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The stimulus for vision is light distributed over space, time,
and wavelenf..,:rth. The distribution in each of these dimensions
influences our visual experience. This chapter focuses upon the
temporal dimension. The time course of the stimulus affects
our experience in two ways: it affects our sensitivity to the
stimulus, for example, whether we see it or not, and it affects
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the appearance of the stimuli that are seen, for example, by
controlling the apparent time course of the sensation. Both are
important, but this chapter deals primarily with the first sort
of effect, which is called temporal sensitivity.

This chapter begins with a brief description of the stimuli
that are used to measure temporal sensitivity. A set of terms
is introduced that serves to describe in a consistent way a wide
variety ofpossible configurations. Some mathematical notation
is specified for luminous stimuli distributed over space and
time.

The study of temporal sensitivity has always made extensive
use of mathematics, primarily Linear Systems Theory. Models
of sensitivity and ofthe underlying mechanisms are frequently
couched in these terms. To provide a point of reference, a brief
survey of Linear Systems Theory is provided.

Because so many of the phenomena of temporal sensitivity
can be explained by a simple generic model, and because this
model has appeared piecemeal in the work of a number of au
thors, a "working model" is given concrete form in Section 4.
A working model is one that provides a reasonable quantitative
account of the available data, but whose mathematical structure
is somewhat arbitrary and whose details are subject to change
in the light of new evidence. Wherever possible in the remainder
of the chapter, empirical results are compared to the predictions
of the working model.

Sections 5-8 review empirical and theoretical analyses of
the visibility of a number of particular temporal wave forms:
sinusoids, pulses, and pairs of pulses. These wave forms are
selected because they have received the bulk of experimental
attention, and because they reveal important aspects of temporal
sensitivity.

As will be evident, the temporal dimension of a stimulus
cannot be studied entirely in isolation from the other dimensions.
For example, statements regarding temporal sensitivity can
rarely be made independently of the spatial distribution of the
stimulus. This interdependence is acknowledged throughout
the chapter, and is addressed directly in Section 10.

In natural imagery, as distinct from the artificial stimulus
creations of the laboratory, temporal variation arises primarily
through image motion, whether through motion of the observer,
of the eyes, or of the objects viewed. Image motion is a special
sort of temporal variation in which the time wave form is a
function of spatial position. In Section 11, the temporal variations
induced by image motion arc considered, and some basic results
on sensitivity to moving patterns are reviewed. The relation of
temporal sensitivity to motion sensitivity is also discussed.

As the ambient level of illumination is raised, the eye ex
changes sensitivity for temporal resolution. Overall sensitivity
is reduced, but the ability to sec rapid fluctuations is relatively
enhanced. Section 12 reviews the empirical effects of light
adaptation upon temporal sensitivity, and considers some the
oretical models for these effects.

1. THE TEMPORAL STIMULUS

At its most general, the stimulus for vision includes anything
that infiuences our visual sensations and reactions. This might
include our state oflight adaptation, our distance from a viewed
object, what we had for lunch, and to whom we last spoke. In
order to draw the line at a point that will best serve the purpose
of this chapter, the stimuluK is considered to be a distribution
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[(x,y,t) ~ In + h'(x,y,t) ~ Inll + C(x,y,tlI. (2)

1.3. Separability

This condition holds, for example, for a disk targt~t that is flashed
on briefly, or for a spatial grating that is counterpha8t~modulated

In many experimental situations, the spatial contrast distri
bution docs not vary over time, and likewise the temporal dis
tribution is the same at all points in the image. In this case
the spatial and temporal dimensions of the stimulus are said
to be separable and the overall distribution can be written as
a product:

(3)C(x,y,t) ~ Cr,y(x,y)C,(t) .

The segregation of the stimulus into contrast and background
terms is a tradition that arose from the observation that sen
sitivity is more nearly invariant with respect to contrast than
with respect to intensity. The background intensity must be
specified, however, for it controls the state of adaptation which
in turn governs sensitivity. Various definitions of background
intensity are used, among them the unvarying level upon which
the target is superposed, the space-average intensity of the
image, the space~timeaverage, or the average of the maximum
and minimum intensities in the image. Each of these may be
appropriate in some circumstance, but it is important that the
expression for contrast be correct relative to the definition of
background used.

Because we arc only rarely concerned with variations in the
wavelength of light, it is sufficient to specify the intensity of
the light at each point in the image. This intensity distribution
can be written I (x, y, t), where x and yare horizontal and
vertical coordinates of the image measured in degrees of visual
angle (degrees), and t is time. Three measures of intensity arc
used here. 'rhe first is luminance, expressed in units of candelas
per square meter. The precise definition ofluminancc is quite
complicated (Wyszecki & Stiles, 1967). But given our earlier
definition of an image, luminance is then the amount of light
emitted or reflected toward the eye per unit area of the source,
weighted by the photopic luminous efficiency function. The optics
of the eye transform the image luminance distribution into a
distribution of light upon the retina. This transformation in
volves many factors, including spatial blurring, chromatic ab
erration, and attenuation by the pupil. The last eilect is taken
into account by a second measure, the so-called retinal illu
minance.It is defined as the luminance (cd'rn 2

) multiplied by
the area of the pupil (mm2), and is given in units of trolands
(td). This measure is used when the precise level of illumination
on the retina is important, as in investigations of light adap
tation. A third measure, most commonly used in studies ofcolor
vision, specifies image intensity in quanta per square deh'Tee
per second at some particular wavelength or at each wavelength
in a spectrally extended source. The troland value can be de
termined from this measure by way of formulas given by Wy
szecki and Stiles (1967) (see also Chapter 5 by Hood & Finkelstein
and Chapter B by Pokorny & Smith),

of light lying in a plane orthogonal to the line of sight and in
front of the observer. This image covers some portion of the
visual field and endures for some finite amount of time.

1.1. Intensity

1.2. Spatial Configuration and Contrast

The spatial configuration of the stimulus has important effects
upon temporal sensitivity. As noted above, our general descrip
tion of an image is its complete three-dimensional intensity
distribution, lex, y, t). However, the stimuli used in the majority
of laboratory experiments can be described in less general but
simpler form. Figure 6.1 illustrates this discussion.

An area ofintensity IH is designated as the background. A
larger area, extending outward from the limit of the background
and with intensity Is, is called the surround. Surround intensity
is most often set equal to background intensity, or is absent
altogether. Authors rarely specify lighting conditions beyond
the borders of the surround.

Superposed on and coextem;ive with the background is the
tarp,et with an intensity given by the function IT(x, y, 0. We
allow the target intensity to have negative values, as when
light is subtracted from the background, but of course the sum
of target and background must be positive. Contrast is defined
as the ratio of target intem;ity to background intensity,
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Note that contrast may have negative as well as positive values,
though it may never be less than -1. Combining background
and target, the intensity within the target area is given by

C(x,y,t) (1)

{I,)

Figure 6.1. Sorw-' terms lIspd to describe visual stimul"r. (a) Thl' spatiill
configuration of the image. The targpt and background ilrc supl'rposcd on
sorne specified ,lrea, shown here as a disk. The sur"round lies outside the
target <Jnd background. (bl A horizontal cross-section thmugh the in!pllsity
distribution I (x, Y,l) of the image. Thp surround has intensity 1\, ttl{' background
Ill, ilnd the target II (x,y,t). T,lrget contrast is the ratio lill/!.
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in time. [t does not hold for one important class of stimuli,
namely, patterns in motion. In spite of this exception, most
work on temporal sensitivity has been confined to separable
stimuli, and for this reason we focus upon the time wave form
C,(t), abbreviated C(t). IfC(t) is to continue to express contrast
us defined above, then Cx,y(x, y) must be normalized so as to
have an overall contrast of 1. 'rhis convention has been adopted
throughout this chapter. Where intensity rather than contrast
is considered, we will specify the intensity wave form [(t),

In reducing the description ufthe stimulus to the temporal
wave form C(O, it must be borne in mind that both background
intensity and spatial distribution (which are no longer reflected
in thc wave form) can have important effects upon temporal
sensitivity. These effects arc discussed in Sections 9 and 11.

