysical response.
Rashbass’s early model provides another example. There the
linear response is squared, integrated over some epoch, and
thresholded (Rashbass, 1970).

The second sort of nonlinearities are adaptive processes.
Adaptation is inherently nonlinear, because by definition it
violates the principle of superposition. Thus a linear model may
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be adequate for small signals in a fixed state of adaptation, but
a nonlinear mechanism is required to alter the system properties
with changes in adaptive state. These frequently appear as
feedforward or feedback mechanisms that control the parameters
of a linear filter (Fourtes & Hodgkin, 1964),

A third, less frequently considered nonlinearity occurs when
signals may pass through any of several independent detection
pathways, Examples are so-called sustained and transient
pathways. Kven if cach pathway is linear, the system is non-
linear, because signals that travel through different pathways
viclate superposition. This notion is considered further in Section
9.4.

3.5. Detectors and Channels

It is sometimes useful to consider the collection of clements up
to and including a threshold device as a single unit, which we
call a detector. A single stimulus may excite many detectors,
and each detector is subject to noise, so a stimulus may from
trial to trial be detected by any one of a set of detectors. We
call this set of detectors a channel.

When a “high threshold” interpretation of the detection
process is employed, the channel is that set of detectors in which
the response has a nonzero probability of exceeding threshold.
If the observer is viewed as applying a more sophisticated com-
putation to the detector outputs, the channel is those detectors
entering into the computation.

3.6. lLabeled Detectors

If an observer is asked to make some judgment about the ap-
pearance of stimuli, then the model must contain some moch-
anism for the coding of sensory quality., A simple assumption
is that the response of each detector ean be distinguished from
that of all other detectors, This is called a labeled detector.
Application of this concept is discussed in Section 9.4.1.3.

3.7. Fast, Slow, Transient, and Sustained

In the literature on temporal aspects of vision a number of
terms are used whose meanings are not well defined. To avoid
confusion, the following clarifications are proposed.

3.7.1. Fast and Slow. The term “fast” has been used to
describe either a rapidly developing response, as might lead to
a brief reaction time, for example, or the system’s ability to
follow rapid variation, as reflected in a high fusion frequency.
In a linear system, these two properties may be governed by
two quite different aspects of the system funetion, For example,
it is quite possible for a high fusion frequency to be associated
with a long reaction time, because the latter could be accom-
plished by an arbitrary delay that does not alter the amplitude
responge. Unless some other meaning is made explicit, it seems
wise to reserve the terms “fast” and “slow” to describe changes
in the time scale of the responsce, In this sense, a faster response
shows both of the effects noted.

3.7.2. Transient and Sustained. These terms were used
originally by Cleland, Dubin, and Levick (1971} to describe two
clagses of visual neurons in the cat. The feature of the sustained
cell’s response that presumably evoked this label was its sus-
tained response to a steady stimulus, whereas a transient cell
responded only at onset and offset. Subsequently, the terms
have been applied to a wide range of phenomena and hypothetical
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mechanisms, many of which have little to do with the form of
the temporal response. Thus transient mechanisms are fre-
quently presumed to be nonlinear and relatively more sensitive
at low spatial frequencies, It scems important, therefore, to
distinguish between the use of these terms as adjectives to
deseribe a characteristic property of the temporal response, and
their use as names of hypothetical mechanisms.

We consider below the evidence for distinet mechanisms
called by these names. Outside of that context, we reserve the
terms to describe a property of the temporal response of a linear
filter. A transient system is one in which the response to a step
input vanishes beyond some time 7. Because the response to a
step is the convolution of step and impulse response, which is
in turn the integral of the impulse response from O to ¢, it is
evident that a transient impulse response has an integral of (
and is briefer than T It is simple to show that the amplitude
response of a transient system vanishes at 0 frequency; thus
{ransience implies attenuation of low frequencies.

The sustained system response to a step grows monotoni-
cally, eventually reaching an asymptote. Thus the integral of
the impulse response is also monotonic, from which we see that
the impulse response is always of the same gign, The amplitude
response of a sustained system is easily shown to have a max-
imum at 0 frequency.

Many systems are neither entirely transient nor sustained,
in which case the terms may be used in a relative sense. Thus
of two systems, that with the greater attenuation at low fre-
quencies would be deseribed as more transient.

Ocecasionally the term “transient” is taken to imply a higher
fusion frequency, or higher sensitivity at high temporal fre-
quencies. The definition given here does not include this im-
plication, which does not in any case agree with the common
sense meaning of the word.

4. A WORKING MODEL. OF TEMPORAL
SENSITIVITY

Many aspects of temporal sensitivity can be understood in the
context of a working model, which we introduce here. The model
has three important features: (1) a lincar filter, (2) probability
summation over time, and (3) asymmetric thresholds for incre-
ments and decrements.

Aspects of the working model have been suggested by nu-~
merons authors. The notion of the eye as a linear temporal filter
was first developed by Ives (1922} and later in more detail by
de Lange (1952). It has been pursued with great cnergy by
Kelly (1961b) and Roufs (1972b), The idea of probability sum-
mation over time has appeared in the work of Blackwell (1963},
Ikeda (1965), Roufs (1974b), and many others. The specific com-
putational form used here is given in part by Watson and Nach-
mias {1977), Rashbass (1976), and Watson (1979) and is intro-
duced in Section 3.3.

4.1. The Linear Filter

The first component in the model is a causal, time-invariant
linear filter with impulse response
i) = uldltlng — DY gt e 17 (40)

where u(t) is the unit step function. (The impulse response,
system function, and amplitude rosponse are defined in Section
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2.) This is the impulse response of a cascade of n; identical low-
pass stages, each with time constant 7 (the low-pass filter is
described in Section 2.10.5). It has been normalized so that it
has unit area. The maximum oceurs at w(n; — 1) and is equal
to [{ng — De "1~ Ya(ng — 1)

The next component is a second filter identical to the first
except that it has time constant k, ny stages, and is multiplied
by a factor . The linear filter of the working model is the
difference of these two filters, multiplied by a factor £ The
impulse response of the working model is then

hit) = Eh(t) — Lho)] . (41)
The parameter £ is a gengitivity factor or gain that scales the
impulse response and amplitude response up or down in am-
plitude. The parameter { is the “transience factor.” When { is
0, only the first positive component ( 21) remains, and the impulse
response is “sustained” in the sense that the response to a step
input rises to a maximum and stays there indefinitely. When
{ is 1, the response is “transient” in the sense that the step
response rises to a peak and then declines and vanishes. Ex-
amples of the impulse regponse with various transience factors
are shown in Figure 6.4. The system response of the working
model is easily derived by noting that

Hiw) = (2mwr + 1) ™ (42)
where w is temporal frequency in hertz and { — /1. This
system response can be decomposed into the amplitude response

[Hiw)| = 1@rwn? + 1] {43)
and the phase response

<H;(w} — —n tan '"Brwr) . (44’
From the linearity of the Fourier transform,

Hw) = 8Hw) + [Halw)l . (45

It is then simple to show that the amplitude response of the
linear filter of the working mode] is

|H| — &[H\|* + (*1Ha

— 20\H|||Hg|cos(=H; — <Hy" (46

and the phase,

H|sin<H, — {|Hg|sin<H,
<H = 1] |Hi|sin: 4
tan {!H1ICOS<H1 {|Hz|cos<Hy 7

Examples of the impulse, amplitude, and phase responses o
the working model are shown in Figure 6.4, along with the
corresponding impulse responses. Note that when the transienc
index is 0, the amplitude response reaches a maximum of unit;
at 0 Hz, whereas when the index 13 1, the amplitude responst
goes to O at 0 Haz.

This particular formulation of the impulse response ha
been chosen because it is a good approximation to empirica
results and for mathematical convenience. For example, th
degree of low-frequency attenuation is easily varied by mean:
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Figure 6.4, The lincar filter of a working model of human temporal sensitivity.

(a) Impulse responses, (b Amplitude responses, (¢} Phase responses. Responses

and § = 1. The other parameters of the filter are time constant v = 4.94
msec, lime constant ratio k = 1.33, number of stages in excitatory mechanism
-+ 9 and in inhibitory mechanism na = 10, and sensitivity £ = T. The

time constants and number of stages are roughly appropriate for a human
observer at high background luminance,

of the transience parameter, the horizontal scale is easily con-
trolled by the time constant 7, and the slope of the high-frequency
limb can he controlled by means of k, ny, and ny. By suitable
choice of these five parameters, a version of this filter can be
found that agrees reasonably well with empirical results. This
agreement is illustrated in Figure 6.5. Other models might fit
these data equally well. The purpose here is to find a realistic
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and mathematically convenient form that we can use to illustrate
the gencral properties of temporal sensitivity.

The response to an arbitrary input is the convolution of
the input and the impulse response. It is convenient to express
the input contrast wave form C(¢) as the product of a normalized
wave form with unit amplitude, f{¢), and a positive constant C
equal to the peak contrast of the wave form. The response is
then

rity — Cfit) = hAtt) (48)
where * indicates convolution. To compute values of the response
it is often necessary to approximate the convolution by a finite
sum,

rp o= CAth}‘h"’ g o
A

where Af is the time interval between samples and i and j run
over the support of each function. The interval A¢ must be made
sufficiently small that it can capture the most rapid fluctuations
in the response; calculations in this chapter use a value of 5
msec.

4.2. Probability Summation Over Time

The concept of probability summation over time was introduced
in Section 3. It is described by the following equation, which
states a condition met by all stimuli at threshold:

1 = Z‘i’]“ﬁ

(50)

where r; is the value of the response in time interval [ and B is
the slope of the psychemetric function. Combining Eqs. (49)
and (50), and rearranging terms so as to leave us with an
expression for the contrast at threshold, we get

(51)

4 1B
C = At 1[225"% j|ﬁJ :
S A J

This equation predicts threshold for an arbitrary temporal wave
form, given the parameters of the model. Note that the com-
parisons between model and data shown in Figure 6.5 do not
take prohability summation into account. In the experiments
involved, the duration of the stimulus was not controlled so
that a calculation of Eqg, (51) cannot be performed. Had prob-
ability summation been included, the sensitivity factor &€ would
be reduced by a small amount.

4.3. Asymmetric Thresholds

1t has been assumed thus far that the model is equally sensitive
to positive and negative excursions of the response; the absolute
value operation in Eq. (51) ensures that positive and negative
response values contribute equally to the probability of detection.
Under many circumstances, this is an accurate assumption. In
other cases, the system is more sensitive to decrements than
to increments (see Section 8). This situation is incorporated
into the working model by assuming a higher threshold for
increments than for decrements. Computationally, it is done
by weighting positive increments by a parameter p. Then we
can replace Eq. (50) by
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Figure 6.5. Temporal contrast sensitivity functions of the working model {curves) and of human observers

(pointsy. All thresholds collected by method of adjustment. Standard deviations probably about 0.05 log
unit. Curves are the amplitude response of the linear filter of the working model, with parameters adjusted
to approximately match the data. Model parameters common to all curves: w = 1.33, m = 9, n, = 10,
() Data from de Lange (1958), ohserver V, 2° disk, background and surround 1000 td. Model parameters:
T =43 msec, L= 0.9, & = 269, (b) Data from Rebson (1966), 0.5 cycles-degree ™' grating, background
and surround 20 ce-m (22200 td). Model parameters: 7 = 6,22 msec, £ = 0.9, & = 214. (¢) Data from
Roufs and Blommacrt (1981), observer JAIR, 1° disk, background 1200 td, no surround. Model parameters:

T =494 msee, L = 1,£ = 200.

(52)

When p = 0, only negative excursions are effective; when p —
1, positive and negative excursions are equally effective; and
when p > 1, positive excursions are more effective than negative.

4.4. Summary of Parameters of the Working Model

The eight parameters of the working model are the time constant
7, the ratio of time constants «k, the stage numbers ny and no,
the sensitivity factor &, the transience factor {, the exponent j3,
and the asymmetry factor p.

5. SENSITIVITY TO SINUSOIDS

5.1. Background

Although they appear to give off a steady, constant illumination,
many light sources in our world ({luorescent lamps, television,
and movies are commonplace examples) in fact produce an
amount of light that varies rapidly in time. The effort to un-
derstand this insensitivity of the eye to rapid fluctuations has
generated a prodigious amount of research, a great deal of it
concerned with the critical flicker frequency (CFF) for periedic
wave forms. A periedic wave form, of which the examples given
are instances, repeats itself once each period of T sec. Limited
means of controlling light intensity confined early studies to
wave forms alternating between “on” and “off.” By increasing
the frequency of alternation, a light could be made to pass from
“flicker” (perceptible variation in intensity) to “fusion” (steady
appearance of a fluctuating light). The CFF marked the border
between flicker and fusion. These early experiments were con-
cerned primarily with the cffects of wave form (the particular
shape of the function during one period), with the wave form
amplitude, and with the brightness of a periodic stimulus beyond
the fusion limit, Some progress was made on the latter two
issues: CFF was found to rise linearly with the log of time-

average background intensity {the Ferry-Porter law: Ferry, 1892;
Porter, 1902), and a fused stimulus was found to be as bright
as a steady stimulus of the same time-average intensity (the
Talbolt-Plateau law). The first law is only approximate (as cap
be seen in Figure 6.28 in Section 11}, and has been amended
by Kelly (1964).

In the early 1950s, and culminating in his papers of 1954
and 1958, de Lange developed a novel approach that so altered
the experimental and theoretical perspective on this problem
that much of the earlier work was rendered obsolete (de Lange
1954, 1958), Three aspects of de Lange’s work were remarkable.
First, he provided independent control of background and target
Juminance. In previous experiments in which the light alternated
only between on and off, a change in the amplitude of the wave
form incvitably resulted in a change in the time-average back-
ground intensity, and consequently in the adaptive state of the
eye, De Lange adopted a procedure whereby wave form amplitude
might be changed without alteration of the time-average back-
ground. This in turn allowed production of wave forms with
cqual time-average background, but differing contrast.

This technical innovation paved the way for de Langce’s
sccond advance. By generating a wave form of unit contrast
and adjusting frequency until flicker gave way to fusion, he
could measure the conventional CFE. But by setting contrast
to values less than unity and repeating the procedure, he could
also measure the more complete function relating fusion fre-
quency to contrast, Several examples of this function, obtained
with various wave forms on various backgrounds, arc shown
in Figure 6.6.

De Lange's third and most important innovation was his
use of linear systems theory to provide a coherent interpretation
of data like those in Figure 6.6. To illustrate his approach,
consider the uppermost wave form in the insct to Figure 6.6.
It is reproduced in Figure 6.7, along with its amplitude spectrum,
the function specifying the amplitudes of sinusoids into which
the wave form may be decomposed. 1n the cage of the 10-Hz
squarce wave illustrated here, the spectrum contains odd har-
montes of frequencies 10, 30, and 50 Hz, and so on, with am-
plitudes of I(4/), [{4/3m), I{4/5%), and so0 on.
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Figure 6.6. Contrast sensitivity for several periodic wave forms as a function
of temporal frequency. The wave forms are shown in the inset. Sensitivity
is plotted as the inverse of the contrast of the fundamental sinusoidal component
in cach wave form. Thresholds are the same for all wave Torms ahove 10
bz, as predicted by a linear model. Target was a 29 foveal disk with a large
surround. Data for three background luminances are shown, (From H.
de Lange, Relationship between critical flicker frequency and a set of low-
frequency characteristics of the oye, Journal of the Optical Suciety of America,
1954, 44, Reprinted with permission.)

1f the visual system responds linearly to perturbations near
the threshold of visibility, then its behavior can be characterized
by a transfer function, specifying the amplitude and phase with
which various frequencies are passed through the system (see
Section 2}, Suppose that the amplitude component of this function
is given by the curves in Figure 6.6, at least above 10 Hz. To
determine the amplitude spectrum of the response to a square
wave of 10 11z, we simply multiply the input spectrum by the
function deseribing de Lange’s data, The result, shown in Figure
6.7, is very nearly a pure sinusoid of 10 Hz, The higher harmonics
have been almost entirely filtered out. This suggests that at 10
Hz the contrast thresheld for a square wave should he the same
as that for a sinusoid of equal fundamental amplitude, This
rule should hold even more precisely for frequencies above 10
Hz, because the higher harmonics will be still more severely
attenuated.

This rule also applics to any periodic wave form in which
the higher harmonies, after multiplication by the amplitude
response function, are much smaller than the fundamental.
This includes most simple periodic wave forms with funda-
mentals above 10 Hz The various symbols in Figure 6.6 show
the success of this analysis. Thresholds for all four wave forms
used by de Lange fall upon a common curve above 10 Hz, as
the lincar hypothesis predicts,

The first consequence of this observation was to bring to
an end more than a century of investigation of wave form per
se as a determinant of sensitivity. Beyond these experiments
required to document the premise of linearity, empirical mea-
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surements of sensitivity to various wave forms were no longer
required. The second consequence was to initiate a quarter cen-
tury of vigerous pursuit of the many ramifications of the linear
theory. A third consequence was to confer special status (perhaps
too special) upon the sinusoid as a temporal stimulus. The fol-
lowing section reviews some of the fundamental aspects of
thresholds for sinusoidal modulation. Table 6.2 notes some of
the more important contributions in this area. An interesting
view of the subject of “flicker” at an early and active stage in
its development is given by the symposium papers in Henkes
and van der Tweel (1964). The classic review is by Kelly (1972h).