When the number of possible inputs is infinite, as is true in
the case of temporal wave forms, a purely experimental approach
would require an infinite number ofmeasurements. If the system
is linear, however, LST provides a way of characterizing the
system by measuring the response to a single input. LST also
supplies a set of mathematical tools for predicting, from this
characterization, the response to an arbitrary input.

2.1. Superposition

It is useful to denote the action of the system mathematically
by an operator, L. Just as a function F(t) maps values of t to
values of f(t). so the operator maps the input function fU) into
the output function ret). We write this mapping in the form

1.4. Temporal Wave Forms
LlfUli ~ rU) . (5)

where l' i8 the period ofthe wave form. No visual stimulus goes
on forever, but if the number of cycles in the wave form is large
enough so that adding more docs not alter sensitivity, then it
is reasonable to treat the wave form as periodic.

A widc range of temporal wave forms has been studied for thcir
effects upon visual scnsitivity. For various reasons, not all en
tirely sensible, certain wave forms have received most of the
attention. These are rectangular incremental pulses, decre
mental pulses, pulse pairs, square waves, and sinusoids. Sen
sitivity to each of these wave forms is conRidered, and they are
Rketched in Figure 6.2. A uReful distinction among these wave
forms is that the sinusoid and the squarc wave are periodic,
whereas the others are aperiodic. A periodic wave form is one
that repeats itself forever. Formally, it is a wave form I(t) such
that

2.2. Time Invariance

(7)

(6)

Thus superposition entails two properties, homogeneity and
additivity. The system is homogeneous when multiplying an
input multiplies the output by the same amount. 'rhe system
is additive when the response to the sum of two inputs is the
sum of the responses to the individual inputs.

Where it is possible to do so without confusion, we omit the
function arguments and write Ffor f(t).

A system is linear if it obeys the principle of superposition.
This principle states that for any two inputs It and 12, and any
constant a,

(4)for all t ,1U) ~ 1(t ~ T)

2. LINEAR SYSTEMS THEORY IN THE TIME
DOMAIN

Let rCt) ~ L 1fU)l. The system is time invariant if

LI f"(t ~ T)I ~ ret (8)

2.3. Orthogonal Basis Functions

Two functions bj(t) and b'.!.(t) arc orthogonal if their inner product
is 7.ero:

Note that f{t ~ T) is the input f(t) delayed by T; likewise r(t ~ T)

is the response rCt) delayed by 'T. Equation (8) states that delaying
the input by 'T delays the output by 'T but leaves it otherwise
unaltered. This means that the properties of the system do not
change over time.

(9)

(10)

o

j=x

2: ahU)
J= -x

fU)

A basis is a set of functions that spans some set of functions;
that is, any member of the latter set can be constructed from
a linear combination of the basis functions. If we have a set of
orthogonal basis functions {~i(t)} which span the set of real
valued functions {fU)}, then for any function f,

Linear Systems Theory (I.S'I') is an important mathematical
tool in the analysis of human temporal sensitivity. Bracewell
(1978) provides an excellent introduction to this branch of
mathematics. The purpose of this section is to provide a brief,
intuitive overview of LST and to note a number of the important
re~mltH so that they mtty be referred to in the text.

The experimental analysis ofa physical system often consists
of applying various inputs and measuring the resulting outputs.
The inputs we consider here are rcal-value'd functions of time,
!'(t). This function typically describes the luminance or contrast
of a visual stimulus over time (see Section 1). The output, or
response, is also some real~valued function of time, ret). This
function might represent some internal state of excitation, for
example, the momentary discharge frequency of a visual neuron.
More often it is a purely hypothetical quantity, whose value
can be deduced from psychophysical responses only with the
aid of additional assumptions. These assumptions are considered
here. The s.ystern is that collection of physical processes that
intervenes between the input and the response. In the example
above, th(~ system would include all those events between stim~

ulus and neural response, including optical imaging, trans
duction, and transmission from neuron to neuron.

A complete empirical characteri:lation ofthe system would
consist of a description of the output resulting from any input.
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Figure 6.2. Some wave forms used to study visual (prnporal spilsitivity. Each wave form specifics the
t<nget intpnsity as a function of time. An equation defining each wave form is given on tiw Ide horn top
to bottorn the wave forms are a rpctangular pulse increment of intensity I and duration T; a pulse dpuPITlPnt

of intensity J <)nd dUfdlion T; d pulse pair with durations I, intensities II and 12, and delay between pulses
of D; a square wave of intensity I and frequency w; and a sinusoid of inh-'Ilsity I 'ltld frequency w. Intensity
may be a quantity such ,15 luminutlcc, retinal illuminance, or quanta -degree l'see I al some wdvplpngth.
BeCilUSC light cannot have negative intensity, each wave form tl1l1s1 be added to il background more
inh'nsf' th;m the lurgesl negillive excursion in the wave form.

where the OJ are the cocfIicicnts ufthe linear combination, and
where both a and b may be complex. Because the basis is or
thogonal, the set of coeflicients a.i that go to make up a particular
rare unique and casily determined.

Now we let tbe the input to a linear system. Applying the
principle of superposition to Eq. (10), we see that the rcspom;e
to (will be

2.4. Impulse and Impulse Response

One natural set oforthogonal basis functions is the set of impulses
located at different points in time. An impuh;e h(t) is a pulse
with infinite height, infinitesimal width, and unit area, located
at t == O. 'l'he input is easily represented in terms of shifted and
scaled impulses,

(11 1 (12)

where * indicates convolution. Note that this equation is the
continuous version of Eq. (10), with ((T) playing the rolc of the
coefficients a.j. Let the response of the system to an impulse be
hU), the impulse response. We write

Thus if we knew the response to each basis function (LI bjl),
we could calculate the response to any arbitrary input. The
procedure would be as follows: (1) evaluate the coetlicients (~j

required to represent the input{, (2) multiply each basis response
LI b;1 by the coeflicient 01' and (ill add them up to produce the
response L IIT h(t) .~ Llo(tll (13)
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We can now follow the procedure above to determine the response
to ((f). Comb-ining the preceding three equations, and applying
the principles of superposition and time invariance, we get

ret) ~ J:fh)hU- T) dT ~ f(t) * h(t). (14)

Thus the response is equal to the convolution of the input and
the impulRc response. If the impulse response is known, the
response to an arbitrary input can be calculated. Thus the im~

pulse response completely characterizes the system.

2.5. Eigenfunctions

BASIC SENSORY PROCESSES I

2.7. The Convolution Theorem

A particularly valuable property of the Fourier transform i
that if flU) and f2(t) arc two functions, and F\(w) and 1"2(w) ar,
their transforms, then

(20

'rhus the complicated convolution operation is converted to th
simple multiplication operation in the frequency domain. A
an example, Eq. (14) shows that the response of a linear systen
is the convolution of the input and the impulse response. Ap
plying the convolution theorem,

Comparison of this result with Eq. (17) shows that the transforn
of the impulse response is the system function,

A linear, time-invariant system can therefore be completel:
described by either its impulse response or its system functior
which are Fourier transforms of each other.

An alternative derivation of r(t) is possible if each basis function
is an ei,;enfunction, satisfying the condition

(15)

The response to an eigenfunction is the function itself, multiplied
by some complex constant c.j, known as the eigenvalue. Fortu
nately, for a linear, time~invariantsystem there exists a set of
eigenfunctions that are also orthogonal basis functions for the
set ofreal-valued functions (f(t)}. They arc the complex expo
nentials, ei~'ITwl with frequency w. The function lis synthesized
from these exponentials in the manner described in Section 2.3,
as a linear combination with complex coefficients F(w),

dt) ~ 1"7' 11"(wlFTlh(t)11

FTlh(t)l ~ H(w)

(21

(22

(23

lU) (16)
2.8. Amplitude and Phase

Becaw:le the complex exponentials are eigenfunctions, the re~

sponse of the linear system to l is easily determined:

'rhe complex system function H(w) may be represented as th
sum of real and imaginary parts

The system /llnction H(w) (also called the transfer function)
specifics the complex constant Ceigenvalue) by which the complex
exponential of frequency w is multiplied as it passes through
the system. Note thatHCw), like the impulse response, completely
specifies the behavior of the system. All we need now arc methods
for evaluating F(w) and HCw).

where i = (-l)lj~. Each value of this function is a point in th
complex plane at a distance IHI from tho origin and at an angl
< H from the positive real axis, where

ret) 0-= r>:,~ H(w)FCw)ei~'TIwt dw . (17) H ~ R + iI

1 I< H =--~ tan
R

(24

(2E

(2E

2.6. Fourier Transforms

The coefficients F(w) that are required to construct fCn from
complex exponentials are obtained by the Fourier transform

Application of Euler's theorem shows that

(2~

F(w) .~ fiT I f{tl I
The advantage of this last expression is that the response t

(18) an eigenfunction ei21TWi is now simply

Lle'2'W'1 ~ IH(w)1 exp{i121Twt + <H(w)l) (2f
There is also an invcnJe transform, by which the original wave
form is reconstituted from component exponentials with coef
ficients FCw),

With a more familiar real input of cos 21Twt, we see that th
output of the system is

fW ~ FT IF(w)1 ~ fx F(w)e"TIW' dw . (19) Llcos 21Twtl ~ IH(w)1 cos 121TWt + <H(w)] (2~

In other words, the response is also a cosine ofthe same frequenc
Fourier transforms are treated extensively by Bracewell (1978). but altered in amplitude by the factor IHI and in phase by a
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2.9. Causality

2.10. Some Simple System Functions

In a passive physical system operating in the time domain, the
response never precedes the input, and the system is said to be
causal. Formally,

This has various consequences. Must important here is that
amplitude and phase responses are even and odd functions,
respectively. Accordingly, these functions need only be deter
mined or specified for positive frequencies.

(ill)h(t) ~ u(t)e Ii'

where u(t) is the unit step function. If n identical leaky inte~

grators af(~ cascaded, then

represented by an impulse response that is the nth derivative
of the impulse. The transfer function is (i27TW)rt.

2.10.4. Integrator. Integration over the interval[- Xl, tl
is equivalent to convolution with the unit step function, u(t).

Its system function is therefore the Fourier transform of the
step function, l8(w) il(7TW) 1/2. Note that, except at 0, its action
is precisely the inverse of that of the differentiator. This is
logical, because except for their action on constants, differen
tiation and integration arc inverse operations.

2.10.5. Leaky Integrator. Rather than performing a perfect
integration, lik.e that described in Section 2.10.4, many physical
devices integrate the input but leak at a rate proportional to
the amount accumulated. If the constant of proportionality is
lIT, then the impulse response is

(30)fort<O.H(t) ~ 0

amount <H. Thus IHI, the amplitude response of the system,
describes the gain with which each frequency passes through
the system, and <H, the phase response, describes how much
each frequency is advanced or delayed.

These functions are drawn in Figure 6.3. Note that the system
acts as a low-pass filter. Beyond a frequency of (27TT) 1, the
amplitude approaches an asymptote of(27TW)-n, whereas below
(21fT) 1 it asymptotes at Tn. In log-log coordinates, the lower
limb is flat whereas the upper limb falls with an asymptotic
slope of .- n. This is sometimes called a resistance~capacitance

filter, by analogy to an electrical circuit composed of a resistor
and a capacitor.

Amplitude and phase responses are

H(w) - Tn (i27TWT j- 1) n .

(35)

(34)

Ul2)
I

1)! (tiT)"

<ll(w) :..:.: -n tan 1(21TUJT)

llJ(w) I

Tn
h(t) ~ U(t) (n

and

The system function of a linear combination of independent
systems is the linear combination of their separate system
functions. The cascade of two systems yields a system function
equal to the product of their individual system functions. By
means of these two rules, rather complicated systems can be
assembled from simple components. In the following sections
some simple systems are considered. For each, impulse response,
system function, amplitude response, and phase response are
noted in 'rable 6.1.

2.10.1. Multiplication by a Constant. If a signal is mul
tiplied by a constant k, but not otherwise altered, the transfer
function is a constant k. In electrical terms, this would be the
action of an ideal amplifier with a gain of k.

2.10.2. Delay. [f the signal is delayed by a time T, but
not otherwise altered, the amplitude response is equal to 1, and
the phase response to 21fWT.

2.10.3. Differentiator. Differentiation of a signal with
respect to time is a linear operation, and may be represented
by an impulse response that is the derivative of the impulse
function, o'(t). More generally, the nth time derivative may be

<:11 1 -I- <H2

PhUHe ReHpOW-le,

<H(w)

IH,lllhl

Amplitude Response,
lH(wJI

System Function,
f/(w)

IltII2Cascade

Tahle 6.1. Some Simple linear Systems
-'-----

Impulse Response,
h(t)System

Sum h] 1- h2

Constant k 0(11 k o

Delay oCt 'r) e i2'!TW'!T 2rrwT

nth derivative (2"ITlwl)" n Hgn(w)rr/2

u(tl In(w) i/("ITw)1 ID(W) + l!("ITlwIJI sgn(whr/2

Low-pass filter
u(t )/ll Ie tiT

(n - 1)!

Tn
n tan 1(2rrwT)
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IMf'ULSf, RCSPONSE AMPLITUDE IlESrONSE I'IIAS! RCSPONSe
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NUM11I-1101
STAniS, n

,

B

TIME (seconds] FnEOUENCY (herUJ I-TU:OUI-NCY (hertz]

Figure 63. Respons{'s of ,m n-stage low-pass filter with time constant 1" =1. T!le columns show resppctiwly
the impulse response, the amplitude response, <lnd the phase response. Different rows arc for differenL
numbers of stages (Il), dS indic<lted. With increasing stages, the impulse response becomes longer, lower,
mort' syrnrnptrical, and its peak occurs l<ttl..,t' in timp. All the impulse responses have the same intpgr;ll

(area) of 1. The fall ing Iirnb of the ilrnplitudc response has an asymptotic log-log slope of - n. At a given
frequency, the phase response is proportional to n,

3. BASIC THEORETICAL CONCEPTS

'I'hi~ ~ectjon introduces a number of concepts that are used
frequently in discussions of temporal sensitivity.

3.1. Time-Invariant Linear Filter

DefinitionH of linear filters and time invariance arc given in
Section 2. A time-invariant linear filter often plays the role of
the firHt element in models of the pathway between visual stim
ulus and psychophysical response. The filter input is the temporal
wave form of intensity or contrast, and the output is some hy
pothetical internal response. Because the observer's psycho
physical response is usually discrete rather than time varying
(for example, the press of a button), it is necessary to assume
some additional, usually nonlinear process between filter output
and psychophysical response. Several examples arc given here.
The properties of the linear filter inferred from psychophysical
data depend upon the the final response rule assumed.

Temporal models are often expressed in terms of integration
or differentiation with respect to time. These operations may
also be represented as linear filters, as described in Section 2.
Occasionally integration over some epoch T is considered. This

is equivalent to a filter whose impulse response is a rectangle
of height lIT between times 0 and T.

3.2. Threshold Mechanisms

The simplest link between filter output and observer response
is some sort of threshold mechanism. Commonly it is assumed
that an excursion of the response that exceeds some threshold
value leads to a "correct" or "yes, I see it" response from the
observer. Depending on the model in question, the threshold
may be either a fixed property of the detection apparatus or a
statistical criterion, which may be adjusted by the observer to
satisfy certain objectives. Because decrements as well as in
crements can be detected, a threshold for negative excursions
of the filter output must also be assumed.