5.2. The Temporal Contrast Sensitivity Function

When the contrast of a target is varied sinuscidally at some
frequency, sufficiently small amplitudes are invisible; that is,
they are not distinguishable from a target with zero contrast.
The oscillation is said to have “fused.” As the amplitude is
raised, the target may become visible. The transition to visibility
is called the contrast threshold, and its inverse, contrast sen-
sifivity. A plot of contrast sensitivity versus temporal frequency
is called a temporal contrast sensitivity function (ICSF).

In the experiments shown in Figure 6.6, de Lange was
unable to generate true sinusoids, although his trapezoidal wave
form was quite close. In 1958, however, he published extensive
measurements of the TCSFE for two observers at a number of
background intensities. Some of these classic results are re-
produced in Figure 6.8. They illustrate several general features
of the TCSF. At the higher luminances, a peak in sensitivity
of about 200 (a threshold contrast of about 0.005) occurs at
about 8 Hz. Above this frequency, sensitivity falls precipitously.
Inlog-log coordinates, the curve appears to accelerate downward.
For a sinusoid, the CFF is the highest frequency at which contrast
sensitivity is equal to 1. Following the curve downward, the
CFF is reached at a frequency of between 50 and 70 iz, Sen-
sitivity also declines at low frequencies, but the drop is less
rapid and stops at a sensitivity of about 50.

1t should be emphasized that the TCSF is not a single in-
vartant function. Rather, the form of the TCSF is subject to
large alterations, depending primarily upon the background
intensity, the spatial configuration of target and surround, the
observer, and the method by which the thresholds are obtained.
Several authors have noted that the TCSF may be viewed as a
slice through a many-dimensioned surface {Kelly, 1972a;
Koeenderink & van Doorn, 1979). This perspective is often useful
in appreciating the interaction between temporal frequency
and some other variable, but is obviously limited to two variables
at a time.

Before considering the many variations to which the TCSF
ig subject, it may be worth noting certain general properties of
these effects. First, many experimental manipulations appear
to have different conscquences for those frequencies above the
right-hand shoulder of the curve and for those below it. In the
traditional log-log coordinates that we use, the high-frequency
limb tends only to translate horizontally or vertically. These
motions correspond to scaling operations on frequency or sen-
sitivity (equivalent to changes in the time scale 7 and sensitivity
parameter § of the working model). Effects on the low-frequency
limb of the curve are more complex, but gencrally consist of
changes in the degree to which the curve drops at low frequencies
(cquivalent to changes in the transience parameter { of the
working model). These are simplifications, and should not blind
the reader to more subtle features of the TCSE. They are meant
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Figure 6.7. An explanation of why thresholds for a sguare wave and a sine wave are equal at high
temporal frequencies. (@) The square wave of frequency 10 Hz and intensity 1. (b} The amplitude spectrum
of the square wave, The height of each impulse indicates the intensity of the compenent at the corresponding
temporal frequency. The impulse at 10 Hz is the fundamental. Also shown is the amplitude response of
a hypothetical linear filter, adapted from de Lange’s data in Figure 6.6. (¢} The result of multiplying the
amplitude spectrum of the square wave by the amplitude response of the filter. Only the fundamental
remains, hence thresholds for the square wave and its fundamental are the same.

only to help guide the eye over the results in the following
sections.

5.3. The Working Model

To predict empirical thresholds for sinuseidal wave forms trom
the working model we must know the duration of each stimulus,
because probability summation over time causes threshold to
decline for as long as the stimulus is exposed. However, when
thresholds are collected by methed of adjustment (as has most
often been the case for sinusoidal wave forms), the duration is
unspecified. But if we assume that probability summation over
time affects all frequencies equally, then we can compare the
amplitude response of the linear filter of the model directly to
the empirical TCSI. This is done for three selected data sets in
Figure 6.5 in Scction 4. The figure illustrates that the model
gives a good account of the TCSF under these conditions. The
changes in model parameters in the three cases are small and
confined to the overall sensitivity &, the time constant 7, and
the transience {. These changes are due to differences in back-
ground intensity and spatial configuration. Larger changes in

spatial configuration often produce more substantial changes
in model parameters,

5.4. Effects of Spatial Configuration

The cffects of spatial configuration upon temporal sensitivity
are dealt with in Section 9. A summary of those eftfects 1g that
the form of the high-frequency limb of the TCSF is largely
unaffected by spatial configuration, but that the low-frequency
limb is raised by the presence of edges, high spatial frequencies,
or a surround. Taken together, these results are consistent with
the idea that effective high spatial frequencies in the stimulus
result in a more “sustained” TCSF. This effect is lessened at
low background intensities, all spatial targets then giving a
maore or less “sustained” result.

5.5. Fifects of Background Intensity

This subject is examined in detail in Section 11. In general, as
background intensity is raised, luminance thresholds increase.
However, the increase is less rapid at high temporal frequencies



TEMPORAL SENSITIVITY

Table 6.2. Selected Studies of Sinuscidal Flicker

Reference Spatial Stimulus Variables
de Lange, 1954 2° disk with Wave form,
surround background
intensity
de Lange, 1958 2° disk with Background
surround inlensity
Kelly, 1959 2, 4, 60° disks Target size,
with & w/o surround
surround
Kelly, 1961a 60° disk, blurred Background
edges intensity
Robson, 1966 Sinusoidal Spatial
grating frequency
van Nes, Drifting grating Background
Koenderink, Nas, surround intensity,
& Bouman, 1967 threshold
erileria
Keesey, 1972 1° X 4 min bar, Threshold
surround eriteria
Kelly, 1972a Sinusoidal Spatial
gratings frequency,
background
intensity
Roufs, 1972a 1° disk Background
with & w/o intengity
surround
Kulikowski & Sinuscidal Threshold
Tolhurst, 1973 gratings eriteria,
spatial
frequency
Roufs, 1974b 1° disk w/o Duration
surround
Koenderink, Sinusoidal Eccentricity,
Bouman, grating background
Bueno de Mesquita, no surround intensity
& Slappendel, 1978
Koenderink & Sinuscidal Spatial
van Doorn, 1979 gratings frequency
Watson, 1979 Sinusoidal Duration
gratings
Virsu, Rovamo, Patch of grating Fecenlricity,
Laurinen, & spatial
Naganen, 1982 frequency

than at low. Expressed in contrast terms, sensitivity increases
more rapidly at high temporal frequencies than at low as the
background is raiscd. As a consequence, the low-frequency limb
of the TCSY drops as background intensity is increased, as
shown by de Lange’s data in Figure 6.5. This figure also shows
that raising background intensity also shifts the TCSF to higher
frequencies. In terms of the working model, these two effects
can be accommodated by lowering the time constant 7 and in-
creasing the transience { as background intensity is raised.

5.6. Effects of Duration

If the duration of a sinusoidal wave form is brief, its spectrum
oxtends above and below its nominal frequency, and sensitivity
depends in a complex way upon frequency, duration, and the
TCSF. Similarly, if the onset and offset of the sinusoid are abrupt,
higher frequencies are introduced that may influence sensitivity.
If the duration is substantial (greater than 100 msec) and if

the onset and offset are gradual, these problems are largely
eliminated, vet duration still has a small but significant effect
upon sensitivity, When a gradual onset and offset are accom-
plished by means of a Gaussian gating function, sensitivity
increases approximately as the Vi power of duration (Watson,
1979). Roufs (1974b), using a slightly different gating function,
has obtained comparable results.

Roufs (1974b) and Watson (1979), using somewhat different
assumptions, have shown that this is predicted by probability
summation over time (sce Sections 3.3 and 4.2). In essence,
each moment of the presentation provides an independent op-
portunity to detect the stimulus; as the duration is extended,
the number of opportunities grows, and the overall probability
of detéction is increased. In Watson’s formulation, sensitivity
should increase with duration at a log-log slope of 1/, where
B is the slope of the psychometric function. The observed slope
of ¥ corresponds well to observed psychometric function slopes
of about 4 for these conditions (Watson, 1979).
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Figure 6.8. The temporal contrast sensitivity function at several background
intensities. The temporal wave form was sinusoidal; target was a 27 disk
wilh i large surround. Curves are drawn by eye. On a bright background,
sensitivily increases with temporal frequency from about 50 o a peak of
about 200 at around 8 tlz, then falls to a CFF of about 60 Hz. The ordinate
is extended to sensitivitics of 0.5 {contrast = 2.0) because although sinusoids
with contrast of 2.0 cannot be constructed, wave forms with a fundamental
this large can be produced (data from observer Vo of de Lange, 1958).

5.7. Effect of Eccentricity

Rather little is known about how the TCSF depends upon the
location of the target within the visual field. Sharpe (1974}
measured temporal contrast sensitivity for gratings of 0.8, 1.5,
4.5, and 5.5 eycles-degree !, centered 10° into the left temporal
visual fleld, drifting at various velocitics. His results resemble
those of Robson (1966) (Figure 6.20 in Section 9) in showing
more transicence at low spatial frequencies. Apart from the ex-
pected decline in spatial resolution, there is little systematic
change from the foveal results.

Koenderink, Bouman, Bueno de Mesquita, and Slappendel
(1978) have published results that show little variation in the
shape of the TCSF when measured with a (05 x 0.5° 4
eveles-degree ! grating target with dark surround at lecations
of 1,2, 4, 6, and 8°. With a4 x 4°, 0.5 cycles-degree ! targot,
slightly more relative attenuation is evident at the fovea than
at locations of 6, 12, 21, 32, and 50°. The lack of surround and
small target size (2 cyeles of the grating) make these results
somewhat difficult to compare to other data.

One recent result suggests that the temporal properties of
the retina are homogeneous, and that all variations with ec-
centricity arc due to spatial inhomogeneity. Virsu, Rovameo,
Laurinen, and Nasanen (1982) found that sensitivity to foveal
targets was approximatcly the same as that to peripheral targets
that had been magnified so as to occupy an equal cortical pro-
jection arca. This is consistent with the idea that gpatial pro-
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cessing is homogeneous across the retina except for a change
in spatial scale. They also found that this result held equally
well at temporal frequencies of 0, 1, 4, and 18 Hz. This strongly
suggests that the temporal processing is also homogeneous across
the retina. In this view, the variations in temporal behavior
with eccentricity reported elsewhere are consequences of the
change of spatial scale, rather than of temporal processing.

5.8. Effect of Threshold Criteria

In his 1958 report, de Lange noted a difference in the nature
of the flicker perception depending on “frequency.” This obser-
vation hag been echoed by many subsequent authors: at high
temporal frequencies, stimuli near threshold appear to “flicker,”
whereas at low temporal frequencies the percept is of a more
gradual variation (aptly termed “swell” by Roufs, 1972a). When
an adjustment method is used, it may be difficult to equate
criteria in the two frequency ranges.

Van Nes, Koenderink, Nas, and Bouman (1967) made a
further digtinction, With drifting gratings as targets, they re-
ported that as contrast was reduced, the spatial variations in
brightness disappeared before temporal variations, so that sep-
arate “flicker” and “pattern” thresholds could he observed.
Similar suggestions were made by Rashbass (1968), Watanabe,
Mori, Nagata, and Hiwatashi (1968), Pantle (1970}, and Richards
(1971).

Keesey (1972}, noting a similar distinction among judgments
for a narrow bar whose contrast was modulated sinusoidally in
time, measured each of the two thresholds separately at temporal
frequencies between 0.4 and 30 Hz. The two temporal sensitivity
tunctions did not differ by a constant factor, and the flicker
threshold was not invariably below the pattern threshold.

With grating targets of various spatial frequencies, Kuli-
kowski and T'olhurst (1973) obtained temporal sensitivity func-
tions using both flicker and pattern criteria (see Fig, 6.24 in
Section 9), In agreement with Keesey's data, tlicker sensitivity
declines at low temporal frequencies, but pattern sensitivity
does not. The two curves intersect at an intermediate temporal
frequency, so that at high temporal frequenciss, flicker sensi-
tivity is greater than patiern, whereas at low temporal fre-
quencies the reverse is true. Their interpretation wag essentially
that of Keesey: cach criterion was attributed to a different
mechanism, as though the two curves deseribed the temporal
contrast sensitivities of distinct flicker and pattern detectors,
As further evidence for this idea, they noted that the two curves
moved independently with changes in spatial frequency. An
increase in spatial frequency lowered the sensitivity curve of
the flicker mechanism nmuch more than it lowered the curve of
the pattern mechanism.

By analogy to retinal cells of the same name {Cleland et
al., 1971}, and becanse the llicker curve showed low-frequency
attennation whereas the pattern curve did not, these two sorts
of detectors were called transient and sustained moechanisms,
respectively. Section 9.4 containg a review of the theory of sus-
tained and transient detectors,

5.9. Effect of Eye Movements

When a stimulus contains both temporal and spatial variations,
movements of the eye influence the temporal distribution of
the stimulus. The TCSF is ordinarily measured with the eye

fixuting a mark, but it is well known that various eye movements
occur during fixation (Riggs, Armington, & Ratliff, 1954).
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Therefore the effect of these fixational eye movements upon the
TCSI must be considered.

One method of assessing the effects of eye movements is
to remove them by stabilizing the image upon the retina. Kelly
(1979) and Tulunay-Keesey and Jones (1980} have shown that
prolonged viewing of high-contrast, stationary, stabilized grat-
ings leads to very large reductions in sensitivity. This reduction
may be 1 log unit or more at the lower spatial frequencies. It
appears that these conditionsg give rise to a strong afterimage,
which profoundly alters the properties of the contrast-detecting
mechanisms (Burbeck & Kelly, 1982; Kelly, 1982).

However, when brief (7-see¢) presentations at contrasts near
to threshold are used, the difference between stabilized and
unstabilized thresholds is always less than 0.3 log units (Tu-
Junay-Keesey & Jones, 1980; Tulunay-Keesey, 1982}, These
differences were obtained with a temporal presentation (Gaus-
sian with duration of 7 sec) that is essentially a measure of
sensitivity to 0 Hz. Because we would expect higher temporal
frequencies to reduce the difference between stabilized and un-
gtabilized thresholds, we may conjecture that the TCSF measured
with brief, fixated, unstabilized presentations of near-threshold
contrast would differ from the equivalent stabilized data by
less than 0.3 log units. This would imply that the TCSF is
adequately measured with unstabilized viewing. But, remark-
ably, no data have been published that directly compare sta-
bilized and unstabilized TCSFs under these conditions, Kelly
(1977) has published comparisons of stabilized and unstabilized
TCSFs, but these thresholds were collected following prolonged
viewing (and hence adaptation), and thus do not reflect purely
the contribution of fixational eye movements to the TCSF.
Nevertheless, they show that most of the effect of stabilization
is absent when the temporal frequency is 0.1 Hz or above.

5.10. Combinations of Frequencies

Much of the theoretical value of the TCSFE rests upon the as-
sumption that thresholds are governed by a linear filtering
process. One possible test of this assumption is to examine
thresholds for combinations of several frequencies. A nonlin-
earity of particular interest is that intreduced by multiple in-
dependent channels selective for temporal frequency. Summation
between different frequencies i an appropriate test for the ex-
istence of such pathways. However, we ghall see that the pre-
dictions of the linear model in this context depend rather strongly
on the nature of the assumed output nonlinearity.

J. Z. Levinson (1960) measured thresholds for compound
wave forms made by adding together sinusoids of 10 and 20,
or 20 and 40 IIz. The two components had “equal sensation
levels™; that is, each was added in proportion to its individual
threshold. The wave forms controlled the contrast of a 1° disk
target {background = 685 c¢d'm 2, surround — 130 cd'm 2.
Levinson noted that threshold for the compound, expressed as
fraction of threshold for either component alone, varied according
to the relative phase of the two components, as shown in Figure
6.9. Levinson pointed out that the compound wave form inverts
itself with every 180° change in relative phase, but the threshold
minima occur only every 360°. He suggested that this might
be explained by a detector with a higher threshold for excursions
of one sign than of the other, and demonstrated the principle
with an analog model (J. Z. Levinson & Harmon, 1961).