3.3. Probability Summation Over Time

Both the visual stimulus and the physical mechanisms that
mediate detection are subject to random perturbations. If the
internal response is subject to noise, one cannot be certain which
point in the response, if any, will exceed threshold. Accordingly,
the probability that each point exceeds threshold must be con
sidered.
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A simple treatment of this situation is as follows. Suppose
that a response of some duration may be broken into a sequence
of n brief intervals, and that within each interval the response
is essentially a constant rio Assume the probability that the
response exceeds threshold in interval i, written Pi, is indepen
dent of all other intervals. Assume the signal is detected when~

ever the response in at least one interval exceeds threshold.
The probability of detection will then be

p ,.--, 1
"11 (1 - p;) .

i 1
(36)

be adequate for small signals in a fixed state of adaptation, but
a nonlinear mechanism is required to alter the system properties
with changes in adaptive state. These frequently appear as
feedfOlward or feedback mechanisms that control the parameters
of a linear filter (Fourtes & Hodgkin, 1964).

A third, less frequently considered nonlinearity occurs when
signals may pass through any of several independent detection
pathways. Examples are so-called sustained and transient
pathways. Even if each pathway is linear, the system is non
linear, because signals that travel through different pathways
violate superposition. This notion is considered further in Section
9.4.

Thus for all stimuli at threshold (defined as some fixed value
ofp)

where rj is the value of the internal response within interval
i. Ifthis response is linear, ri is proportional to stimulus strength.
The probability of detection is then

Quantitative predictions of sensitivity from this relation
depend upon the assumed relationship between Pi and the value
of the response rio One convenient and plausible assumption is
that

3.5. Detectors and Channels

It is sometimes useful to consider the collection of element8 up
to and including a threshold device as a single unit, which we
call a detector. A single stimulus may excite many detectors,
and each detector is subject to noise, so a stimulus may from
trial to trial be detected by anyone of a set of detectors. We
call this set of detectors a channel.

When a "high threshold" interpretation of the detection
process is employed, the channel is that set of detectors in which
the response has a nonzero probability of exceeding threshold.
If the observer is viewed as applying a more sophisticated com
putation to the detector outputs, the channel is those detector::;
entering into the computation.

(37)

(38)

1 -1,.-,11Pi = - e I

3.4. Nonlinear Mechanisms

The threshold mechanism and probability summation are ex
amples of nonlinear operations in the chain of events between
stimulus and psychophysical response. Many other nonlinear
elements figure in models of temporal sensitivity. These may
be loosely divided into three types. The fir8t, such as thresholds
and probability 8ummation, are output nonlinearities, lying
between some internal response and the psychophysical response.
Rashbass's early model provides another example. There the
linear response is squared, integrated over some epoch, and
thrcsholded (Rashbass, 1970).

The second sort of nonlinearities are adaptive processes.
Adaptation is inherently nonlinear, because by definition it
violates the principle ofsuperposition. Thus a linear model may

Note that this expression defines the amplitude scale of the
internal response. If the relationship between the stimulus and
the internal response sequence ri is known (for example, if we
know the transfer function of an internal linear filter), then
this expression provides a method of calculating the effects of
probability summation over time.

A f3Uccessful experimental test of predictions from this
analysis was provided by Watson (1979). Additional information
on this subject is contained in Sections 4.2, 5.6, and 6.5.2. Other
theoretical treatments of probability summation are possible.
Nachmia8 (1981) has shown that details of this analysis (in
particular the thre8hold assumption) are probably incorrect.
But this treatment has the virtue ofsimplicity and is undoubtedly
more correct than neglecting probabili.stic effects altogether.

n

1 ~ 2: Iri
j,d

(9)

3.6. labeled Detectors

If an observer is asked to make some judgment about the ap
pearance of stimuli, then the model must contain some mech~

anism for the coding of sensory quality. A simple assumption
is that the response of each detector can be distinguished from
that of all other detectors. Thi8 is called a labeled detector.
Application of this concept is discussed in Section 9.4.1.:-3.

3.7. Fast, Slow, Transient, and Sustained

In the literature on temporal aspects of vision a number of
terms arc used whose meanings are not well defined. '1'0 avoid
confusion, the following clarifications are proposed.

3.7.1. Fast and Slow. The term "fast" has been used to
describe either a rapidly developing response, as might lead to
a brief reaction time, for example, or the system's ability to
follow rapid variation, as reflected in a high fusion frequency.
In a linear system, these two properties may be governed by
two quite different aspects of the system function. For example,
it is quite possible fbr a high fusion frequency to be associated
with a long reaction time, because the latter could be accom
plished by an arbitrary delay that docs not alter the amplitude
response. Unles8 some other meaning is made explicit, it seems
wise to reserve the terms "fast" and "slow" to describe changes
in the time scale ofthe response. In this sense, a faster response
shows both of the effects noted.

3.7.2. Transient and Sustained. These terms were used
originally by Cleland, Dubin, and Levick (1971) to dCHcribe two
cla8ses ofvisual neurons in the cat. The feature ofthe sustained
cell's re.sponse that presumably evoked this label was its sus
tained response to a steady stimulus, wherea8 a transient cell
responded only at onset and offset. Subsequently, the terms
have been applied to a wide range ofphenomena and hypothetical
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where w is temporal frequency in herb: and i ccc Y--l. This
system response can be decomposed into the amplitude responSE

2.) This is the impulse response of a cascade of nl identical low·
pass stages, each with time constant 'T (the low·pass filter is
described in Section 2.10.5). It has been normalized so that it
has unit area. The maximum occurs at 'T(nl - 1) and is equal
to I(n,~ 1)e 1j"1"!T(n, ~ 1)1.

The next component is a second filter identical to the first
except that it has time constant K'T, n2 stages, and is multiplied
by a factor ,. The linear filter of the working model is the
difference of these two filters, multiplied by a factor ~. The
impulse response of the working model is then

The parameter ~ is a sensitivity factor or gain that scales the
impulse response and amplitude response up or down in am·
plitude. The parameter' is the "transience factor." When' is
0, only the first positive component (h l ) remains, and the impulse
response is "sustained" in the sense that the response to a step
input rises to a maximum and stays there indefinitely. When
, is 1, the response is "transient" in the sense that the step
response rises to a peak and then declines and vanishes. Ex·
amples of the impulse response with various transience factors
are shown in Figure 6.4. The system response of the working
model is easily derived by noting that

(43)

(42)

(41)

Hl(w) = (i2'1Tw'T + l)rq

and the phase response

mechanisms, many of which have little to do with the form of
the temporal response. Thus transient mechanisms are fre
quently presumed to be nonlinear and relatively more sensitive
at low spatial frequencies. It scems important, therefore, to
distinguish between the use of these terms as adjectives to
describe a characteristic property ofthe temporal response, and
their use as names of hypothetical mechanisms.

We consider below the evidence for distinct mechanisms
called by these names. Outside of that context, we reserve the
terms to describe a property ofthe temporal response ofa linear
filter. A transient system is onc in which the response to a step
input vanishes beyond some time T. Because the response to a
step is the convolution of step and impulse response, which is
in turn the integral of the impulse response from °to t, it is
evident that a transient impulse response has an integral of°
and is briefer than T. It is simple to show that the amplitude
response of a transient system vanishes at 0 frequency; thus
transience implies attenuation of low frequencies.

The sllstained system response to a step grows monotoni·
cally, eventually reaching an asymptote. Thus the integral of
the impulse response is also monotonic, from which we see that
the impulse response is always ofthe same sign. The amplitude
response of a sustained system is easily shown to have a max
imum at 0 frequency.

Many systems are neither entirely transient nor sustained,
in which case the terms may be used in a relative sense. 'rhus
of two systems, that with the greater attenuation at low fre·
quencies would be described as more transient.

Occasionally the term "transient" is taken to imply a higher
fusion frequency, or higher sensitivity at high temporal fre·
quencies. The definition given here does not include this im·
plication, which docs not in any case ahJTee with the common
sense meaning of the word.