Asymmetric thresholds can be introduced into the working
model by weighting positive excursions by a factor p, as noted
in Section 4.3. When p — 1, positive and negative excursions
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Figure 6.9. Threshold for the sum of two different temporal frequencies as
a function of the phase difference hetween the two components, (a) Data
from ). Z. Levinson {1960). The frequencies were 10 and 20 1z, and the
contrast of cach component was an equal fraction of its threshold. The phase
difference is the lag of the high-frequency component. Thresholds are plotted
as fractions of the single-component thresholds (sensation magnitudes). The
smooth curve is the fit of the working model with a threshold asymmetry
factor (py of 0.65, a B of 3.5, and a phase difference between component
responses of about 45°. The curve has also been shifted upward by 0.05. th)
Predictions of the working made! for various values of B and p. A B of 3.5
simulates probability summation; a value of 50 simulates no probability
summation. A p value of G means that positive excursions of the filter cutput
are invisible; a value of T means that positive and negative excursions are
equally effective. The model fits best when the phase response at 10 Hz is
about 457 greater than that at 20 Hz, when there is probability summation,
and when decrements in the filter response are considerably more effective
than increments.

are equally effective; when p = 0, only negative excursions are
effective. Recall that probability summation may be modeled
with B = 3.5, and the absence of probability summation with
B = 50. Some predictions of this model are shown in Figure
6.9. The data scem to refute any version that lacks probability
summation, both because they show too little summatien (the
prediction is generally below the data), and because the data
show only a modest dependence on phase. Likewise the data
reject a model with probability summation but with no asym-
metry, because it predicts no dependence upon phase. The data
seem reasonably well fitted by the probability summation model
if p is set to 0.65 and a phase difference of about 45° is assumed
between 20 and 10 Hz. The curve must also be displaced upward
by about 1 standard deviation, as might occur if the normalizing
threghold for the single component were overestimated by this
much.

A threshold asymmetry might be encouraged by Levinson’s
adjustment method. For example, the observer might adjust
until a certain eriterion darkness was seen, and ignore the
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bright phases. It would certainly be of interest to repeat these
experiments with a forced-choice method, both to reexamine
the evidence for threshold asymmetry, and because they may
constitute the only known method of estimating the phase re-
sponse of the linear model.

Using spatially sinusoidal grating targets, Watson (1977)
examined thresholds for combinations of a wide range of temporal
frequencies. The general finding was that for spatial frequencies
of 2, 4, and 10 cycles-degree "' and temporal frequencies of be-
tween 1 and 20 Iz, with pairs separated by as much as § Hz,
only modest departures were observed from the predictions of
a linear model with probability summation. The departures
were never of the size predicted by narrow band (less than 8
Hz) temporal frequency tuned channels. The data, however,
could not rule out the existence of two independent pathways,
one moderately selective for high temporal frequencies, the
other moderately selective for low.

5.11. Theory

Landis (1953) provides an annotated bibliography of the pro-
fugion of experimental work, and some theory, done on periodic
wave forms of various kinds during the years 1740-1952. The
earliest explicit model of flicker sensitivity was given by Ives
{1922), who proposed a log transform followed by diffusion, leaky
transmisgion, and peak detection. De Lange (1952, 1954, 1958)
explicitly introduced the application of Linear Systems Theory
to temporal sensitivity, and showed how treating the eye as a
linear filter could rationalize the great mass of data on flickering
periodic wave forms. He also argued that the Talbolt-Plateau
law (brightness above fusion is equal to time-average brightness)
implied that any nonlinear elements should follow rather than
precede the linear filter. His model of the filter consisted of 10
resistance-capacitance filters in cascade (see Section 2.10.5),
together with an induction element to attenuate at low fre-
quencies, J. Z. Levinson (1966) has noted that the n low-pass
stages in de Lange’s model are mimicked by a one-stage sta-
tistical process, so the n-stage model need not imply n physical
stages.

Kelly (1961b) proposed a two-stage model to account for
the pronounced attenuation at low frequencies found with large
targets, and the effects of light adaptation. The first stage is a
linear filter with both differentiating and integrating compo-
nents. The second stage is a “pulse encoder” that acts as a
nonlinear low-pass filter whose bandwidth is controlled by the
background luminance.

Fourtes and Hodgkin (1964) noted that changes in back-
ground intensity have a much greater effect on sensitivity than
upon the CFF (see Fig. 6.30 in Section 11.4). They observed
that this was consistent with an n-stage low-pass filter with
time constant 7, because sensitivity is propertional to %,
whereas CFF varies in inverse proportion to 7. They extended
de Lange’s model to a range of background intensities by in-
troducing feedback stages controlling the time constants in each
stage. Sperling and Sondhi (1968) and Matin (1968) have pro-
posed more elaborate but similar models.

Departing from the custom of following the linear filter
with a simple threshold mechanism, Rashbass (1970) pro-
posed that the filter cutput was squared and integrated over
an epoch of about 200 msece, and that this signal was then
thresholded. Subsequent work has shown that this model, thongh
an elegant solution to the problem it addressed, is not consistent
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with other results (Watson, 1979), but is a special case of a
more general model (essentially the working model of Section
4).

Kelly (1969a) has proposed a diffusion model that gives a
good account of the high-frequency asymptote of the TCSF col-
lected at various background intensities (see Fig, 6.29 in Section
11.4). More recently Kelly and Wilson (1978) have partitioned
this diffusion process into two stages, which they attribute to
first- and second-order neurons. The diffusion process describes
only the high-frequency portion of the TCSF. To account for
the low-frequency performance Kelly (1971a, 1971b) has ap-
pended an inhibitory feedback loop whose parameters are con-
trolled by the background intensity and spatial configuration.

Noting that certain pulse and pulse-pair threshoelds call
for more low-frequency attenuation than is evident in the TCSF,
Roufs (1974a) has proposed that the TCSF is the envelope of
two underlying functions, one band pass and sensitive to middle
and high frequencies, the other low pass and sensitive only at
the lower frequencies, Though based on quite different evidence,
this theory closely resembles Kulikowski and Tolhurst’s (1973)
conjecture of scparate “transient” and “sustained” channels
(see Section 9.4). The two sets of authors agree in attributing
distinct threshold sensations (“agitation” and “swell” in Roufs’
terms) to the two filters.

6. SENSITIVITY TO RECTANGULAR PULSES

6.1. Background

A rectangular pulse target with duration 7' may be written

I = Ipyp@t)y = Hult) - ult — TY) {53)
where p{t) is a pulse of unit height and duration 7 that starts
at ¢ — 0, I'is the intensity of the pulse, and u(¢} is the unit step
function. The pulse has a value of I within the interval {0, 1)
and a value of 0 elsewhere (see Figs. 6.2 and 6.10). Dividing
I{t) by the background intensity Iy gives the target contrast
wave form C(z). Experimental studies of sensitivity to pulses
typically consist of measuring threshold intensity at various
durations. A plot of threshold as a function of duration, con-
ventionally on log-log coordinates, is called a threshold-duration
[unction,

There have been numerous studies of this funetion since
Bloch (1885). [n most of the classical work, targets were circular
disks, and principal variables investigated were stimulus size
and background intensity. More recently, motivated by evidence
that contrast detectors are selective for spatial frequency (see
Chapter 7 by Olzak and Thomas), spatial grating targets have
also been used.

In early work the threshold-duration function was explained
largely in terms of “temporal summation,” or integration over
some interval of time. More recent explanations appeal to the
integrative properties of a more general class of linear filters.
Recognition of the stochastic nature of the detection process
has led to additional improvements in our understanding of
the threshold-duration function, particularly for pulses of long
duration. Table 6.3 summarizes some of the published studies,
indicating the spatial configuration of the target and the prin-
cipal variables investigated.
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Table 6.3. Selected Studies of Sensitivity to Pulses

Reference

Spatial Targel.

Variables

Arend, 1976

Barlow, 1958

Baumgardt & Hillmann, 1961
Bouman, 1950

Breitmeyer & Gangz, 1977
Brindley, 1952

C. H. Graham & Kemp, 1938

C. H. Graham

& Margaria, 1935
Herrick, 19566

Keller, 1941

Krauskopf & Mollon, 1971

Legge, 1978
Nachmias, 1967
Owen, 1972
Rashbass, 1970
Roufs, 1972a
Schober & Hilz, 1965
Tolhurst, 1975a
Tulunay-Keesay

Sine grating
Foveal disk
Peripheral disk
Peripheral disk
Sine grating
Foveal disk
Foveal
hemidisk
Peripheral disk

Foveal disk
1° hemidisk
Foveal disk

Sine grating
Square grating
Peripheral disk
17° foveal disk
Foveal disk
Square grating
Sine graling
Sine grating

Size, background intensity
Size

Size, background intensity
Spatial frequency

brief durations
Background intensity

Size

Background intensily
Background intensily
Background intensity,
background wavelength
Spatial frequency

Spatial frequency

Size, background intensity

Size, background intensity
Spatial frequency

Spatial frequency
Stabilization,

& Jones, 1976

spalial frequency

6.2. The Threshold-Duration Function

A classical formula relating sensitivity to duration is that, where
conditions are otherwise fixed, a pulse briefer than some eritical
duration will be at threshold when the product of its duration
and intensity (the product of contrast and background intensity)
equals a constant. This is Bloch’s law (Bloch, 1885). In units of
intensity it may be written

T - IT. forT = T, , (54)
where T, is the critical duration and I, is the eritical intensity
given by the threshold intensity at the critical duration. For

pulses longer than the critical duration, the classical formula
states that threshold amplitude is constant,

I =1, for T = T, . (55}
By dividing target intensity by background intensity, these
rules can be restated in terms of contrast, CT = C,.T. below
the critical duration, and C = C, above it.

These rules are sketched in Figure 6.10. In log-log coor-
dinates, Bloeh’s law {Eq. (54)| describes a line with a slope of
—1. The second formula |Eq. (551 is described by a horizental
line. These are the “two limbs” of the threshold-duration function.
Actual data rarely conform precisely to this template, but it
nevertheless serves as a useful model from which departures
are readily described.

There seems little doubt that whatever the other dimensions
of the stimulus and whatever the background conditions, there
exists a critical duration below which Bloch's law is npheld.
Such a range has been demonstrated for foveal and peripheral
viewing, for disk targets with radii from 0.0059 to 17°, for targets
with and without a surrounding background, for sinusoidal
gratings between 0.3 and 10 cycles-degree "1 and for background

intensities ranging from 0 to 6500 td (Arend, 1976, Barlow,
1958; Herrick, 1956; Rashbass, 1970; Roufy, 1972a). Brindley
{1952) has shown that the range extends down to at least 400
nsec. There are several reports of initial slopes more gradual
than prescribed by Bloch’s law, but it seems most likely that
they arise from the ambiguities inherent in fitting straight
lines to a function whose slope changes gradually (Legge, 1978;
Nachmias, 1967; Owen, 1972), If the {itting is confined to du-
rations less than 20 msec, then there are no published instances
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Figure 6.10.  An idealized threshold-duration function. The lunction describe:
thresholds for rectangular pulses as a function of duration, In log-log coor
dinates, the left limh of the curve has a slope of -1 (Bloch's law); the righ
limb has a slope of 0. The transition between the two limbs occurs at the
critical duration T and the critical intensity f.. The insct shows the wave
form of a rectangular pulse with duration 7 and inlensity 1.
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of a gignificant violation of Bloch’s law. As will be discussed,
there are theoretical reasons for expecting reciprocity between
amplitude and duration for some range of brief durations.

Outside of Bloch’s regime, thresholds decline less rapidly
with increasing duration. There is considerable variety in the
actual pattern of decline, but two general trends are evident.
For relatively large or low apatial frequency targets, there is a
rapid transition to a slope of 0, consistent with Eq. (55), indicating
a threshold that is independent of duration. This pattern is
evident in Barlow’s data shown in Figure 6.11, as well as in
Herriek’s (1956) and Roufs’ (1972a) data for 1° foveal disks, in
Nachmiag's (1967) data for 0.7° gquare-wave gratings and in
Legge’s (1978) data for sine gratings of 0.75 cyeles-degree 1
and below. For small or high spatial frequency targets, the
departure from 3loch’s law is more gradual, and does not nec-
ossarily resolve to a straight line in log-log eoordinates. Barlow’s
data in Figure 6.11 for small peripheral targets provide good
cxamples, as do Owen's data for small peripheral targets.

These two trends may be roughly characterized by the slope
of the second limb of the threshold-duration function: for large
targets the slope approaches 0, for small targets it is hetween
0 and 1. Legge (1978) estimated the slope of this second limb
for targets of various spatial frequency, At 0.75 and 0.375
cycles-degree ! the slope was about —0.02; for frequencies be-
tween 1.5 and 12 cycles-degree ! it averaged about —0.29.

Higher background intensities also tend to reduce the slope
of the second limb of the threshold-duration function, as may
be seen in Barlow's data for amall targets in Figure 6.11. The
influence of both spatial configuration and background intensity
upon this slope may be given a common theoretical interpre-
tation, as discussed below.
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6.3. Critical Duration

When data conform to the template in Figure 6,10, there is
little ambiguity to the definition of eritical duration. When,
however, the departure from Bloch’s law is gradual, and when
the subsequent slope is not zero, critical duration is difficult
both to define and to measure, Although a conservative defi-
nition, and that adopted here, is the duration at which the data
first depart from Bloch’s law, some authors have defined it as
the point in the data at which the slope first changes (Breitmeyer
& Ganz, 1977; Legge, 1978). Elsewhere, it has been operationally
defined as the ratio of thresholds for short and long pulses,
times the duration of the short pulse (Krauskopf & Mollon,
1971). These different methods can give quite different estimates
of the critical duration.

In light of these difficulties, we may doubt whether the
critical duration, however defined, is a useful or robust measure
of the temporal propertics of the visual system. For large or
low spatial frequency targets on backgrounds of high intensity,
T. and I. do adequately characterize threshold as a funetion of
duration. For many other targets, they do not. Furthermore,
as will be discussed in Section 6.5.5, threshold-duration functions
are inherently incapable of providing a complete characterization
of the temporal response.

6.4. Eifects of Background Intensity

The effects of light adaptation apon temporal sensitivity are
discussed in Section 11. Both critical duration and eritical in-

tensity vary systematically with background intensity. Critical
duration declines monotonically with background illuminance,
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Threshold for a rectangular pulse as a function of duration, Target was a disk with diameter

of 0,T18° (7.1 min), in the left panel, or 5.9°, on the right. Different curves are for different background
intensities, The straight lines have a slope of —1 (Bloch’s law). Target was centered 6.5° from the fovea in
the right eye upon a 13° surround. Intensities arce expressed as the numboer of quanta at 507 nm that would
vield an equivalent luminance. Method of adjustment and a 2-mm artificial pupil were used. (From H. 3.
Barlow, Temporal and spatial summation in human vision at different background intensities, Journal of

Physiology, 1958, 141. Reprinted with permission,)
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from a value of about 100 msec at 0 log td to about 25 msec at
4 log td, as illustrated in Figure 6.31, Section 11.5.

Critical intensity increases monotonically with background
intensity. Beyond about 10 td, the slope of the curve is about
—0.91, close to the value of -1 prescribed by Weber’s law (Roufs,
1972a). This scaling of sensitivity is comparable to that seen
with thresholds for sinusoids and other wave forms. (See also
the discusgion of temporal summation in Chapter 5 by Hood &
HFinkelstein.)

6.5. Theory

6.5.1. Bloch’s Law. The most widespread interpretation
of Bloch's law is that the eye integrates perfectly over a time
interval equal to the critical duration. According to this theory,
it does not matter how the signal is distributed within the
critical duration, provided that its integral equals a criterion
value. That this interpretation is wrong may be clearly seen
in an experiment of Rashbass (1970). He first measured the
threshold-duration function for a 17° radius disk on a 700-td
background. Critical duration was about 16 msec. He then
measured threshold for a pair of 2-msec pulses, one positive
and one negative, their onsets separated by 10 msce. The integral
of this stimulus, all of which falls within the critical duration,
is 0. If threshold is governed by this integral, the stimulus
should be invisible. In fact, Rashbass found it required an am-
plitude only about 1.85 times that for a single pulse.

A determined advocate of the complete integration theory
might counter that there are many possible intervals of 16
msec over which the integral might be taken, many of which
would not give a 0 value. Presumably, then, the observer would
use the interval with the largest integral, one containing just
one of the pulses. But then why is the threshold 1.85 times that
for a single pulse?

Rather than pursue the various theorctical dodges that
might preserve some variant of the perfect integrator, we con-
sider the more general class of causal, time-invariant linear
filters, of which the perfect integrator is but one. First we consider
the properties of the perfect integrator as a fiiter. Its impulse
response 1s a pulse of duration 1, equal to the epoch of integration,
This is rather implausible, if only because discontinuities are
rarely found in biology. The amplitude response is proportional
to |sin{(mw)/mw|, which does not resemble very much the tem-
poral amplitude sensitivity function of the human observer. In
short, although the perfect integrator may predict Bloch's law,
it is quite firmly refuted on other grounds.