From the linearity of the Fourier transform,

4. A WORKING MODEL OF TEMPORAL
SENSITIVITY

<H,(w) --nl tan-- 1(2'1Tw'T) (44

It is then simple to show that the amplitude response of thE
linear filter of the working model is

Many aspects of temporal sensitivity can be understood in the
context of a working model, which we introduce here. The model
has three important features: (1) a linear filter, (2) probability
summation over time, and (3) asymmetric thresholds for incre~

ments and decrements.
Aspects of the working model have been suggested by nu~

merous authors. The notion ofthe eye as a linear temporal filter
was first developed by Ives (1922) and later in more detail by
de Lange (1952). It has been pursued with hJTeat energy by
Kelly (1961 b) and Roufs (1972b), The idea of probability sum
mation over time has appeared in the work of Blackwell (1963),
Ikeda (1965), Roufs (1974b). and many others, The specific com
putational form used here is given in part by Watson and Nach·
mias (1977), Rashbass (1976). and Watson (1979) and is intro
duced in Section 3.3.

H(w) ~ HH,(w) + (H2(w)l

and the phase,

H 1{IH,lsin<Hl ~ (llhlsin<H2}< =tan --- -
IH1Ieos<H , (IH2 Ieos<H2

(45

(47

4.1. The Linear Filter

The first component in the model is a causal, time·invariant
linear filter with impulse response

h,(t) ~ u(t)IT(nl ~ 1)'1 '(tiT)"1 Ie Ii' , (40)

where u(O is the unit step function. (The impub;e response,
system function, and amplitude response are defined in Section

Examples of the impulse, amplitude, and phase responses 0

the working model are shown in Figure 6.4, along with th(
corresponding impulse responses. Note that when the transienc(
index is 0, the amplitude response reaches a maximum ofunit~

at 0 Hz, whereas when the index is 1, the amplitude responSi
goes to 0 at 0 Hz,

This particular formulation of the impulse response ha:
been chosen because it is a good approximation to empirica
results and for mathematical l:onvenience. For example, thl
degree oflow·frequency attenuation is easily varied by mean:
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TIMF (milliseconds)

[a)
where * indicates convolution. '1'0 compute values ofthe response
it is often necessary to approximate the convolution by a finite
sum,

and mathematically convenient form that we can use to illustrate
the general properties of temporal sensitivity,

The response to an arbitrary input is the convolution of
the input and the impulse response. It is convenient to express
the input contrast wave form C(t) as the product of a normalized
wave form with unit amplitude, j'(t), and a positive constant C
equal to the peak contrast of the wave form. The response is
then

(48)r(t) ~ Cf(t) * h(t)
10050

\;'=1

""n
:J 10r-

"'"" 0

"'
10

0

30-'---

20

where D.t is the time interval between samples and i andj run
over the support ofeach function. The interval D. t must be made
sufficiently small that it can capture the most rapid fluctuations
in the response; calculations in thi.s chapter usc a value of 5
msec.

0.1 r 1
w
0
:J
r-

"'"""' 0.01
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J

(49)

0.1
I--~~~~------,

10

FnFOUENCY (hertz)

(b)

4.2. Probability Summation Over Time

The concept of probability summation over time was introduced
in Section 3. It is described by the following equation, which
states a condition met by all stimuli at threshold:

90-]====:::::----
(50)

(-0

w
en

"'I

'"

-200

-400

where ri is the value of the response in time interval i and f3 is
the slope of the psychometric function. Combining Eqs. (49)
and (50), and rearranging terms so as to leave us with an
expression for the contrast at threshold, we get

(51)

of the transience parameter, the horizontal scale is easily con
trolled by the time constant T, and the slope ofthe high-frequency
limb can be controlled by means of K, nI, and n2. By suitable
choice of these five parameters, a version of this filter can be
found that agrees reasonably well with empirical results, This
agreement i.s illustrated in Figure 6,5. Other models might fit
these data equally well. The purpose here is to find a realistic

FREQUENCY (hertz)

[e)

Figure 6.4. rhe linear filter of a working model of human temporal sensitivity.
(a) Impulse responses. (bj Amplitude responses. (c) PhJ.se responses. Responses

ilre shown for tht' two extreme values of the transience parameter, s = 0
;md , I. The other parampters of the filter arc time constant T "" 4.94
msec, time constant ratio K '"" 133, number of stages in excitatory mechanism
III 9 and in inhibitory mechanism n2 = 10, and sensitivity ~ 1. The
time constilnts and nurnl)('r of stilges ilfC roughly appropriate for il human
obsprver at high background luminance.

-600
0.1 10

This equation predicts threshold for an arbitrary temporal wave
form, given the parameters of the model. Note that the com
parisons between model and data shown in Figure 6.5 do not
take probability summation into account. In the experiments
involved, the duration of the stimulus was not controlled so
that a calculation of Eq. (51) cannot be performed. Had prob
ability summation been included, the sensitivity factor Swould
be reduced by a small amount.

4.3. Asymmetric Thresholds

It has been assumed thus far that the model is equally sensitive
to positive and negative excursions of the response; the absolute
value operation in Eq. (51) ensures that positive and negative
response values contribute equally to the probability ofdetection.
Under many circumstances, this is an accurate assumption. In
other case.s, the system is more sensitive to decrements than
to increments (sec Section 8). This situation is incorporated
into the worki ng model by assuming a higher threshold for
increments than for decrements. Computationally, it is done
by weighting positive increments by a parameter p. Then we
can replace Eq. (50) by
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Figure 6.5. Tcmporill contrast sensitivity functions of the working model (curves) ilnd of human observers
(points). All thresholds collected by method of adjustment. Standard deviations probably about 0.05 log
unit. Curves are the amplitude response of the Iinear filter (If the working model, with parilmeters ildjusted
to apPl"Oximatcly miltch tlw (bta. Model parameters common to illl curves: K = 133, nl = 9, Ill. = 10.
(a) Data from de lange (19SB), observer V, r disk, background and surround 1000 td, Model parameters:
"T = 4.3 msec, , = 0.9, ( = 269. (b) Data from R.obson (1966), 0.1 cyclcs·dcgree- 1 grating, background
and surround 20 cd-ml. (=200 td). Model parameters:"T = 6.22 mscc, S O.Y, ~ = 214. (c) Dilta from
Roufs and Blommacrt (19tl"I), observer JAJR., 10 disk, background 1200 td, no surround. Model parameters:
1" = 4.94 msec, {= 1, (= 200.
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,5. SENSITIVITY TO SINUSOIDS

5.1. Background

4.4. Summary of Parameters of the Working Model

average background intensity (the Ferry-Porter law: Ferry, 1892;
Porter, 1902), and a fused stimulus was found to be as bright
as a steady stimulus of the same time-average intensity (the
Talbolt-Plateau law). The first law is only approximate (as can
be seen in Figure 6.28 in Section 11), and has been amended
by Kelly (1964).

In the early 1950s, and culminating in his papers of 1.954
and 1958, de Lange developed a novel approach that so altered
the experimental and theoretical perspective on this problem
that much of the earlier work was rendered obsolete (de Lange
1954,1958). Three aspects of de Lange's work were remarkable.
First, he provided independent control of backf.,J'yound and target
luminance. In previous experiments in which the light alternated
only between on and off, a change in the amplitude of the wave
form inevitably resulted in a change in the time-average back
ground intensity, and consequently in the adaptive state of the
eye. Dc Lange adopted a procedure whereby wave form amplitude
might be changed without alteration of the time-average back
ground. This in turn allowed production of wave forms with
equal time-average background, but differing contrast.

This technical innovation paved the way for de Lange's
second advance. By generating a wave form of unit contrast
and adjusting frequency until flicker gave way to fusion, he
could measure the conventional CFF. But by setting contrast
to values less than unity and repeating the procedure, he could
also measure the more complete function relating fusion fre
quency to contrast. Several examples of this function, obtained
with various wave forms on various backgrounds, are shown
in Figure 6.6.