In fact, Bloch’s law is an inevitable consequence of any
linear filter that passes only frequencies below some cutoff.
This is most easily seen by considering the regponse in the
frequency domain, The amplitude spectrum of a pulse of intengity
I and duration T is given by

sin (wTw)

i (56)

T

The peak amplitude of this spectrum is IT and hence any two
durations for which reciprocity holds (for which IT are equal)
have amplitude spectra with equal peak values. Let us define
the unit of intensity as the threshoeld for a4 1-msec pulse. Then
two pulses, of durations 10 and 20 msec and amplitudes 1/10
and 1/20, will each be at threshold. Their amplitude spectra
are sketehed in Figure 6.12.
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Figure 6.12.  An explanation of the reciprocity between threshold duration
and intensity (Bloch’s law) by a lincar filter. {a) Amplitude spectra for two
pulses of threshold intensity with durations within the regime of Bloch's law,
Let the unit of intensity be the threshold for a 1-msec pulse, so that at
threshold 17 - 1 when T'is expressed in msec. Pulse durations are 10 (solid
lined and 20 msec {dashed line), and intensitics are 1710 and 1/20. Both
spectra are sinc functions. Because both durations are within the regime of
Bloch's law, and because far both 11 << 1, both pulses are at threshold, (h)
Amplitude response of the linear filter of the working mode!, as taken (rom
Figure 6.5(h). <) Amplitude spectra of the responses of the filter to the 10-
mse¢ (solid ling) and 20-msec (dashed line) pulses, obtained by multiplying
the spectra in (@) by the amplitude response shown in (b). The resulting
spectra are nearly identical; hence the stimuli should be equally visible.

If the visual response to these sipnals is linear, then the
amplitude spectrum of the responsc is the produet of amplitude
spectra of signal and visual filter. The latter may be approxi-
mated for conditions like Rashbass’s by the linear filter of the
working model as fit to Robson’s (1966) data [sce Fig. 6.5(b)|.
These are drawn in Figure 6.12. The resulting products, which
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are the amplitude spectra of the responses to 10- and 20-msec
pulses, are almost identical, as shown,

This argument is incomplete, because it says only that the
amplitude spectra of pulses briefer than the critical duration
are identical. The phase spectra of the two responses are in fact
different, but as we shall show, they differ in a way not likely
to affect threshold. The phase spectrum of a pulse centered at
0 iz 0 at all frequencies. To begin the pulse at time 0, as our
convention for inputs to a causal system requires, we delay the
pulse by half its duration. Table 6.1 shows that a delay of 7/2
results in a phase shift of - «wTw at each frequency w. The
phase spectrum of the response is obtained by simply adding,
at each frequency, the phase response of the visual filter, This
function is not easily estimated (sec Section 5.10). But the dif-
ference in the phase of the response to two pulses of durations
T and Ty is ww (T, — T49), regardless of the phase response of
the visual filter. This difference is just that which would result
from shifting the response by an amount (71 — T3)/2. So we
see that two pulses with durations less than the critical duration
result in responses that are identical except for a shift in time
equal to half the difference in their durations. Because absolute
posgition in time does not usually influence sensitivity, we con-
clude that the two pulses are equally visible.

6.5.2. Sensitivity at Long Durations. With increasing du-
ration beyond the critical duration, pulse thresholds either be-
come independent of duration or decline at a more gradual rate
than preseribed by Bloch’s law. The second limb of the threshold-
duration function is steeper at low background intensities and
for small or high spatial frequency targets. The spatial effects
are somewhat more potent, ag may be seen in Barlow’s data in
Figure 6.11,

[t is likely that these effects are due to variations in the
degree of attenuation of low temporal frequencies, in combination
with probability summation over time (Legge, 1978; Tolhurst,
1975a). All three manipulations—raising target spatial fre-
quency, reducing target size, and lowering background inten-
sity—elevate relative sensitivity to low temporal frequencies.
In terms of the working model developed in Section 4, these
manipulations reduce the transience of the underlying linear
filter. In the case of background intensity, this change is probably
due to parametric change in the filter. When the spatial stimulus
is varted, it may occur because of a shift from one detector to
another. This issue is discussed in Section 9.4,

In a purely transient filter, a response occurs only at the
onset and offset of the pulse. In a purely sustained filter, the
response persists for the duration of the pulse or longer, These
properties of sustained and transient pulse responses are illus-
trated in Figure 6.13. As duration is increased, the sustained
response provides a greater number of opportunities to detect
the stimulus; hence threshold is reduced by probability sum-
mation. For the transient response, the number of opportunities
remains constant, and threshold does not decline.

The two threshold-duration functions plotted in Figure 6.13
are predictions of the working model developed in Section 4, Tt
consigls of a linear filter whose output is perturbed by noise
followed by a threshold mechanism. The two curves are for
purely sustained (transience = 0) and purely transient (tran-
sience = 1) filters. The figure shows that a good qualitative
account of the continuing improvement in sensitivity at long
durations is provided by a sustained fitter followed by probability
summation.

The predictions of the working model depend somewhat
upon the parameter B, which reflects the slope of the psycho-
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Figure 6.13. Threshold-duration functions predicled by the working mexdel
for two values of transience, Points are model predictions; curves are fitted
by eve. Pancl {a) shows that when the model behaves in a sustained fashion
{transience parameter { = 0), threshold continues to imgrove beyond the
critical duration and the second limb of the function has a slope of —1/B in
log-log coordinates, where B governs the slope of the psychometric function
of the madel. When the madel is transient {{ = 1) as shown in panel (),
the function is flat beyond the critical duration. Other parameters of the
model used here are T = 6,25 msec, k ~ 1.33,ny = 9,15 = 10,p = 1.0,
B = 3.5.

metric function. [n particular, for the sustained detector the
asymptotic slope of the threshold-duration function is 1/8 in
log-log coordinates. The predictions in Figure 6.13 employ a B
of 3.5, typical of values found in many contrast detection ex-
periments, The lowest reported values for B are around 1.5;
hence the steepest asymptotic slope should be around —0.67,
and should be encountered with small {argets in dark-adapted
conditions, This agrees with Barlow’s data for a small target
at absolute threshold (Fig. 6.11).

6.5.3. Effects of Background Intensity on Critical Dura-
tion. As shown earlier, a threshold duration function may be
easily caleulated for any particular linear filter, once its transfer
function is known. An estimate of the critical duration can then
be taken from this curve. We have seen that as background
intensity ig raised, the amplitude response of the hypothetical
filter, as reflected in flicker thresholds, is altered in characteristic
ways. From these changes in the amplitude response (and pro-
vided some phase assumption is made) changes in critical du-
ration with background intensity can be predicted. This direct
prediction of T, from flicker data has not yet been attempted,
but the simpler qualitative prediction that follows suggests
that it would succeed.

The cxplanation of Bloch's law (Fig. 6.12) shows the rela-
tionship between the critical duration and the high-frequency
falloff of the amplitude sensitivity function. A pulse disobeys
Bloch’s law when its spectrum is narrow relative to this falloff.
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The width of the spectrum of a pulse is inversely related to its
duration, so the condition for reciprocity may be stated

K

T&‘:FC)

(67

where F,. is some critical frequency and where K is some constant.
The critical frequency specifies the location of the high-frequency
falloff, and is defined as the frequency at which the amplitude
response has fallen by some criterion amount from its maximum.
The precise value of K depends on this criterion and the shape
of the falloff, but so long as they are fixed, we may write

T.F. = K, (568)
Any condition that alters F, should therefore produce an inverse
effect upon 7.

Increases in background intensity increase the value of F,
without markedly changing the shape of the high-frequency
falloff (see Section 11). These background increases should
therefore result in decreases in 7', of a size predicted by Eq.
(68). Making a similar argument, Roufs {1972a, 1972b) has
made extensive measurements of F.-and T, for backgrounds
between —o and 4.4 log td, and has found that Eq. (58) is
obeyed reasonably well (compare Figs. 6.30 and 6.31 in Section
11). It seems then that the variation in critical duration with
background intensity may be explained by the same processes
required to account for the adaptive variations in the amplitude
sensitivity function, These processes are considered in more
detail in Section 11,

6.5.4. Relation Between Pulse and Flicker Data, A tradi-
tional test of any model of temporal sensitivity is its ability to
account for sensitivity to both periodic and transient wave forms.
Models embodying a linear filter and threshold device, however,
invariably overestimate sensitivity to rectangular pulses relative
to that for sinusocidal flicker (Roufy, 19724, 1972b; Sperling &
Sondhi, 1968). It seems quite likely that this discrepancy may
be removed by introducing probability summation into the
model. For example, in Roufs’s experiments, observers were
allowed unlimited time to judge the presence of sinusoidal sig-
nals, whereas the time available to detect a pulse is limited to
its duration. This procedure enhances sensitivity to periodic
stimuli relative to that for transients.

Predictions from the working model (which includes prob-
ability summation) can only be made for wave forms with finite
duration. This is a problem for the traditional test noted earlicr,
because true sinuseids go on forever. Turning a sinusoid on
and off abruptly gives it a finite duration, but alse introduces
a wide range of other frequencies. A practical solution is to use
as flicker wave forms sinusoids windowed in time by a Gaussian
function. These signals contain a narrow band of frequencies,
and hence more or less directly define the amplitude response
of the filter, yet they also have finite duration. Examples of the
use of these signals to estimate the amplitude response of the
filter of the working model may be found in Watson (1977,
1981).

6.5.5. Is the Threshold-Duration Function Informative?
Despite their long history of use in visual theory, we may ques-
tion whether the threshold-duration function and the critical
duration are useful measures of temporal sensitivity. We have
already noted the variety of forms that the curve may take,
and the difficulty of estimating the critical duration. Even when
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it can be estimated with confidence, it docs not give a generally
useful description of the temporal response. For a linear system,
this description would be provided by the impulse response or
by the system function (see Section 3), Neither the critical du-
ration nor the threshold-duration function is capable of defining
these functions (Norman & Gallistel, 1978). It should be clear
from the argument of Figure 6.12, for example, that the eritical
duration and critical intensity are insensitive to changes in the
low-frequency end of the system function. Likewise they are
insensitive to the phase response of the system (unfortunately,
so are most other psychophysical measures). In certain simple
cases, the critical duration may indicate some useful feature of
the impulse response. For example, in the n-stage filter discussed
earlier (Sections 3 and 4) the critical duration will be 1(n —
Dlle/tn — 1)]*~ ! (Sperling, 1979). More generally, if the time
scale of the impulse response is multiplied by some constant ,
or equivalently the frequency scale of the system function is
divided by k, then the critical duration is multiplied by k. This
sensitivity of the critical duration to the time scale of the impulse
response is what has recommended its use as a measure of the
effects of light adaptation. But as we have seen, background
intensity changes not only the time scale and sensitivity of the
system, but also its degree of transience. These two effects cannot
be separately assessed by a single measure of critical duration.

7. SENSITIVITY TO PULSE PAIRS

7.1. Background
A pulse pair is a wave form consisting of the sum of two pulses
of equal duration T, intensities 11 and I, separated hy a delay
D. The target intensity wave form can be written

Iy = Lippt) + Lppit - D) (59)
where p7(f) is a pulse of unit height and width 7. The intensities
I, and Iy may be either positive (an intensity increment) or
negative (a decrement). Dividing by the background intensity
gives the contrast wave form C{¢). An example of a pulge pair
i shown in Figure 6.14,

The pulse pair has most often been used to study the form
of the temporal response, Intuitively, the first pulse evokes a
response which may be probed by the second pulse. However,
to draw strong influences from the data we must know (or as-
sume) how the two overlapping responses are combined, and
how the resulting quantity determines threshold.

A useful format in which to represent the results of a pulse-
pair experiment is sketched in Figure 6.14 (Rashbass, 1970).
Following Boynton, Ikeda, and Stiles (1964), we define S, as
the intensity (or contrast) of the first pulse, divided by threshold
for the first pulse, and 83 as the intensity (or contrast) of the
second pulse divided by its threshold. Quantitics scaled by
threshold in this way are sometimes called “sensation magni-
tudes.” Now we construct a plot in which the abscissa expresses
8; and the ordinate, Sy. Threshold for any particular pulse pair
can be represented as a point in this space. Several examples
are shown in Figure 6.14. A common experimental procedure
is to fix the ratio 84/S; and then to measure threshold for the
pair. This consists of moving along a ray at an angle of
tan '1(82/81) in the summation diagram. For example, an ex-
periment using only positive pulses of equal amplitude would
be confined to a ray at 45°. When the cxperiment is repeated
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Figure 6.14. Schematic of a summation plot of thresholds for pulse pairs.
The abscissa and ordinate indicate $7 and S, sensation magnitudes of first
and second pulses (intensities scaled by respective thresholds), Each point
in the plot represents a pulse pair at threshold, Points on the axes represent
thresholds for single pulses, The collection of all points in the plot is called
the threshold locus. The locus may be thought of as separating subthreshold
and suprathreshold stimulus regions. The shape of the locus depends upon
the delay between pulses, as well as other variables, The inset shows the
time wave form of a pulse pair. [t consists of two pulses of intensities f; and
Iy, cach of duration T, separated by a delay £2. This plotis a useful summary
of summation between two pulses,

at a number of angles the threshold points may be connected
to form a threshold locus.

Thresholds for pulse pairs frequently show one of the fol-
lowing forms of interaction: summation, partial summation,
probability summation, partial cancellation, and cancellation.
These outcomes lie at progressively greater distances from the
origin,

Early studics of pulse-pair sensitivity were made by Granit
and Davis (1931), Bouman and van den Brink (1952), and
Blackwell (1963), all using two increments of equal size. They
found summation at the briefest durations, partial summation
at intermediate delays, and probability summation at the longest
delays. Blackwell's data also showed partial cancellation at
intermediate delays. Tkeda (1965) made extensive measurements
with a variety of amplitude ratios, including both increments
and decrements. Like Blackwell, he found intermediate delays
at which like-signed pairs showed partial cancellation, and
speculated that such results might be due to a biphasic internal
respanse, with two lobes of opposite sign, Cancellation betwoeen
like-signed pairs would oceur when the negative phase of the
second response overlapped the positive phase of the first re-
sponse.

Subsequent work has confirmed this result, and has refined
Ikeda's insight in the context of a linear filter followed by a
nonlinear detection process (Rashbass, 1970, 1976; Roufs, 1973,
1974a; Watson & Nachmias, 1977). The effects of background
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intensity (Ikeda, 1965; Roufs, 1973, 1974a; Uetsuki & Ikeda,
1970} and spatial eonfiguration of the target (Watson & Nach-
mias, 1977) have also been investigated. These developments
have generally shown that the pulse-pair results can be under-
stood in terms of the same model used to explain visibility of
other waveforms such ag sinusoids and single pulses.

7.2. Data

Figure 6.15 shows thresholds collected by Rashbass (1970), These
data clogely resemble those of [keda (1965) for a 30-min disk
target on a 6° surround. The threshold plotted is the scaled
contrast of the first pulse (S1).

For like-signed pulses (filled aymbols) the thresholds show
progressively less summation with increasing delay, reaching
a minimum of about 1 at around 60 msecc. At this delay, the
pair has the same threshold as either pulse alone. If the response
to the two pulses did not interact, probability summation should
result, and the thresholds at the longest delay are consistent
with this condition (5 = 0.84). The minimum at 60 msec shows
less than probability summation, and is therefore consistent
with partial cancellation,

Thresholds for opposite-signed pairs (open symbols) show
progressively less cancellation with increasing delay, reaching
a4 minimum at about 60 msec, then rising again to a value
consistent with probability summation, At short delays, the
pairs partially cancel (81 == 1), but at intermediate delays they
show partial summation (§; = 0.53). In other words, a pair of
pulses of opposite sign is considerably more visible than a single
pulse alone, or than a like-signed pair at the same delay, Roufs’s
data for like-signed (Roufs, 1973) and opposite-signed pairs
(Roufs, 1974a) show a similar pattern. He used a 1° disk target
and no surround. Qualitatively, this behavior agrees with Ikeda’s
hypothesis: at a delay of about 60 msec, like-signed pairs cancel
because opposite-signed phases of the responses overlap; opposite-

0 = Opposite signed
| ® = |jke signed

0 RN e
0 50

DELAY {milliseconds)

Figure 6,5, Sensitivity to pulsc pairs as a lunction of delay between pulses.
The ordinate indicates the intensity of the first pulse divided by its threshold
{(51). Both pulses were equal in intensity and 2 msec in duration, Filled
symbuols indicate like-signed pulse pairs thoth increments or both decrements),
and open symhbols, opposite-signed. The larget was a 17° disk; background
was 7001d. Data from Rashbass (1970). Like-signed pairs summate best with
0 delay, and show a slight cancellation at about 65-msec delay, Opposite-
signed pairs summate best at about 65-msec delay.
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signed pulses summate because like-signed phases of the re-
sponses overlap.

The cases pictured in Figure 6.15 correspond to rays lying
at 45° (like-signed pairs) and 135° (opposite-signed pairs) in the
summation diagram of Figure 6.14. More complete threshold
contours are shown in Figure 6.16. The curve in each figure is
an ellipse centered at the origin with axes along the diagonals
whose cquation is

1 = 8% + 8% + 28,8:Lp (60)
where Lp is a constant at each delay D). An ellipse leaning to
the left has a positive value of Lp; a lean to the right has a
negative value. Apart from its possible theoretical meaning,
the reasonable fit of the ellipse recommends Ly as a summary
measure of pulse-pair summation. The variation of Lj; with
delay from Rashbass’s experiments is shown in Figure 6.17.

Several authors have examined the effect of background
intensity on pulse-pair thresholds. All report a change in the
time scale of the results, so that, for example, the minimum
threshold for opposite-signed pulses moves to longer delays as
the background is reduced. The data of Uetsuki and lkeda (1970)
also show less cancellation between like-signed pulses at lower
backgrounds.

Watson and Nachmias (1977) and Breitmeyer and Ganz
(1977} have used pulse pairs to examine the temporal response
to gratings. Figure 6.18 shows the variation in Ly with spatial
frequency at four selected delays. In each case, Ly increases
with spatial frequency. At the three longer delays, values go
from negative to positive, indicating that the negative lobe of
the function disappears as spatial frequency increases.

7.3. Theory

Theoretical concerns relating to pulse-pair data focus on models
that can account for (1) the elliptical threshold locus and (2)
the form of Ly (or some comparable measure of summation
versus delay). Most treatments assume an initial linear filter,
but differ on the nature of the nonlinear detection stage,

Rashbass (1970) proposed that visital transients are filtered
by an impulse response A2}, then squared and integrated over
an epoch F of about 200 msec. The stimulus was seen whenever
the result was greater than one. At threshold,
J'h[C(t) RO dt = 1. (61)
A

)

This model predicts elliptical threshold loci, and leads elegantly
to the conclusion that Lp is the inverse Fourier transform of
the amplitude response |H (w)| (the autocorrelation function}
of the filter. In support of this model, the transform of Ly, does
resemble qualitatively the TCSF, though no quantitative com-
parison of the two functions under the same conditions has
been made. When transformed, the negative lobe of Ly will
result in attenuation at low temporal frequencies (transience).
Because transience as reflected in the TCSF is reduced when
background intensity is reduced or spatial frequency raised,
these manipulations should also reduce the size of the negative
lobe of Ly;, and they do (Broekhuijsen, Rashbass, & Veringa,
1976; Watson & Nachmiag, 1977; Fig. 6.18).

An alternative is the working model developed in Section
4, A stimulus is seen whenever the noise-perturbed cutput of
a linear filter exceeds a eriterion. At threshold.
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Figure 6.16. Summation between pulses at various delays. The pulses were
2-msec¢ changes in the intensity of a 700-td, 177 disk with no surround. The
abscissa and ordinate in each figure indicate §y and Sy, respectively, as
explained in Figure 6.14. The delay boetween pulses in msec is indicated
near the arigin of each plot. The curves are cllipses of the form 1 = 57
$4 4 281520n. The eccentricity of the ollipse, parameterized by 1y, varios
as a function of delay, The elliptical threshotd contours are predicted by the
madel of Rashbass. (From C. Rashbass, The visibility of transient changes of
luminance, Journal of Physiclogy, 1970, 270, Reprinted with permission.)

J”|cu> AOILE R (62)

o

Here a and b are the time limits of the stimulus and B is a
parameter determined by the slope of the psychometric function
which typically has a valuc of between 3 and 6 (Nachmias,
1981; Watson, 1979). This model, when associated with a plau-
sible impulse response, also predicts elliptical threshold loci
(Rashbass, 1976; Roufs, 1974a; Watson & Nachmias, 1977).

Ls

1 '

! |
100

PULSE BELAY (milliseconds)

Figure 6.17. Vartation in summation belween pulse pairs as a function of
delay. The guantity plotted is the cocentricity parameter Ly from the ellipses
in Figure .16, When {4, is positive, Tike-signed pulses summate and opposite-
signed pulses cancel; when it is negative, like-signed pulses cancel and
opposite-signed pulses summate. According to Rashbiss's model, this function
is the Fourier transform of the amplitude spectrum of an underlying linear
filter, {(From €. Rashbass, The visibility of transient changes of luminance,
tournal of Phvsiologv. 1970, 210. Reorinted with nermission )
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Figure 6.18.

Summation between pulses as a function of the spatial frequency of the target. Delay

boetween pulses was 20, 40, 60, or 80 msec. The value plotied is L3, the parameter of an ellipse fitted to
pulse-pair thresholds. Positive values of 1y; indicate summation between like-signed pulses and cancellation
betweon opposite-signed pulses; negative values indicate the opposite. L increases with spatial frequency
at all four delays, so that at the highest spatial frequencies na negative values are obtained. This shows
thal the system brecomes more sustained at higher spatial frequencies, Because the stimuli are briefly
exposed, the change in Ly with spatial frequency is unlikely to be due to eye movements, Target was 2
*® 1.5% with a 67 diameter surround. Background and surround luminance were ahout 15 cd'm ™. (a)

Observer 7, () observer RP (from Watson, Note 1),

Unlike Rashbass’s model, it can predict threshold for stimuli
of long durations. For example, it correctly predicts that when
the delay between pulses is very long, the contour will be a
souare with rounded corners, not an ellipse (Watgon & Nachrnias,
1977).

The defining equations of the two models are quite similar;
only the exponent and limits of integration differ. Indeed a
third model, a linear filter not followed by probability summation,
can also be represented by Eq. (62), by setting the exponent to
infinity. This allows a test among these models. Equation (62)
predicts that sensitivity to a sinusoid will increase as the g
power of duration. Kstimates of 3 obtained in this way are
between 3 and 6, in agreement with the predictions of the work-
ing model (Watson, 1979).

The assumptions made about the final detection stage of
the model can have considerable effect upon the interpretation
of experimental results, For example, Roufs and Blommaert
(1981) assume a deterministie threshold (effectively a 3 of =),

1 ]

data. However, when a more realistic model is assumed (B be-
tween 2 and 6) the interpretation of the data is quite different
{(Watson, 1982). As Rashbass has pointed out, when g = 2 all
phase information is lost and the complete impulse response
cannot be recovered (Rashbass, 1970, 1976). Conversely, when
[p = % the complete impulse response can be recovered quite
directly from pulse-pair data {Roufs & Blommaert, 1981). Be-
cause it appears that § is nearer 3 or 4, it is possible that the
impulse response might be recovered from pulse-pair data,
though probably not in a simple or elegant way. More likely, a
brute-force fitting procedure will be required.

8. SENSITIVITY TO INCREMENTS AND
DECREMENTS
8.1. Background

A decrement in light intensity can serve as a stimulus for vision,
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relative vigibility of increments and decrements of light is a
mattor of practical and theoretical interest. The practical interest
arises from the question of whether positive or negative contrast
(e.g., bright or dark letters) provides the better visual signal.
Our theoretical interest begins with the observation that a simple
linear model of temporal sensitivity predicts equality of incre-
ments and decrements, because they should produce internal
responses equal in magnitude but opposite in sign.

Thresholds for both inerements and decrements have been
measured by numerous authors. Wherever gubstantial or con-
sistent differences are found, the threshold for a decrement is
lower than for an increment. But the reliability of these differ-
ences, between subjects and across conditions, is less than might
be desired.

8.2. Data

Using a red, 10-min increment or decrement upon a 10°, 10,400-
td largely green surround, Boynton, lkeda, and Stileg (1964)
found a decrement threshold .17 log unit lower than an in-
crement. Patel and Jones (1968) used digks of several sizes and
durations 7° from the fovea upon a-14° surround at various
backgrounds. They reported a decrement advantage of about
0.3 log units for a 15-min, 50-msec target on a 6.1 quanta-
degree™2-sec”! background. The advantage declined for larger
targets, longer durations, and higher backgrounds.

Short (1966) also showed consistently greater visibility of
decrements. He uged a 57-min disk, 100 msec long, positioned
15%into the nagal visual ficld, upon a large surround, and found
a difference averaging about 0.24 log unit at low backgrounds
(below about 1 td) almost vanishing at higher backgrounds.
There were, however, sizable differences among the three ob-
servers,

Herrick (1956), using a 1° target, no surround, various du-
rations, and backgrounds between about -1 and 4 td, and
Rashbass (1970), using a 17° target, no surround, variousg du-
rations, and a background of 700 td, found little difference in
results for increments and decrements, but neither author di-
rectly compared the two thresholds under the same conditions.
Using conditions very similar to those of Herrick, Roufs (1974a)
found little consistent difference in increment and decrement
thresholds. However, Roufs’s observers used a threshold criterion
(“agitation™) that may measure thresholds different from those
of other authors (see Sections 5.11 and 9.4.1.4). Contrary to the
finding of Patel and Jones (1968), neither Herrick’s nor Roufs’s
data show any systematic effect of duration.

Some explanation of this variability of results may be in
order. First, it should be noted that no two of these reports have
employed the same conditions, Second, without exception, the
authors used methods such as yes/no and method of adjustment,
which permit the observer to use different criteria for increments
and decrements. Some of the differences reported are larger
than might be expected to arise from criterion variations, but
in general we cannot be certain what portion of the difference,
if any, we should attribute to this source. It would be useful to
compare the two thresholds with a method, such as two-alter-
native forced-choice, which is not subject to this objection.

The reports cited used spatial targets (disks) that are all
of one sign. When a spatial target is used, such as a sinusoidal
grating, that has positive and negative excursions of equal sign,
then it ig more appropriate to speak of a comparison between
thresholds for positive and negative contrast. These can differ
only if the local position of the spatial increments and decrements
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case for very low spatial frequencies, but is unlikely in most
other situations. Thus it is not surprising that Watson (1977)
found equal thresholds for positive and negative contrast grating

targets of 3.5 cycles-degrees ™ L.

8.3. Theory

A difference between thresholds for positive and negative con-
trast can be included in the working model by introducing dif-
ferent thresholds for positive and negative excursions of the
internal response (Kelly & Savoie, 1973). Thus we assume that
detection occurs whenever a positive excursion exceeds 1, or a
negative excursion is less than —p. The parameter p is the
asymmetry factor of the model |see Section 4.3 and Eq. (52)].
Data are best deseribed by the model when p is set equal to the
ratio of increment and decrement thresholds. This asymmetry
factor is also able to account for some aspects of the thresholds
for combinations of different temporal frequencies (Section 5.10)
and threshold as a function of duration (Section 6.5).

Explanations for the difference between increment and
decrement thresholds have generally appealed to physiological
mechanisms such as “on-center” and “off-center” cells, Cohn
(1974) has offered an interesting alternative, based on the ob-
servation that the distributions of quanta absorbed during in-
crements and decrements are different in form when the number
absorbed from the background is small. But this hypothesis
predicts differences over a much smaller range of backgrounds
than found by Short (1966) and Patel and Jones (1968). 1t is
difficult to judge any theory without knowing what proportion
of the effect is due to different criteria for inerements and dee-
rements.

9. SPATIAL EFFECTS

9.1. Background

Though it is convenient to consider the temporal wave form in
isolation from the other dimensions of the visual stimulus, sen-
sitivity is unavoidably governed by all the dimensions in concert.
In some cases, the effects of two dimensions are separable. Sen-
sitivity is separable along two dimensions if it is given by the
product of sensitivity along the individual dimensions. For ex-
ample, if the function that deseribes sensitivity as a function
of spatial frequency («) and temporal frequency (w) were sep-
arable, it could be written
sl ) — spluts,, (w) (63)
where s,(u) is a spatial contrast sensitivity function and s,,(1)
is a temporal contrast sensitivity function like that described
in Section 5. In this case, a change in spatial configuration
would only scale the results up or down by a constant factor,
and we could reasonably exclude consideration of s,{(u) from
this chapter. In human vigion, however, spatial and temporal
sensitivity are not separable. Instead, the temporal response
depends upon the spatial confliguration of the stimulus. This
dependence is evident in the full range of temporal phenomena:
in gensitivity to various wave forms, in reoction times, and in
discriminability of various stimuli.
Theoretical interest in this area has focused upon incor-
porating spatial effects into models of temporal sensitivity. This
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control the parameters of a single temporal filter {Burbeck &
Kelly, 1980; Kelly, 1972b; Rebson, 1966) or by allowing the
spatial configuration to determine the pathway in which the
stimulus will be detected, different pathways having different
temporal properties. The latter notion is gencrally associated
with the idea of separate “sustained” and “transient” pathways
for visual signals (Kulikowski & Tolhurst, 1973).

9.2. Spatial Effects upon Temporal Sensitivity

Four distinct aspects of the spatial configuration have been
shown to influence temporal sensitivity: size, the surround,
cdges, and spatial frequency. These effects are evident in the
threshold-duration function, as well as the TCSF, though we
shall focus upon the latter.

9.2.1. Size. Enlarging a disk target lowers sensitivity at
low temporal frequencies without much altering sensitivity at
high frequencies. When changes do occur at high frequencies
they take the form of a vertical shift of the high-frequency limb
of the TCSF. These changes are illustrated in Figure 6.19. The
open squares show sensitivity to a 2° disk on a large, 60° sur-
round; the open cireles are for a 65° disk with blurred edges.

9.2.2, FEffects of the Surround. The filled symbols in Figure
6.19 show sensitivity to a 4° disk without a surround. Between
the 2° disk and these data there is a profound loss in sensitivity
at low temporal frequencies, Tt is not clear whether this loss is
due to doubling the size of the target or removing the surround,
Roufs (1972a) has shown that removing the surround from a
17 disk target has little effect upon high temporal frequencies,
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Figure 6.19.  The effect of target size and surround upon temporal contrast
sensitivity. Temporal wave form was sinusoidal and background intensity
was 1000 ted. (a) Opoen square: 2° disk, 60° surround, observer V (de Lange,
1958). (b Filled cireles: 4° disk, no surround (Kelty, 1959). (¢) Open circles:
05° disk, blurred edges, no surround, observer P {Kelly, 1959). Enlarging the
target and removing the surround reduce sensitivity at low temporal fre-
quencies, thus making the system more transient. (From Dt Kelly, Effects
of sharp edges in a flickering lield, fournal of the Optical Society of America,
1959, 49, Reprinted with permission.)
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but reduces sensitivity by about 0.5 log units at low frequencices.
This suggests that much of the difference between the open
squares and filled circles in Figure 6.19 is duc to the surround.
Harvey (1970), Kelly (1969b), Keesey (1970), Teller (1971), and
Westheimer (1967) also provide evidence on the effect of the
surround on temporal sensitivity.

Data collected without a surround are subject to other dif-
ficulties of interpretation, because the state of light adaptation
in the vicinity of the border i3 somewhat ambiguous, For detectors
whose receptive fields lie within the borders of the target, we
may be fairly confident that their state of adaptation is governed
by the background, regardless of the presence of the surround.
But some targets may be detected by mechanisms whose re-
ceptive fields span the border of the target, and their adaptive
states are much less easily determined when a surround is
absent.

9.2.3. Edges. Visunally effective edges in the target elevate
gengitivity to low temporal frequencies. For example, Kelly
(1969h) showed that blurring a 3° disk on a 16° surround reduced
gensitivity by about half at low teroporal frequencies but had
no effect at high temporal frequencics. Very similar results
were obtained by blurring the central edge of a counterphase
modulated 8 x 16" bipartite field.

Enlarging a disk target moves its edges to regions of the
retina of lower spatial resolution, and thus renders them less
effective. Thus much of the effect of disk size may be due to this
reduction in the visual effectiveness of target edges. This may
also partially explain the action of the surround, Without a
surround, any visual mechanism sensitive to the edge would
be massively stimulated, even in the absence of the target.
Presentation of the target would change its response by only a
fraction. Thus removing the surround may effectively desensitize
the observer to the edges at the border of the target.

9.2.4. Spatial Frequency. Robson (1966) measured the
TCSF with sinusecidal gratings of four different spatial fre-
quencies. As shown in Figure 6.20, the two highest spatial
frequencies exhibit no decline in sensitivity at low temporal
frequencies, whereas at the lowest spatial frequency, a very
large low-frequency decline was observed. Similar reqults have
been obtained by van Nes et al. (1967), Koenderink and van
Doorn (1979), and Kelly (1972a).

Rohson also noted that the shape of the TCSF at high tem-
poral frequencies wag invariant with spatial frequency, as shown
by the curves supcrposed on the data, which are the same except
for a vertical shift. A change in spatial frequency merely shifted
the high-frequencey limb up or down in sensitivity, Furthermore,
at high spatial frequencies, the spatial contrast sensitivity
function is invariant with temporal frequency, apart from a
vertical shift. A summary statement of these invariances is
that at high spatial and temporal frequencies, spatial and tem-
poral contrast sensitivitics arc separable |see Scetion 9.1 and
Eq. (683)]. This means that at these frequencics, the gpatiotem-
poral contrast sensitivity function is simply the product of the
spatial contrast sensitivity function, which describes sensitivity
as a function of spatial frequency, and the TCSF, At low spatial
or temporal frequencies, the two funclions are clearly not sep-
arable. These interactions arc easily seen in a view of the spa-
tiotemporal contrast sensitivity function such as that provided
by Koenderink and van Doorn (1979). Reproduced in Figure
6.21, their figure shows isosensitivity curves for gratings of
various spatial and temporal frequencies, Separability of tem-
poral and spatial contrast sensitivity functions is reflected by
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Figure 6.20. The cifect of spatial frequency upon the temporal contrast
sensitivity function, The target was a sinusoidal grating with a spatial frequency
of 0.5, 4, 16, or 22 cycles-degree ™", Background luminance was 20 cd-m 2,
targel was 2.5 % 2.5°, surround was 10 X 10°, viewing was binccular with
natural pupils from 2 m. Points are averages of four adjustment thresholds,
The curves (including dashed sections) differ only in vertical position. Spatial
and temporal sensitivity are separable at high temporal and spatial frequencics,
but at low spatial frequencies sensitivity at low temporal freyuencies is reduced.
{(From ). G, Robson, Spatial and temporal contrast sensitivity functions of the
visual system, Journal of the Qptical Society of America, 1966, 56. Reprinted
with permission.)

the roughly parallel contours beyond 10 Iz and 10 cycles-
degree 1. The valley near the origin confirms Robson’s ecarlier
observation that a decline in sensitivity at low temporal fre-
quencics occurs only when the spatial frequency is low.