De Lange's third and most important innovation was his
use of linear systems theory to provide a coherent interpretation
of data like those in Figure 6.6. To illustrate his approach,
consider the uppermost wave form in the inset to Figure 6.6.
It is reproduced in Figure 6.7, along with its amplitude spectrum,
the function specifying the amplitudes of sinusoids into which
the wave form may be decomposed. In the case of the 10-Hz
square wave illustrated here, the spectrum contains odd har
monics of frequencies 10, 30, and 50 Hz, and so on, with am
plitudes ofI(4hr), /(4/3,,), /(4/5,,), and so on.

(52)
ri ~~ ()

ri < ()

Although they appear to give off a steady, constant illumination,
many light sources in our world (fluorescent lamps, television,
and movies are commonplace examples) in fact produce an
amount of light that varies rapidly in time. The effort to un
derstand this insensitivity of the eye to rapid fluctuations has
generated a prodigious amount of research, a great deal of it
concerned with the critical flicker frequency (CFF) for periodic
wave forms. A periodic wave form, of which the examples given
are instances, repeats itself once each period of T sec. Limited
means of controlling light intensity confined early studies to
wave forms alternating between "on" and "off" By increasing
the frequency of alternation, a light could be made to pass from
"flicker" (perceptible variation in intensity) to "fusion" (steady
appearance of a fluctuating light). The CFF marked the border
between flicker and fusion. These early experiments were con
cerned primarily with the eHects of wave form (the particular
shape of the function during one period), with the wave form
amplitude, and with the brightness of a periodic stimulus beyond
the fusion limit. Some progress was made on the latter two
issues: CFF was found to rise linearly with the log of time-

The eight parameters ofthe working model arc the time constant
T, the ratio of time constants 1(, the stage numben; nj and nz,
the sensitivity factor~, the transience factor S, the exponent 13,
and the asymmetry factor p.

When p = 0, only negative excursions arc effective; when p
1, positive and negative excursions are equally effective; and
when p > 1, positive excursions are more effective than negative.
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Figure 6.6. Contrilst sensitivity for spwral IX)riodic wave forms as ,) function
of h'lllporal frequcilcy. The wave forms ilrP shown in the inset. Sensitivity
is plotte(j as the. inverse of the (:ontrast of the fundampntal sinusoid,ll component
in each wave form. Thresholds ,He the same for all wave forms abovpj 0
liz, as predicted by d lirH'iJr model. Tdrget was a 2° fowal disk with a large
sUInJund. Data for thn't' background luminances are shown. (horn H.
de lunge, Relationship between critic(ll flicker" frpqucncy and a sH of low
frpquetlcy Ch,H,H:tpristics of the eye, Journal of the Optical Society of Amt-'rica,
19S4, 44. RqHinlpd with permission.)

If the visual system responds linearly to perturbations near
the threshold of visibility, then its behavior can be characterized
by a transf(~r {unctioN, specifying the amplitude and phase with
which various frequencies are passed through the system (see
Section 2). Suppose that the amplitude component of this function
is given by the curves in Figure 6.6, at least above 10 Hz. To
determine the amplitude spectrum of the response to a square
wave of 10 II7., we simply multiply the input spectrum by the
function describing de Lange's data. The result, shown in Fib'Ure
6.7, is very nearly a pure sinusoid of10 Hz. The higher harmonics
have been almost entirely filtered out. rrhis suggests that at 10
117. the contrast threshold for a square wave should be the same
as that for a sinusoid of equal fundamental amplitude. This
rule should hold even more precisely for frequencies above 10
Hz, because the higher harmonics will be still more severely
attenuated.

This rule also applies to any periodic wave form in which
the higher harmonics, after multiplication by the amplitude
response function, are much smaller than the fundamental.
This includes most simple periodic wave forms with funda
mentals above 10 th. The various symbols in Figure 6.6 show
the success of this analysis. Thresholds for all four wave forms
used by de Lange fall upon a common curve above 10Hz, as
the linear hypothesis predicts.

The first consequence of this observation was to bring to
an end more than a century of investigation of wave form per
sc as a determinant of sensitivity. Beyond those experiments
required to document the premise oflinearity, empirical mea-
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surements of sensitivity to various wave forms were no longer
required. The second consequence was to initiate a quarter cen
tury of vigorous pursuit of the many ramifications of the linear
theory. A third consequence was to confer special status (perhaps
too special) upon the sinusoid as a temporal stimulus. The fol
lowing section reviews some of the fundamental aspects of
thresholds for sinusoidal modulation. Table 6.2 notes some of
the more important contributions in this area. An interesting
view of the subject of "flicker" at an early and active stage in
its development is given by the symposium papers in Henkes
and van der Tweel (1964), The classic review is by Kelly (1972b),

5.2. The Temporal Contrast Sensitivity Function

When the contrast of a target is varied sinusoidally at some
frequency, sufficiently small amplitudes are invisible; that is,
they are not distinguishable from a target with zero contrast.
The oscillation is said to have "fused." As the amplitude is
raised, the target may become visible. The transition to visibility
is called the contrast threshold, and its inverse, contrast sen
sitivity. A plot ofcontrast sensitivity versus temporal frequency
is called a temporal contrast sensitivity function (TCSF).

In the experiments shown in Figure 6.6, de Lange was
unable to generate true sinusoids, although his trapezoidal wave
form waH quite close. In 1958, however, he published extensive
measurements of the TCSF for two observers at a number of
background intensities. Some of these classic results are re
produced in Figure 6.8. They illustrate several general features
of the TCSY At the higher luminances, a peak in sensitivity
of about 200 (a threshold contrast of about 0.0(5) occurs at
about 8 Hz. Above this frequency, sensitivity falls precipitously.
Inlog-Iog coordinates, the curve appears to accelerate downward.
For a sinusoid, the CFF is the highest frequency at which contrast
sensitivity is equal to 1. Following the curve downward, the
CFF is reached at a frequency of betwecn 50 and 70 1.1,7.. Sen
sitivity also declines at low frequencies, but the drop is less
rapid and stops at a sensitivity of about 50.

It should be emphasized that the TCSF is not a single in
variant function. Hather, the form of the TCSF is subject to
large alterations, depending primarily upon the background
intensity, the spatial configuration of target and surround, the
observer, and the method by which the thresholds are obtained.
Several authors have noted that the TCSF may be viewed as a
slice through a many-dimensioned surface (Kelly, 1972a;
Koenderink & van Doorn, 1979). This perspective is often useful
in appreciating the interaction between temporal frequency
and some other variable, but is obviously limited to two variables
at a time.

Before considering the many variations to which the TCSF
is subject, it may be worth noting certain general properties of
these effects. First, many experimental manipulations appear
to have different consequences for those frequencies above the
right-hand shoulder of the curve and for those below it. In the
traditional log-log coordinates that we use, the high-frequency
limb tends only to translate horizontally or vertically. These
motions correspond to scaling operations on frequency or sen
sitivity (equivalent to changes in the time scale 1" and sensitivity
parameter ~ of the working model). Effects on the low-frequency
limb of the curve are morc complex, but generally consist of
changes in the degree to which the curve dropH at low frequencies
(equivalent to changes in the transience parameter' of the
working model). These are simplifications, and should not blind
the reader to more subtle features ofthe TCSF'. They arc meant
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Figure 6.7. I\n t'xplanalion of why thresholds for a square wave and il sitlP W(lW arp equal at high
!pmporal freqU(:'tKics. (a) lhe square wave of frequency 10Hz and intensity I. (bl The amplitude spectrum
of the square wave. The height of each impulse indicates the intensity of the component at the corrpsponding
temporal frequency. The impulse at 10 Hz is the fundamental. Also shown is the amplitude response of
a hypothdjCll litH'ar filter, adapted from de Lange's dal;) in figure 6.6. (c) Thp result of multiplying the
ilmplitude spectrum of the square WilVP by the amplitude response of the filter. Only the fundamcnl<ll
r('mains, hence thresholds for tht' square wave and its fundarnental are the sarne.

only to help guide the eye over the results in the following
sections.