There is a gqualitative agreement among the effects of disk
size, edges, surrounds, and spatial frequency. It was suggested
that the effects of disk size and surround upon the low temporal
frequencies are mediated by the visunally effective edges in the
target, Idges are the repositories of high spatial frequencies.
When they are removed by blurring, or made less visually ef-
fective by moving them into the periphery, the effective spatial
frequency of the target is reduced and we should expect temporal
sensitivity to resemble more that obtained with low gpatial
frequencies; that is, we should observe a more severe attenuation
at low temporal frequencies. Thus enlarging a target, blurring
its edges, removing its surround, or lowering its spatial frequency
should all sclectively lower sensitivity at low temporal fre-
quencies, and this does occur.

9.2.5. Miscellaneous Spatial Effects upon Sensitivity. Many
other experiments give a similar result through less direct
means. Kulikowski and Tolhurst (1973) found that sensitivity
to a grating with a square-wave temporal wave form was about
twice that for 4 grating turned on for half a period, then off for
half a period, provided the spatial frequency was low. The spec-
trum of the on—off wave form is equal to half the amplitude of
the square-wave spectrum, plus a component at 0 Hz, If low
spatial frequency detectors are purely transient they will not
respond to the 0-Hz term, and the response to the square wave
will be twice that to on—off, as observed. At higher spatial fre-
quencies the system becomes more gustained and the 0-Hz term
becomes more effective, reducing the difference in sensitivity
between the two wave forms. Tolhurst (1975b) has shown that
the detection of a brief increment upon an extended subthreshold
pedestal is influenced only near the onset and offset of the ped-
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estal when a low spatial frequency is used. For higher spatial
frequencies, detection is enhanced for the duration of the
subthreshold grating. Breitmeyer and Julesz (1975) demon-
strated that abrupt onsets enhanced visibility relative to gradual
ongets at low spatial frequencies but not at high. This is con-
sistent with a reduced sensitivity at low temporal and spatial
frequencies, because abrupt trangients contain higher frequen-
cies than do gradual transients. They also showed that of the
abrupt onset and offset of a pulse, only the onset was effective
in enhancing sensitivity. They provided no explanation of this
effect, but in fact it is expected in a linear system that is not
purely transient. The onset response transient is the step re-
sponse of the system, but the offset response transient is the
step response subtracted from the sustained portion of the re-
sponse and thus usually has a smaller peak value, Furthermore
Stromeyer, Zeevi, and Klein (1979) found that offsets and onsets
enhanced vigibility by about the same amount when somewhat
different background intensities, and spatial and temporal wave
forms were used. This discrepancy is not surprising because all
of these variables will influence the degree of transience.
Legge (1978) has shown that at high spatial frequencies
thresholds continue to decline as duration increases beyond the
critical duration, wherecas at low spatial frequencies no further
improvement is found. He found in addition that brief masking
pulses at the start and end of a test pulse had the same effect
regardless of test duration for low spatial frequencies, but at
high spatial frequencies the effects declined as duration in-
creased. Evidently, only the start and end of the pulse are ef-
fective in the first case, whereas in the second case all parts of
the signal are effective.
9.3. Spatial Effects upon Reaction Times
Reaction times to sinusoidal gratings inerease with the spatial
frequency of the grating (Breitmeyer, 1975; Harwerth & Levi,
1978; Lupp, Hauske, & Wolf, 1976; Vassilev & Mitov, 1976).

104
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Figure 6.21. Isosensitivity curves for targets that are sinusoidal in both
space and time. Each curve connects points of equal sensitivity obtained by
linear interpelation from data like those in Figure 6.20. The spacing botween
lines is 0.1 tog unit, corresponding approximately to a standard deviation,
The contour at sensitivity = 100, and the peaks at 270 and 204 are marked.
The heavy line separates regions the observer judged as giving sensations
of “flicker” or “pattern” (see Section 9.4,1.4), Sensitivity falls when cither
spatial and tempaoral frequency are high, or when both are low, (irom 1. ].
Koenderink & A. | van Doorn, Spatiotemporal contrast delection threshold
surface is bimodal, Optic Letters, 1979, 4. Reprinted with pernission.)
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The differences persist when the contrast at each spatial fre-
quency is set to equal apparent contrast (Breitmeyer, 1975) or
to a fixed number of threshold units (Lupp, Hauske, & Wollf,
1976; Vassilev & Mitov, 1976). As shown in Figure 6.22, the
difference between reaction times to 1 and 16 cycles-degree !
is about 90 msec, and this figure is the same whether the targets
are three or six times above threshold. These figures are slightly
larger than those found by Breitmeyer (1975). These results
have sometimes been explained in terms of the different latencies
of X- and Y-type retinal ganglion cells, but ag Lennie (1980a)
points out, the differences in conduction times are orders of
magnitude too small, and the latencies to near-threshold lights
may not differ at all (Lennie, 1980b).

Tolhurst (1975a) examined the distributions of reaction
times to near-threshold high and low spatial frequency gratings
at various durations, The distribution was unimodal to a high
spatial frequency (3.5 cycles-degree '), but bimodal to low. This
outcome is consistent with the low-frequency grating being de-
tected only at its onset or offset, as would be the case for a
transient mechanism. This view is reinforced by Tolhurst’s ob-
servation that the position of the second mode of the distribution
is always aboul 250 msec after the offset of the target.

9.4. Sustained and Transient Mechanisms

To characterize the dynamic behavior of some visual cells, Cle-
land et al. (1971) adopted the terms sustained, indicating a
response extending for the duration of the stimulus, and tran-
sient, indicating a response primarily at stimulus onset and
offset. Watson and Nachmias (1977) have proposed formal def-
initions for these termg, Transient behavior is indicated by an
impulse response whose integral is 0, for example, a biphasic
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Figure 6.22. Reaction time as a function of spatial frequency. The three
curves indicate target contrasts of 3, 4.5, or 6 times threshold. Throsholds
were estimated as the 50% point of a ves/no frequency-of-seeing curve.
Targels were 5.3 % 3.8% gratings with no surround. Background intensity

was 23 cd-m’ 2. A 2 3-mm diameter artificial pupil was used. Reaction times
increase by about 90 msee between spatial frequencies of 1 and 16
cycles-degree 1 (From U Lupp, G. Hauske, & W, Wolf, Perceptual latencies
to sinusoidal gratings, Vision Research, 16, Copyright 1976 by Pergamon
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responge with positive and negative lobes of equal area. The
transient amplitude response has severe attenuation at low
temporal frequencies, reaching 0 at 0 Hz. In a sustained system
the impulse response is all of one sign, and the amplitude re-
sponsge has a maximum at 0 Hz, A system intermediate between
these extremes may be relatively sustained or trangient. In the
working model {Section 4) the degrec of transience has been
captured by a single parameter that governs the amplitude of
a second, negative lobe in the impulse response. Further dis-
cussion of these terms was given in Section 3.

The evidence in Sections 9.2 and 9.3 cited above indicates
that the higher the effective spatial frequency of the target,
the more sustained the temporal response. These and other
results led Tolhurst (1973) and Kulikowski and Tolhurst {1973)
to propose the existence of two classes of visual mechanisms:
transient and sustained. This hypothesis has considerable im-
plications for models of temporal sensitivity, and has found
wide acceptance, so it deserves critical examination.

Mild and strong versions of this theory can be distinguished.
The mild version only asserts a relationship between spatial
configuration and the temporal properties of the detecting
mechanism; the strong version proposes the existence of two
distinct classes of mechanisms that respond in parallel to a
visual stimulus. By analogy to physiology, the mild version
imagines the same cclls to be capable of either sustained or
transient behavior depending upon stimulus conditions, whereas
the strong theory assumes separate populations of sustained
and transient cells acting in parallel. Examples of the mild
theory are provided by Robson (1966) and Burbeck and Kelly
{1980), who attribute these effects to differing spatial and tem-
poral propertics of the center and surround of retinal units.
Proponents of the strong version are Kulikowski and Tolhurst
{1973) and Roufs (1974a).

All the data cited to this point are consistent with either
mild or strong theories. In the absence of further evidence, the
mild theory would be preferred because it is more parsimonious.
The strong theory would be called for by evidence of two sorts.
The first would show that both sustained and transient mech-
anisms exist at one spatial frequency. The second would show
that mechanisms operating in the two regimes are functionally
distinct.

9.4.1. Evidence for Paralle! Operation

9.4.1.1. Subthreshold Summation. The most direct test for
parallel operation of sustained and transient mechanisms is
subthreshold summation between different temporal frequencies.
Sustained mechanisms are generally thought to be more sen-
sitive at low temporal frequencies, and transient mechanisms
at high. The strong theory therefore prediets that low and high
temporal frequencies will excite different mechanisms, and will
show little subthreshold summation. The mild theory on the
other hand predicts that summation between the two frequencies
will be consistent with a single pathway. Using this technique,
Watson (1977) found only modest departures from the predictions
of a single linear pathway with probability summation over
time. However, the data could not rule out the existence of two
independent pathways, one moderately selective for high tem-
poral frequencies, the other for low, In these experiments the
separation between frequency was never larger than 8 Hz; more
convincing evidence of two pathways might have been provided
by a larger separation.

9.4.1.2. Adaptation. 1f sustained and transient mecha-
nisms respond in parallel Lo the same spatial target, as the
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strong theory supposes, then it might be possible to adapt se-
lectively one of the two. For example, if transient mechanisms
are more sensitive at high temporal frequencies, then adapting
to a high temporal frequency might reduce their sensitivity
and produce a sclective reduction in sensitivity at the high
frequencies, More quantitative predictions have not been made,
and would require assumptions regarding the temporal sensi-
tivity of each mechanism, the manner of adaptation, and how
thresholds are determined when both mechanisms are active.

Evidence for temporal frequency selective adaptation has
been sought by numerous authors (Green, 1981; Nilsson, Rich-
mond, & Nelson, 1975; Pantle, 1971; Pantle & Sekuler, 1968;
Smith, 1970, 1971). Despite the variety of techniques used,
these experiments are unanimous in showing very little selective
adaptation. In addition, the experiments have not generally
avoided various sources of artifact, such as adapting stimuli of
equal contrast rather than equal “sensation magnitude,” and
testing and adapting stimuli with different average intensity.
We may also question whether selective adaptation is compelling
evidence for parallel operation of independent pathways, A single
pathway may contain elements that are frequency selective
and adaptable, yet do not themselves constitute a “mechanism.”
This issue is discussed by Watson (3977),

Tolhurst (1973) has shown that following adaptation to a
stationary grating, different patterns of threshold elevation are
found depending upon whether the test pattern moves or is
stationary. He proposed that the stationary test revealed the
adaptation of the sustained system, the moving test that of the
transient system.

9.4.1.3. Discrimination at Threshold. 1If sustained and
transient mechanismg are “separate labeled” pathways (sce
Section 3.6), then a stimulus that at threshold exclusively excites
the transient mechanism should be perfectly diseriminated from
a stimulus which exclusively excites the sustained mechanism.
In agreement with this prediction, Watson and Robson (1981)
found that a low and a high temporal frequency were perfectly
disecriminated. Some of their data are shown in Figure 6.23.

9.4.1.4. Threshold Sensations. In his 1958 report, de Lange
noted a difference in the nature of the flicker perception de-
pending on “frequency” (p. 782). This observation has been echoed
by numerous authors. At detection threshold a spatial pattern
that is modulated sinusoidally in time may appear as primarily
a spatial or a temporal variation. These two threshold sensations,
called “pattern,” and “flicker,” “swell,” and “agitation,” as well
as other names, have been described by van Nes et al. (1967),
Rashbass (1968), Watanabe et al. (1968), Richards (1971), Keesey
(1972), Kulikowski and Tolhurst (1973), and Roufs (1974a).
The threshold sensation of pattern predominates at low temporal
and high spatial frequencies, whereas flicker predominates at
high temporal and low spatial frequencies. Figure 6.21 shows
the approximate extent of these two regimes,

Van Nes et al. (1967) noted that thresholds for both sen-
sations could be measured for the same stimulus. At detection
threshold either pattern or flicker is evident; at some higher
contrast the other sensation emerges. Keesey (1972) had ob-
servers adjust the contrast of a thin bar to each threshold at a
number of temporal frequencies, thus tracing out TCSFs for
cach of the two criteria. The two curves differed in shape, and
Keesey proposed that the two thresholds were due to different
mechanisms with different temporal properties. Kulikowski and
Tolhurst (1973} used the same technique with spatial grating
targets, with the results shown in Figure 6.24. The two curves
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Figure 6.23. Ratio of identification and detection thresholds for different
temporal frequencies, The stimuli were patches of spatial grating modulated
sinusoidally in time. The spatial envelope was a Gaussian in both horizontal
and vertical dimensions, with width between 1/e points of 12° {a), and
3/16° (h). Background intensity was 340 cd-m ¢, viewing was binocular
with natural pupils. In each experiment two temporal frequencies were used,
one indicated by the arrow, the other by the horizontal position of the data
paint. On each trial the observer tried to detect and identify the stimulus,
and separate thresholds for detection and identiication were estimated rom
the same data. When the ratio of these two thresholds is 1 (0 dB), the two
freqquencies are discriminated as well as they are detocted, The filled symbols
show cases in which a statistical test indicated that the two stimuli were
discriminated as well as they were detected. This occurs only when one
temporal frequency is very high and the other very low. These results are
consistent with two labeled pathways, one sclective for high temporal fre-
quencies, the other for low. Similar results are obtained at both low (4) and
high (b) spatial frequencics. (From AL B. Watson & |, G, Robson, Discrimination
at threshold: Labelled detectors in human vision, Vision Rescarch, 21, Copy-
right 1981 by Pergamon Press, Ltd. Reprinted with permission.)

intersect at an intermediate temporal frequency, so that at
high temporal frequencies, flicker sensitivity is greater than
pattern, whereas at low temporal frequencies the reverse is
true. Their interpretation was essentially that of Keesey: each
criterion was attributed to a different mechanism, as though
the two curves described the temporal contrast sensitivities of
distinet flicker and pattern detectors. As further evidence for
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Figure 6.24. Temporal contrast sensitivity functions measured with flicker
and pattern criteria. The spatial target was a sinusoidal grating of 0.8 (upper
graphy or 12 cycles-degree ! (lower graphl, Temporal wave form was si-
nusoidal. Open symbols result when the observer is instructed to adjust
contrast until the stimulus appears to “flicker’”; filled symbols result when
contrast i adjusted until “spatial pattern” is evident. The curves in the lower
graph are the same as those in the upper graph but shifted vertically by
different amounts. Flicker and pattern thresholds have different temporal
contrast sensitivity functions which move independently with changes in
spatial frequency. Flicker sensitivity is high at low spatial and high temporal
frequencics; patlern sensitivity is high at high spatial and low temporal fre-
cuencies. {From |. ). Kulikowski & 1. . Tolhurst, Psychophysical evidence
for sustained and transient mechanisms in human vision, fournal of Physiology,
1973, 232, Reprinted with permission.)

this idea, they noted that a change in spatial frequency shifted
each curve vertically, but did not change its shape. This meant
that within each pathway, spatial and temporal sensitivities
were separable. Furthermore, the vertical shifts were different
for the two criteria, implying that the two mechanisms had
different spatial sensitivities, the flicker mechanism being rel-
atively more sensitive at low spatial frequencies and the pattern
mechanism at high, in agreement with Figure 6.21.

King-Smith and Kulikowski (1975) used flicker and pattern
criteria and the teechnigue of subthreshold summation to examine
the spatial selectivity of sustained and transient mechanisms,
The receptive fields they inferred from their data were two to
four times wider for the flicker than for the pattern criterion.
This agrees with the gencrally higher spatial acuity of the
pattern criterion (see Fig. 6.21).
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Although the two sensations discussed are robust and vivid,
a compelling argument that they are due to parallel independent
mechanisms has not yet been provided. Furthermore, various
results suggest that observers are not very good at describing
their own threshold criteria, and that at threshold in the flicker
regime observers retain some information about pattern,
whereas in the pattern regime they retain information about
temporal attributes.