5.3. The Working Model

'1'0 predict empirical thresholds for sinusoidal wave forms from
the working model we must know the duration of each stimulus,
because probability summation over time causes threshold to
decline for as long as the stimulus is exposed. However, when
thresholds are collected by method of adjustment (as has most
often been the case for sinusoidal wave forms), the duration is
unspecified. But if we assume that probability summation over
time affects all frequencies equally, then we can compare the
amplitude response of the linear filter of the model directly to
the empirical 'feSF. This is done for three selected data sets in
Figure 6.5 in Section 4. The figure illustrates that the model
gives a good account of the TCSF under these conditions. The
changes in model parameters in the three cases are small and
confined to the overall sensitivity C the time constant 7, and
the transience ,. These changes arc due to differences in back
f,J'T(JUnd intensity and spatial configuration. Larger changes in

spatial configuration often produce more substantial changes
in model parameters.

5.4. Effects of Spatial Configuration

The eUects of spatial configuration upon temporal sensitivity
are dealt with in Section 9. A summary of those effects is that
the form of the high-frequency limb of the TCSF is largely
unaffected by spatial configuration, but that the low-frequency
limb is raised by the presence of edges, high spatial frequencies,
or a surround. Taken together, these results are consistent with
the idea that effective high spatial frequencies in the stimulus
result in a more "sustained" 'rCSF. This effect is lessened at
low background intensities, all spatial targets then giving a
more or less "sustained" result.

5.5. Effects of Background Intensity

This subject is examined in detail in Section 11. In general, as
background intensity is raised, luminance thresholds increase.
However, the increase is less rapid at high temporal frequencies
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Table 6.2. Selected Studies of Sinusoidal Flicker

Reference Spatial Stimulus Variables

de Lange, 1954 2° disk with Wave form,
surround background

intensity
de Lange, 1958 20 disk with Background

surround intensity
Kelly, 1959 2, 4, 60° disks Target size,

with & w/o surround
surround

Kelly, 1961 a 60" disk, blurred Background
edges intensity

Robson, 1966 Sinusoidal Spatial
grating frequency

van Nes, Drifting grating Background
Koenderink, Nas, surround intensity,
& Bouman, 1967 threshold

criteria
Keesey, 1972 1" x 4 min bar, Threshold

surround criteria
Kelly, 1972a Sinusoidal Spatial

gratings frequency,
background
intensity

Roufs, 1972a 10 disk Background
with & w/o intensity
surround

Kulikowski & Sinusoidal Threshold
Tolhurst, 1973 gratings criteria,

spatial
frequency

Roufs, 1974b 1" disk wlo Duration
surround

Koenderink, Sinusoidal Eccentricity,
Bouman, grating background
Bueno de Mesquita, no surround intensity
& Slappendel, 1978
Koenderink & Sinusoidal Spatial
van Doorn, 1979 gratings frequency
Watson, 1979 Sinusoidal Duration

gratings
Virsu, Rovamo, Patch of grating Eccentricity,
Laurinen, & spatial
Nasanen, 1982 frequency

than at low. Expressed in contrast terms, sensitivity increases
more rapidly at high temporal frequencies than at low as the
background is raised. As a consequence, the low-frequency limb
of the TCSF drops as backhJTound intensity is increased, as
shown by de Lange's data in Figure 6.5. This figure also shows
that raising backbJTound intensity also shifts the TCSF to higher
frequencies. In terms of the working model, these two effects
can be accommodated by lowering the time constant T and in
creasing the transience Sas background intensity is raised.

5.6. Effects of Duration

lfthe duration of a sinusoidal wave form is brief, its spectrum
extends above and below its nominal frequency, and sensitivity
depends in a complex way upon frequency, duration, and the
TCSF. Similarly, ifthe onset and offset of the sinusoid are abrupt,
higher frequencies are introduced that may influence sensitivity.
If the duration is substantial (greater than 100 msec) and if

the onset and offset are gradual, these problems are largely
eliminated, yet duration still has a small but significant effect
upon sensitivity. When a gradual onset and offset are accom
plished by means of a Gaussian gating function, sensitivity
increases approximately as the V4 power of duration (Watson,
1979), Roufs (1974b), using a slightly different gating function,
has obtained comparable results.

Roufs (1974b) and Watson (1979), using somewhat different
assumptions, have shown that this is predicted by probability
summation over time (see Sections 3.3 and 4.2). In essence,
each moment of the presentation provides an independent op~

portunity to detect the stimulus; as the duration is extended,
the number of opportunities hJTOWS, and the overall probability
of detection is increased. In Watson's formulation, sensitivity
should increase with duration at a log~log slope of 1/13, where
j3 is the slope of the psychometric function. The observed slope
of 1/<\ corresponds well to observed psychometric function slopes
of about 4 for these conditions (Watson, 1979).



5.7 . Effect of Eccentricity

5.9. Effect of Eye Movements

In his 1958 report, de Lange noted a diflcrence in the nature
of the flicker perception depending on "frequency." 'l'his obser
vation has been echoed by many subsequent authors: at high
temporal frequencies, stimuli near threshold appear to "flicker,"
whereas at low temporal frequencies the percept is of a more
gradual variation (aptly termed "swell" by Houfs, 1972a). When
an adjustment method is used, it may be difficult to equate
criteria in the two frequency ranges.

Van Nes, Koenderink, Nas, and Bouman (1967) made a
further distinction. With drifting gratings as targets, they re
ported that as contrast was reduced, the spatial variations in
brightness disappeared before temporal variations, so that sep
arate "flicker" and "pattern" thresholds could be observed.
Similar suggestions were made by Rashbass (1968), Watanabe,
Mori, Nagata, and Hiwatashi (1968), Pantle (1970), and Richards
(1971).

Keesey (1972), noting a similar distinction amongjud/.-,rments
for a narrow bar whose contrast was modulated sinusoidally in
time, measured each ofthe two thresholds separately at temporal
frequenchls between 0.4 and ao 117.. The two temporal sensitivity
functions did not diflcr by a constant factor, and the flicker
threshold was not invariably below the pattern threshold.

With grating targets of various spatial frequencies, Kuli
kowski and Tolhurst (1973) obtained temporal sensitivity func
tions using both flicker and pattern criteria (see Fig. 6.24 in
Section 9). In agreement with Keesey's data, flicker sensitivity
declines at low temporal frequencies, but pattern sensitivity
does not. The two curves intersect at an intermediate temporal
frequency, so that at high temporal frequencies, flicker sensi
tivity is /-,rreater than pattern, whereas at low temporal fre
quencies the reverse is true. Their interpretation was essentially
that of Keesey: each criterion was attributed to a different
mechanism, as though the two curves described the temporal
contrast sensitivities of distinct flicker and pattern detectors.
As further evidence for this idea, they noted that the two curves
moved independently with changes in spatial frequency. An
increase in spatial frequency lowered the sensitivity curve of
the flicker mechanism much more than it lowered the curve of
the pattern mechanism.

By analogy to retinal cells of the same name (Cleland et
al., 1971), and because the Hickel' curve showed low-frequency
attenuation whereas the pattern curve did not, these two sorts
of detectors were called transient and sustained mechanisms,
respectively. Section 9.4 contains a review of the theory of sus
tained and transient detectors.

BASIC SENSORY PROCESSES I

When a stimulus contains both temporal and spatial variations,
movements of the eye influence the temporal distribution of
the stimulus. The TCSF is ordinarily measured with the eye
fixating a mark, but it is well known that various eye movements
occur during fixation (Riggs, Armington, & Ratliff, 1954).

5.8. Effect of Threshold Criteria

cessing is homogeneous across the retina except for a change
in spatial scale. They also found that this result held equally
well at temporal frequencies of 0, 1,4, and 18117;. This strongly
suggests that the temporal processing is also homogeneous across
the retina. In this view, the variations in temporal behavior
with eccentricity reported elsewher(-) are consequences of the
change of spatial scale, rather than of temporal processing.