Nachmias (1967) found “sustained” and “transient”
threshold-duration functions at high and low spatial frequencies,
respectively, even though he used forced choice between or-
thogonal orientations to measure threshold. If only sustained
mechanisms convey pattern information, only sustained thresh-
old duration curves should have been observed. Similarly, Der-
rington and Henning (1981) have shown that at both high and
low rates of temporal modulation, thresholds for forced-choice
discrimination between orientations of 0 and 90° are similar to
thresholds for simple detection measured with a two-interval
forced-choice method. When the rate of temporal modulation
is high (10 Hz), the orientation thresholds show little decline
in sengitivity at low spatial frequencies. If the mechanisms that
detect low spatial, high temporal frequency stimuli conveyed
no information about spatial pattern, they would be incapable
of distinguishing between gratings at right angles, and threshold
for this discrimination would be higher than for detection. As
Derrington and Henning note, this result casts doubt upon the
ability of the observer to describe the information present in a
threshold stimulus, because their observers were unaware of
spatial information in stimuli whose orientations they judged
correctly.

Watson and Robson (1981) looked at diserimination at de-
tection threshold between gratings of varicus spatial frequencies.
Even when they were well within the transient regime (16 Hz),
observers could discriminate perfectly between very diiferent
spatial frequencies. Again this suggests that if there are distinct
transient mechanisms, they are not entirely without spatial
selectivity.

9.4.2. Other Differences belween Sustained and Transient
Regimes. Although the cxperiments cited in Section 9.4.1.3
clearly indicate spatial selectivity in the mechanisms that op-
erate in the transient regime, they do not imply that the spatial
selectivity is the same as that in the “sustained” regime. For
example, Derrington and Henning (1981) only examined dis-
crimination between orthogonal gratings, and not between
gratings at smaller angles. Sharpe and Tolhurst (1973) found
that spatial adaptation had a considerably broader orientation
bandwidth (22°) when the gratings drifted than when they were
stationary {13°). Pantle (1973) examined summation between
gratings an octave apart in gpatial frequency and found more
summation when the compound pattern moved than when it
was stationary, Watson and Robson (1981) compared the relative
discriminability of spatial frequency at threshold for gratings
modulated at high and at low spatial frequencies. They found
that digcrimination was much poorer at high temporal fre-
quencies; only an octave difference in spatial frequency was
required for perfect discrimination at 0 Hz, but 2-3 octaves
was required at 16 Hz. To summarize, the mechanisms that
detect patterns at high temporal frequencies do not appear to
be completely without gpatial selectivity, but do seem to be less
selective for spatial frequency and orientation than are the
mechanisms that detect stationary or slowly moving patterns.

Another difference in the sclectivities of the mechanigms
that serve the “sustained” and “transient” regimes is that the
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latter are selective for direction of motion, whereas the former
are not. E. Levinson and Sekuler (1975) showed that the sum
of two gratings drifting in opposite directions (equal to a coun-
terphase grating of twice the contrast) was little more visible
than either component alone, as though each was detected by
a separate direction-selective mechanism (see Section 10). Wat-
son, Thompson, Murphy, and Nachmias {(1980) showed that
this result held only when the spatial frequency was low or the
temporal frequency was high, that is, when the velocity was
ahove about 1°-see . This corresponds closely to the “transient”
regime as reflected by “flicker” sensations (see Figure 6.21).
Watson et al. (1980) also showed that the observers were able
to discriminate the direction of motion at detection threshold
in the “transient” regime but not in the sustained regime, This
is again consistent with the idea that the transient mechanisms
respond selectively to motion, and signal motion to the observer.

10. IMAGE MOTION AND TEMPORAL
SENSITIVITY

Much of the temporal variation in light intensity in natural
visual experience arises from motions of objects or of the cye.
In this section, we consider briefly some relationships between
temporal sensitivity and sensitivity to image motion. The theory
of motion sensing is dealt with at greater length in Watson and
Ahumada (1983a, 1983b, 1985).
10.1. Moving Images
Consider an image as defined in Section 2 with a contrast dis-
tribution Cix, y, t). Let the image be moved at a rate of r*-sec !
in direction 9. The speed in the horizontal direction is r, = r
cos 8, and in the vertical direction, r, = r sin 0. The contrast
distribution in the moving image is then
Coox,3.8) = Cle — reby — rydt) . (b4)
The three-dimensional Fourier transform of the original image
can be written C(u, v, w), where u and v are horizontal and
vertical spatial frequency in cycles-degree ! and w is temporal
frequency in hertz. This (complex) transform describes the spatial
and temporal frequencies that make up the image. The transform
of the moving image is then

(Nj'r‘g('u,v,w} = O, v, w & rew + ryu) . (65)
Thus moving an image does not introduce new spatial fre-
quencies, but rather alters the temporal frequency associated
with cach spatial frequency component. For example, if the
original image is constant in time (¢ — 0 Hz for all «,v), then
movement imparts to each gpatial frequency a temporal fre-
guency equal to the inner product of velocity (ry, r,) and spatial
frequency (u, v), that is, r.u + y,v. This is equivalent to the
product of the spatial frequency and the component of the velocity
in the direction of the spatial frequency. In the simple case of
a vertical sinusoidal grating of frequency u cycles-degree !
moving horizontally at speed r°-sec !, the resulting temporal
frequency is ru. This is the rate at which contrast will vary
over time at any point in the image.

Equation (65) states the fundamental relationship between
the velocity of an image and its temporal frequency components.
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between sensitivity to temporal fluctuations and to moving pat-
terns,

10.2. Direction Selectivity

A mechanism is direction selective if it responds primarily or
exclusively to movement of a pattern in onc direction but not
in another, In view of the eye’s evolutionary adaptation to its
envirenment, we might expect it to be optimized for the analysis
of motion, and hence to contain direction-selective mechanisma.
A review of the literature on direction selectivity is given by
Sekuler (1975). Evidence for direction selectivity is of three
sorts: subthreshold summation, adaptation, and discrimination
at threshold.

10.2.1. Subthreshold Summation. E, Levinson and Sekuler
(1975) noted that a sinuseidal grating modulated sinusocidally
in time is equal to the sum of two gratings with half as much
contrast moving in opposite directions,

cos{2mux) cos(2mruty = YWleos|2wulx — rf)l

+ cos{2wulx + ri)l} , (66)
where r is the speed of motion. A direction-selective mechanism
would respond teo only one or the other of the two moving com-
ponents. Thus if the counterphase grating is detected by a di-
rection-selective mechanism, it should have a threshold about
twice that for either of the drifting components. Their data
were largely consistent with this direction-selective prediction.

Using a forced-choice method, Watson et al. (1980) tested
thig prediction at a wider range of spatial and temporal fre-
quencies. They found it held only when the velocity was above
about 1°-sec” . At lower velocities, moving and counterphase
thresholds were more nearly equal. They proposed that within
this latter range the stimuli were detected by nondirection-
selective mechanisms. These two regimes correspond roughly
to the sustained and transient regimes discussed in Section 9.4,
which supports a suggestion of E., Levinson and Sekuler (1975)
that the direction-selective mechanisms are part of the transient
system.,

These important results further constrain any model of
temporal sensitivity. It must acknowledge that temporal {luc-
tuations with a “velocity” above 1 cyele-degree ! are detected
by direction-selective mechanisms. This is a further nonlinecarity
in the detection pathway, because in a direction-selective system,
response to left and rightward moving stimuli will fail to add.
This is so even though cach direction-sclective mechanism by
itself may be lincar. A modcl of a linear direction-selective
mechanism is given in Section 10.3.

10.2.2, Discrimination at Threshold. If two stimuli are
detected by different labeled mechanisms, they should be dis-
criminated as well as they are detected {see Section 3.6). By
this logie, if gratings are detected by direction-selective mech-
anisms, two gratings that drift in opposite directions should be
identified as well as they are detected. Watson et al. (1980)
tested this prediction by measuring separate thresholds for de-
tecting and identifying the direction of a grating moving in
either of two opposite directions. As shown in Figure 6.25,
thresholds tor detecting and for identifying the direction are
about equal at 2 eycles-degree™! regardless of the temporal
frequency, and at 8 cycles-degree ! when the temporal frequency
is high. These arc roughly the same conditions in which

L A R |
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Figure 6.25.  Ratio of thresholds for detecting and for identifyving the direction
of a maving grating, Fach trial consisted of two intervals; in one a grating
maoved cither to the left or the right. The observer reported the interval
containing the grating, and the grating direction. Detection thresholds were
ostimated from interval judgments, identification thresholds from direction
judgments. Open symbols are for 8 cycles-degree 1, filled symbaols are for
2 eyclessdegree ! Different symbols are for three difierent observers. Dotection
and identification thresholds are about equal except when the spatial frequency
is high and the temporal frequency is low, that is, at low velocities. (From
A, B. Watson, P G, Thompson, B. J. Murphy, & J. Nachmias, Summation
of gratings moving in upposite directions, Vision Research, 20. Copyright
1980 by Pergamaon Press, Lt Reprinted with permission.)

results are consistent with the existence of direction-sclective
mechanisms at medium to high velocities and nondirection-
selective mechanisms at low. However, when the velocity is
low, the retinal velocity of the target may be due more to eye
movements than to motions of the target, thus preventing correct
identiflication of direction. This posgibility has been excluded
by Mansfield and Nachmiag (1981}, who showed that the results
of Watson et al. (1980) are essentially unaltered by image sta-
bilization.

10.2.3. Adaptation. Following adaptation to a leftward
moving grating, threshold is elevated more for a leftward-moving
grating than for a rightward-moving grating (Pantle & Sckuler,
1969; Sekuler & Ganz, 1963; Tolhurst, 1273). This is consistent
with the idea that the leftward-moving grating selectively ex-
cites, and adapts, a mechanism selective for leftward motion.
The smaller threshold elevation in the unadapted direction is
usually attributed to a nondircetion-sclective element in the
pathway prior to the direction-selective stage (K. Levinson &
Sekuler, 1975).

10.2.4. Summary. For grating stimuli, detection in one
regime appears to be direction selective, and in the other regime,
nondirection selective. These two regimes correspond roughly
to the “transient” and “sustained” regimes, respectively. In light
of the evidence that many, perhaps all, stimuli are detected by
the same mechanisms that detect gratings (N. Graham, 1977},
this suggests thalt many of the stimuli used to study temporal
sensitivity are detected by direction-selective mechanisms. This
view is not inconsistent with the working model used throughout
this chapter, because the nonlinearity implicit in direction se-
lectivity can be part of the threshold process. However, it does
require that models of temporal sensitivity take on an explicitly
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spatiotemporal character when they wish to explain the visibility
of targets that move. Section 10.3 shows how this may be done.
10.3. Model of a Motion Sensor

To answer the need for an explicit theory of sensitivity to moving
stimuli, Watson and Ahumada (1983a, 1983b, 1985) have con-
structed a model of a direction-selective motion sensor. The
sensor i a linear spatiotemporal filter with a temporal amplitude
response equal to that of the working model described in Section
4. The spatial amplitude response is a Gaussian, centered on a
frequeney of u, v, with a bandwidth of 1 octave. The impulse
response is approximately a patch of sinusoidal grating moving
briefly in a direction orthogonal to its bars. The sensor is selective
for direction, but also for spatial frequency, orientation, and
location, Each sensor is a discrete entity located at a point, and
the visual field is imagined to be covered by sensors at different
locations, orientations, and spatial frequencies.

When stimulated by targets that are separable in space
and time, this sensor behaves identically to the linear filter of
the working model. The motion sensor may be regarded as &
version of the working model in which selectivity for direction
and for gpatial frequency have been made explicit.

A second, nonlinear stage of the model uses the output of
the linear sensors to estimate the two-dimensional velocity oi
image components localized in space and spatial frequency
(Watson & Ahumada, 1985). Howcever, the spatial and temporal
sensitivities of the model are governed by the first stage, sc
that the second stage is beyond the scope of this chapter.
10.4. Stroboscopic Apparent Motion
Stroboscopic apparent motion is the illugion of smooth motior
produced by a rapid sequence of static views of an object ir
motion, ag in movies and television. Recently, this phenomenor.
has been reexamined (Morgan 1980; Watson & Ahumada, 1982
Watson, Ahumada, & Farrell, 1983). Watson and colleagues
have explained the relationship between this illusion and the
spatial and temporal sensitivity of the eye. They note that ir
a plot of the spatiotemporal frequency domain, with « running
horizontally and w vertically, the spectrum of a line moving tc
the left with velocity r is a line impulse passing through the
origin with slope —r. The spectrum of stroboscopic motion is
the same, with the addition of parallel replicas at intervals o
the strobe frequency (Crick, Marr, & Poggio, 1981, made the
same observation), They reason that these replicas will be in
effective, and smooth and stroboscopic motion will appear iden
tical, when the replicas lie outside the region of spatial anc
temporal frequency to which the eye is sensitive. They notc
that to a first approximation, this region is a rectangle witl
halfwidth of i Hz and halfheight of i cycles-degree ! (see Fig
6.21). This leads to the prediction that, for smooth and strobec
lines to appear identical, the strobe rate must be greater thar
or equal to @ + dr. Figure 6.26 shows the success of these
predictions for two observers. For both observers, the tempora
frequency limit is about 30 Hz, which is a good estimate of the
CFF under their conditions. The spatial limits are 13 cycles
degree ! (ABW) and 6 cycles-degrec ' (JEIY), which are lov
but not unreasonable, given the brief exposure, low contrast
and other masking components. In conclusion, stroboscopic ap
parent motion can be qualitatively explained in terms of the
known temporal and spatial [iltering action of the eye. From ¢
practical puint of view, this explanation provides a formul:
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Figure 6,26, Critical temporal sampling frequency as a function of velocity
for a maving line, Critical sampling frequency is the lowest rate at which
the image can be time-sampled (strobed) keeping smooth and strobed
motion indistinguishable. Critical sampling frequency was measured by means
of a foreed-choice task in which the observer selected which of two presen-
tations he or she believed to be strobed. The stimulus was a verbical line 50
min in length and 0.65 min wide which moved horizontally at the specified
velocity (1), Ohservers fixated a point in the center of the path of travel. The
distance traveled was Vr 5/4° and the duration 54V} sec. Background
intensity was 50 cd-m . The straight lines are fitted by eve, and are consistent
with the hypothesis that stroboscopic apparent motion is due to spatial and
temporal filtering by the visual system. The slope and intercept of the line
are estimates of the spatial and temporal frequency limits of the filter. For
both observers, the intorcept is about 30 | z; the slopes are 6 cycles: degree™!
(JEF) and 13 cycles-degree T (ABW). (From Watson, Ahumada, & Farrell,
1983 )

that can be used to specify the temporal strobe rate required
to display any particular moving image.

11. LIGHT ADAPTATION AND TEMPORAL
SENSITIVITY

11.1. Background

The sensitivity of the eye declines as the average level of il-
lumination increases, and this phenomencn is referred to as
light adaptation. A comprehensive discussion of light adaptation
is provided by Barlow (1972) (also see Hood & Finkelstein,
Chapter 5, and Pokorny & Smith, Chapter 8). The degree of
adaptation is not the same for all stimuli, and this has made
the subject a matter of continuing interest in all areas of vision
research. This is certainly true in the area of temporal sensitivity,
in which the amount of adaptation depends upon the temporal
wave form of the stimulus. For example, light adaptation has
a greater effect on low temporal frequencies than on high, and
on long pulses than on shert, The following sections document
some of these results, and show that they may have a common
interpretation in terms of a linear model whose parameters
depend upon background intensity.

11.2. Intensity and Contrast Thresholds

Recall that target contrast is d(,ﬁned as tdrget intensity d1v1ded
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fusion in discussing light adaptation, because contrast and in-
tensity thresholds change at different rates as a function of
background intensity, For example, if intensity thresholds rise
in proportion to background, contrast thresholds remain con-
stant, whereas if intensity thresholds remain constant, contrast
thresholds decline in proportion to background intensity. In
general, if the slope of the relation between log intensity
threshold and log background is S, then that between log contrast
threshold and log background is 8 - 1. Similar rules apply for
sensitivity, defined as the inverse of threshold. For example,
the slope relating log intensity sensitivity and log background
would be — 8, and that between log contrast sensitivity and log
background would be 1 — S,

11.3. Weber, de Vries-Rose, and Linear Laws

Agbackground intensity is raised from zero, thresholds usually
pass in sequence through three regimes. In the first, threshold
intensity is unaltered by background intensity. This regime is
called lirnear, because the principle of superposition, as applied
to target and background, is upheld. The second regime, which
has considerable theoretical importance but few empirical in-
stances, is the de Vries-Rose law, in which the intensity threshold
rises as the square root of background intensity (de Vries, 1942;
Rose, 1942). This is the behavior expected of an ideal detector
limited only by quantum fluctuations (though it may also be
gencrated by quite different processes). Note that de Vries-Rose
behavior may be exhibited by a detector whose responses, prior
to the decision stage, are linear. Thus the “linear” designation
applied to the previous regime should not be taken too literally.
In the third regime, intensity thresholds rise in proportion to
the background intensity. This is the well-known Weber law.
In a plot of log threshold intensity versus log background in-
tensity, these three laws are straight lines with slopes of 0, 14,
and 1, respectively. In a plot of log contrast sensitivity, they
are transformed into straight lines of slope 1, %, and (0, These
three sorts of adaptation behaviors are sketched in the insets
to Figure 6.27. As with most sensory “laws,” these rules should
be regarded only as prototypes, which approximate the data
within some regime.

11.4. Sinusoidal Wave Forms

Figure 6.27 illustrates some general properties of the effect of
background intensity upon temporal sensitivity. {1) Intensity
thresholds rise with increasing background intensity. (2) The
rate of rise increases as background increascs. This rate of rise
is approximately consistent with the linear law at the lowest
backgrounds, with the de Vries-Rose law at intermediate back-
grounds, and with the Weber law at the highest backgrounds.
(3) The rate of rise is greater at low temporal frequencies than
at high. Consequently, the Weber regime beging at a lower
background for lower temporal frequencies,

There is a lower limit to the background intensity that
may be used to measure thresholds for sinusoidal targets,
reached when background intensity and threshoeld intensity
are equal. The linear region, when it is present, extends from
this lowest usable background up no farther than 1.5 log units.
The de Vries-Rose law appears only as a brief transition between
linear and Weber regions.

Another perspective on the relations among contrast scn-
gitivity, tempordl frequency, and background 1nu,ns1ty iy pro-
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Figure 6.27. Threshaold as a function of background intensity. The temporal
wave form was sinusoidal at 1.5 or 20 Hz. The spatial target was a 2° disk
with no surround, Thresholds were measured by adjustment. The same data
are plotted both as intensity thresholds (a) and contrast sensitivities (b). The
small insets show the log-log slopes corresponding to linear (L), de Vries-
Rose (DR}, and Weher (W) laws. The data pass in sequence through each of
the laws, At the lower temporal frequency adaptation is more pronounced
and the Weber law regime is entered at a lower background intensity (data
from de Lange, 1958).
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sensitivity, The outermost eurve, for a sensitivity of 1, represents
the CFF. It grows roughly in proportion to log background in-
tensity, as preseribed by the Ferry-Porter law. This figure also
illustrates the relative insensitivity of low frequencies to back-
ground intensity, and the enlarged bandwidth at higher back-
grounds.

Because light adaptation aftects each temporal frequency
differently, the TCSF changes shape as background intensity
is altered. This ig evident in Figures 6.7, 6.28, and 6.29. At the
lowest backgrounds, it is “low-pass” in form, showing relative
attenuation only at high frequencies. As background intensity
is inereased, low temporal frequencies move quickly into the
Weber regime and show no further improvement in contrast
sensitivity, The high frequencies, on the other hand, continue
to gain in sensitivity so that the relative attenuation at low
frequencies becomes pronounced, and a clear peak in sensitivity
emerges at a middle frequency. Furthermore, as backgrounds
become more intense, higher frequencies show greater gains
in contrast sensitivity. One by one the lower frequencies reach
their Weber regime and cease to improve, whereas higher fre-
quencies continue to accrue sensitivity, As a result, the peak
in sensitivity increases and moves to higher and higher fre-
quencies, the high-frequency limb moves progressively right-
ward, and the overall bandwidth of the TCSF is enlarged. These
effects agree with the common observation that the light-adapted
eve is “faster” and more “transient.” In terms of the working
model, these changes correspond to a decrease in the time con-
stant (7), an in¢rease in the transience parameter (£), and an
increase in sensitivity (£} as background is increased.

An alternative view of data like those in Figure 6.28 is
given in Figure 6.29. The data in panel (a) of this figure are
the same as those in Figure 6,7, but are plotted here as intensity
sensitivities rather than contrast sensitivities, achieved by
simply dividing each contrast sensitivity by the corresponding
background intengity. In log-log coordinates, these divisions
correspond te vertical shifts. Despite substantial differences in
experimental conditions, and differing behavior at the low fre-
quencies, all three experiments show that, as noted by Kelly
(1961a) and J. Z. Levinson and Harmon (1961), above about 1
td all the data appear to approach a common curve. Where

100+

30 Contrast sensitivity
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Figure 6.28. Temporal conlrast sensitivity as a function of frequency and background intensity. Each line
is an isosensitivity curve, obtained by interpolation from data of Figure 6.29, joining points of equal
conlrast sensitivity, [he contrast sensitivity associated with each curve is indicated on the figure, Target
was a 60° disk with no surround, modulated sinusoidally. Monocular viewing with a 1.55-mm-diameter
artificial pupil. The CFF is indicated by the outermaost curve fabeled 7177 As background intensity increascs,
peak sensitivity and the CFF move to higher frequencies; sensitivity at low temporal frequencies remains
more or less constant. {(From D. H. Kelly, Visual responses to time-dependent stimuli, fournal of the Optical
Saciety of America, 19617, 571, Reprinted with permission.}
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Figure 6.29.

Intensity sensitivity as a function of temporal frequency at various background intensities.

(a) de Lange (1958), observer V, 2° disk, no surround; (b) Kelly (T961a), 60° disk, no surround; (¢} Roufs
(1972a), ohserver HIM, 1° disk, no surround. Increasing background intensity reduces intensity sensitivity
at all except the highest frequencies. At the highest lemporal frequencies, the curves for different background
intensities approach a common curve, This illustrates that at the very highest temporal frequencies, the

system approaches lincar adaptation behavior,

curves for two adaptation levels coincide, then over that region
of frequency and background intensity, thresholds obey the
linear rule (Kelly, 1961a}. Note, however, that at any given
frequency, the linear rule extends, if at all, only over a small
range of backgrounds from the lowest upon which it is visible
up by 1 log unit or less, Beyond that point, sensitivity moves
towards the Weber law. Likewise, at any given background,
only a very small range of frequencies will be included in the
linear regime, extending down from the CFF. Kelly (1869a)
and Kelly and Wilson (1978) have attributed this linear high-
frequency asymptote to a diffusion process (see Section 5.11).
Because a large part of the effect of light adaptation takes
the form of vertical and horizontal shifts of the high-frequency
limb of the TCSF, we might expect that suitable scaling of
frequency and sensitivity (equivalent to horizontal and vertical
displacements in log-log coordinates) would approximately su-
perimpose the TCSFs measured at different background inten-
sities. Roufs has attempted this exercise, with the results shown
in Figure 6.30. The curves agree only to within a factor of about
5, the largest discrepancies being at the lower temporal fre-
quencies. Furthermore, Roufs used a small target and no sur-
round. Use of a surround and/or a larger target (as in the data
of de Lange and Kelly in Fig. 6.29), would produce still larger
discrepancies at low frequencies. The scaling does not work
well at low temporal frequencies because, as we have seen, the
TCSF becomes more transient at high backgrounds, and this
change is not included in the scaling operations performed in
Figurce 6.30. Nevertheless this scaling procedure provides a
useful condensation of at least the high-frequency data, and

Reufs has shown how it provides a qualitative explanation of

the luminance dependence of pulse thresholds (see Section 6.5.3).

11.5. Pulse Wave Forms

Asg shown in Section 6, the function relating threshold to duration
for a rectangular pulse (the threshold-duration curve) has an
initial segment that falls with a slope of —1, and a second segment,
that falls at a more gradual rate. The transition between these
two segments occurs at the critical duration T, with intensity
threshold I, (the critical intensity). A rough summary of the
effect of light adaptation upon pulse thresholds can therefore
be obtained from plots of T, and I, as functions of background
intensity. These are seen in Figure 6.31, which shows that eritical
duration declines as background intensity is raised, going from
about 100 msec at 0 log td to about 25 msec at 4 log td. The
figure also shows the differences that may be expected between
observers in the same or different laboratories, and the degree
of precision with which statements may be made about critical
duration. Because both are measures of the time scale of the
temporal response, we might expect a simple relation hetween
the critical duration and the corner frequency of the TCSF. In
particular, Section 6.5.3 gives theoretical reasons why these
two quantities should be inversely related. Roufs (1972a) has
shown that they are, and this may be appreciated by comparison
of Figures 6.30 and 6.31.

Just as the adaptational changes in the TCSE cannot be
captured completely by scaling of sensitivity and corner ire-
quency, so too changes in the threshold-duration curve are not
completely characterized by changes in critical duration and
critical intensity. In both cases, the missing parameter is the
transience, which also inereuses with background intensity. As
noted in Section 6.5.2, a transient system shows little or no
improvement in sensitivity bevond the eritieal duration whoreas
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LOG BACKGROUND INTENSITY (trolunds)

Temporal contrast sensitivity functions at different background intensities shifted so as to

approximately superposc. {a) Log-scaled sensitivity as a function of log-scaled temporal frequency. Scaled
sensitivity is intensity sensifivity divided by a sensitivity factor; scaled temporal frequency is frequency
divided by & corner frequency. The sensitivity factor is determined by shifting the curve for each background
intensity vertically until it has a peak sensitivity of 1; corner frequency was determined by then shifting
cach curve horizontally until it had a sensitivity of 0.5 at a frequency of 1, Different symbols are for
different background intensities, The curves superimpose reasonably well at high temporal frequencies,
but poorly at low. Data from observer HIM. (b) Sensitivity factor as a function of background intensily. (c)
Corner frequency as a function of background intensity. (b) and (€} include data of four chservers from
Roufs (1972a) and two from de Lange (1958). Circles are derived from {a). This figure illustrates that much
of the change in the TCSF with background intensity may be expressed as a change in overall sensitivity
{a vertical shifty and a change in the corner frequency (an horizontal shift). Sensitivity declines and the
corner frequency increases as background increases. (From |. AL )L Roufs, Dynamic properties of vision—
I, kxperimental relationships between flicker and flash thresholds, Vision Research, 12. Copyright 1972
by Pergamon Press, Ltd. Reprinted with permission.)

a sustained system continues to improve at a rate of about 0.25
in log-log coordinates. Thus we expect the second limb of the
threshold-duration curve {o be somewhat flatter at higher
background intensities than at low. This trend is evident in
Barlow’s data shown in Figure 6.11.

11.6. Other Wave Forms

At very low background intensities (below 1 td) some authors
have found that the threshold for a decrement may be as much
as 0.3 log unit less than for an inerement. This difference tends
to disappear at more intense backgreunds.

Pulse-pair thresholds (see Section 7) show the effect of light
adaptation in two ways. First, as background intensity increases,
the time scale of the results is compressed so that, for example,
the delay, at which threshold for an opposite-signed pair ig

least, moves from about 50 msec at 328 td to about 70 msec at
61.2 td (Tkeda, 1965; Uetsuki & lkeda, 1970). Second, on less
intense backgrounds, the second, negative lobe of the I, function
is reduced or absent. This effect is evident in data of Uetsuki
and lkeda (1970). Because this second lobe is associated with
the transience of the linear model, this result is consistent with
an increasing degree of transience as background level is raised.
This result agrees with observations made with sinusoids and
pulses. Roufs (1974a) has also studied the effects of light adap-
tation upon pulse-pair thresholds.

11.7. Spatial Eifects

As noted in Section 9, temporal contrast sensitivity is not sep-
arable from the spatial configuration of target and surround.
Likewise, the effects of adaptation upon temporal sensitivity
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Figure 6.31. Critical duration T, (a) and critical intensity i (b} as functions
of background intensity. Critical duration is the longest duration of a rectangular
pulse for which reciprocity holds between intensity and duration (Bloch's
faw). The critical intensity is the threshold intensity at the critical duration.
Filled circles are averages of eight subjects of C. H. Graham and Kemp
(1938}, filled sguare arc average of two subjects of Keller (1941), filled
triangles are two subjects of Herrick (1956], open symbols are subjects from
Roufs (1972a). Target was a 1% hemidisk (€. t1 Graham & Kemp, 1938;
Keller, 1941} or a 1° disk {Herrick, 1956; Rouls, 1972a). Critical duratian
declines from about 100 msec at O log td to about 25 msec at 4 log td.
Critical intensity increases with background intensity, entering a Weber regime
al the more intense backgrounds. (From . A. |. Roufs, Dynamic properties
of vision—I. Experimental relationships between flicker and flash thresholds,
Vision Research, 12, Copyright 1972 by Pergamon Press, Ltd. Reprinted with
permisston.}

depend upon spatial configuration. I have suggested that many
of the complex spatial effects may be understood by considering
the visually effective spatial frequency of the target. To this
point, only disk targets have been considered. For a disk target,
this frequency is generally low, and may be lowered by enlarging
the disk or removing the surround, Consequently, we might
expect that data for low spatial frequency grating targets would
resemble thresholds for disks.

The firgt experiments to consider the different effects of
background intensity on the TCSF at low and high spatial fre-
quencies were conducted by van Nes ct al. (1967). Their mea-
surements were made with drifting, rather than sinuscidally
modulated gratings, but as noted in Section 10, thresholds for
these two stimuli agree to within a factor of 2. As expected, at
a low apatial frequency (0.64 cycles-degree ') their data show
a progressively stronger attenuation at low temporal frequencies
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as background level is raised. At 11 cycles-degree !, however,
this feature is absent. Above about 1 td, background intensity
merely shifts the curve vertically and horizontally with little
change in shape. Data from Kelly (1972a), some of which are
shown in Figure 6.32, confirm these observations. One way of
describing the interaction between spatial configuration and
light adaptation is that if the effective spatial frequency islow,
the transience increases with background intensity; if the ef-
fective spatial frequency is high, the system is sustained at all
background intensities.

Kelly’'s data also show that at low spatial frequencies, as
with disk targets, the adaptive responsce proceeds from a Weber
law at low temporal frequencies to a Jinear rule near to the
CFF, passing through an intermediate regime at middle fre-
quencies. Kelly’s data suggest that at higher spatial frequencies
the intermediate de Vries-Rose regime is enlarged, so that the
linear regime may be absent altogether and the Weber regime
present only at the highest backgrounds.

11.8. Summary

The following is a summary of the effects ot background intensity
on temporal contrast sensitivity, The “strength” of adaptation
can be characterized by the slope of the relation between log
threshold intensity and log background. This is equivalent to
the exponent of a power law relating these two quantities. As
we have seen, this slope is bounded by values of O (linear regime)
and 1 {(Weber regime). We note the following trends in the
strength of adaptation:

1. As background intensity inereases, strength increases.
2. As temporal frequency increases, strength decreases.
3. As spatial frequency increases, strength decreases.

Regarding the form of the TCSK, as background intensity
is increased, the following occur:

1. Contrast sensitivity increases.
2. Corner frequency increases.
3. Transience increases.

12. SUMMARY

This chapter reviews a small part of the very large literature
on human visual temporal gensitivity. An effort has been made
to show that the visibility of many different wave forms, both
periodic and aperioedic, can be understood in the context of a
rather simple model of temporal sensitivity. Some of the effects
of spatial configuration and background intensity upon temporal
sensitivity have also been examined.

Much of experimental and theoretical effort in this area
has been spent finding ever better mathematical representations
of the relation between the stimulus temporal wave form [(¢)
and threshold, and of including ever more refined parametric
cffeets of gpatial wave form and background intensity. This
endeavor now seems largely complete. A model like the one
proposed in Section 4 secms likely to provide a fairly complete
quantitative account of the visibility of arbitrary temporal wave
forms.

However, a major task for the future will be the integration
of models of temporal sensitivity with models of spatial and
chromatic sensitivity. We may expect future theoretical devel-
opments also to include physiological explanations of temporal
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grating 16} ar various background intensities. Data for the uniform field show increasing attenuation at low
temporal frequencies as background intensity increases, but data for 3 cycles-degree ! do not. This
illustrades that the changes in shape of the TCSF due to adaptation occur primarily at low spatial freguencies.
At a low temporal frequency, the adaptation effect is stronger for low spatial frequencies than for high,
Background intensities were 1.67 (squares), 16.7 (diamonds), 167 (triangles), and 1670 td (circles). Monocular
viewing, 7° circular target, 2.3-mm artificial pupil. Solid lines are from a model proposed by Kelly (197 1h).
(From D. 1. Kelly, Adaptation effects on spatio-temporal sine-wave thresholds, Vision Research, 12.
Copyright 1972 by Pergamon Press, Ltd. Reprinted with permission.)

sensitivity (which cells do what, and why?). We may hope for
a better understanding of sustained and transient channels in
human vision. Do they exist, what are their roles, and how arc
they involved in the processing of temporal, spatial, motion,
and chromatic information? An area largely untouched in this
chapter that seems likely to receive more attention in the future
is the relation between wavelength and temporal sensitivity.
This includes the wavelength distribution when it is constant
(separable from the temporal wave form) and when it changes
as a function of time. Another challenge is the effect of temporal
wave form upon color discrimination.

Finally, we are likely to see less emphasis upon sensitivity
per se and more upon visual information processing of su-
prathreshold temporal and spatictemporal stimuli, A prime
example is the study of how we deduce the speed and direction
of motion of objects from the spatiotemporal intensity distri-
bution I (x, ¥, ) (Fahle & Poggio, 1981; Watson & Ahumada,
1983a, 1983b, 1985).

REFERENCE NOTE

1. Watson, A. B. Unpublished observations on summation hetween
pulse pairs as a function of delay and spatial frequency.
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