"
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Rather little is known about how the TCSF depends upon the
location of the target within the visual field. Sharpe (1974)
measured temporal contrast sensitivity for f,'Tatings of 0.8, 1.5,
:3.5, and 5.5 cycles' degree J, centered 10° into the left temporal
visual field, drifting at various velocities. His results resemble
those of Robson (1966) (Figure 6.20 in Section 9) in showing
mOTe transience at low spatial frequencies. Apart from the ex
pected decline in spatial resolution, there is little systematic
change from the foveal results.

Koenderink, Bouman, Bueno de Mesquita, and Slappendel
(1978) have published results that show little variation in the
shape of the TCSF when measured with a 0.5 x 0.5°, 4
cycles' degree J f,'Tating target with dark surround at locations
of 1, 2, 4, 6, and 8". With a 4 x 4°,0.5 cycles' degree J target,
slightly more relative attenuation is evident at the fovea than
at locations of 6, 12, 21, 32, and 50°. The lack of surround and
small target si:.-;e (2 cycles of the grating) make these results
somewhat difIicult to compare to other data.

One recent result suggests that the temporal properties of
the retina arc homogeneous, and that all variations with ec
centricity are due to spatial inhomogeneity. Virsu, Rovamo,
Laurinen, and Nasanen (1982) found that sensitivity to foveal
targets was approximately the same as that to peripheral targets
that had been magnified so as to occupy an equal cortical pro
jection area. This is consistent with the idea that spatial pro-
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Figure 6.11. rhe temporal contrast sensitivity function at several background

intensities. rfH' jf'mporal wavp form WdS sinusoidal; target was a 2° disk
with d large surround, Curves art' drawn by ('yt>, On il bright background,
sensitivity increases with temporal frequency from about .10 to a peak of
dbollt 200 al around Il liz, then falls to <l CIT of about f)O Hz. The ordinate
is {'x!f'ndcd to sCllsitivilics of 0,'1 (contrast = 2.0) because although sinusoids
with contrast of 2.U Ci.ltlnot be constructed, W;lW forms with il fundamental
this large can be product'd (data from observer V of de Lang<',19SB).
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0.9

are equally effective; when p = 0, only negative excursion~are
effective. Recall that probability summation may be modeled
with f3 = 3.5, and the absence of probability summation with
f3 = 50. Some predictions of this model arc shown in Figure
6.9. The data seem to refute any version that lacks probability
summation, both because they show too little summation (the
prediction is generally below the data), and because the data
show only a modest dependence on phase. Likewise the data
rQjeet a model with probability summation but with no asym
metry, because it predicts no dependence upon phase. The data
seem reasonably well fitted by the probability summation model
if p is set to 0.65 and a pha~e difIercnce of about 45° is assumed
between 20 and 10 Hz. The curve must also be displaced upward
by about 1 standard deviation, as might occur if the normalizing
threshold for the single component were overestimated by thi~

much.
A threshold asymmetry might be encouraged byLevinson'~

adjustment method. For example, the observer might adjust
until a certain criterion darkness was seen, and ignore thE
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Figure 6.9. Threshold for the sum of two diffen'nt t{'mpmal fn'qLll'ncies as
a function of the ph<lse diffelHlce between the two components. (a) Data
from J. Z. Levinson (1960). The frequencies wen'! () ;ltld 20 liz, ;ltld the
contrast of each component was an equill fraction of its threshold. The phase
difference is the lag of the high-frequency componenl.lhresholds arc plotted
as fractions of the single-component thresholds (sensiltion m;lgnitud{'s). Thp
smooth curve is the fit of the wmking modt,1 with a threshold asymmetry
factor (p) of CHiS, a ~ of :1.5, and a phase difference between component
responses of about 45°. Thp curve has also been shifted upward by 0.05. (b)
['redictions of the working model for various values of f3 and p. i\ 13 of 3.5
simulates probability summation; a value of 50 simulates no probability
summation. A p value of 0 means that positiv{-' exuHsions of tht~ filter output
arc invisible; a value ofl me,ms thdt positive and negative excursions arc
equally effective. The model fits best whetlthe phase responst' at 10 liz is
about 45° greater than that at 20 liz, when tht'!'P is proll,lbility summation,
and when decrements in tlw filtpr rt-'sponsp an' considerdbly mon' effective

than increments.
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Much of the theoretical value of the TCSF rests upon the as~

sumption that thresholds are governed by a linear filtering
process. One possible test of this assumption is to examine
thresholds for combinations of several frequencies. A nonlin
earity of particular interest is that introduced by multiple in
dependent channels selective for temporal frequency. Summation
between difIerent frequencies is an appropriate test for the ex~

istence of such pathways. However, we shall see that the pre
dictions of the linear model in this context depend rather strongly
on the nature of the assumed output nonlinearity.

J. Z. Levinson (1960) measured thresholds for compound
wave forms made by adding together sinusoids of 10 and 20,
or 20 and 40 117,. The two components had "equal sensation
levels"; that is, each was added in proportion to its individual
threshold. The wave forms controlled the contrast of a 1CI disk
target (background '-= 685 cd'm 2, surround ---, 130 cd·m 2).

Levinson noted that threshold for the compound, expressed as
fraction of threshold for either component alone, varied according
to the relative phase ofthe two components, as shown in Figure
6.9. Levinson pointed out that the compound wave form inverts
itself with every 180Cl change in relative phase, but the threshold
minima occur only every 36W. He suggested that this might
be explained by a detector with a higher threshold for excursions
of one sign than of the other, and demonstrated the principle
with an analog model (J. Z. Levinson & Harmon, 1961).

Asymmetric thresholds can be introduced into the working
model by weighting positive excursions by a factor p, as noted
in Section 4.3. When p - 1, positive and negative excursions

5.10. Combinations of Frequencies

Therefore the cilect of these fixational eye movements upon the
'rCSF must be considered,

One method of assessing the effects of eye movements is
to remove them by stabilizing the image upon the retina. Kelly
(1979) and Tulunay-Keesey and Jones (1980) have shown that
prolonged viewing ofhigh~contrast,stationary, stabilized grat
ings leads to very large reductions in sensitivity. This reduction
may be 1 log unit or more at the lower spatial frequencies. It
appears that theBe conditions give rise to a strong afterimage,
which profoundly alters the properties ofthc contrast-detecting
mechanisms (Burbeck & Kelly, 1982; Kelly, 1982).

However, when brief (7-sec) presentations at contrasts near
to threshold are used, the diflcrcnce between stabilized and
unstabilized thresholds is always less than 0.3 log units (Tu
lunay-Keesey & ,Jones, 1980; Tulunay-Keesey, 1982). These
differences were obtained with a temporal presentation (Gaus
sian with duration of 7 sec) that is essentially a measure of
sensitivity to 0 Hz. Because we would expect higher temporal
frequencies to reduce the difference between stabilized and un
stabilized thresholds, we may conjecture that the TCSF measured
with brief, fixated, unstabilized presentations of near-threshold
contrast would differ from the equivalent stabilized data by
less than 0.3 log units. This would imply that the TCSF is
adequately measured with unstabilized viewing. But, remark
ably, no data have been published that directly compare sta
bilized and unstabilized TCS,Fs under these conditions. Kelly
(1977) has published comparisons of stabilized and unstabilized
TCSFs, but these thresholds were collected following prolonged
viewing (and hence adaptation), and thus do not reflect purely
the contribution of fixational eye movements to the TCSF.
Nevertheless, they show that most of the effect of stabilization
is absent when the temporal frequency is 0.1 Hz or above.
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6. SENSITIVITY TO RECTANGULAR PULSES

A rectangular pulse target with duration T may be written

6.1. Background

with other results (Watson, 1979), but is a special case of a
more general model (essentially the working model of Section
4).

Kelly (1969a) has proposed a diffusion model that gives a
good account of the high-frequency asymptote of the TCSF col
lected at various backf:,'lound intensities (see Fig. 6.29 in Section
11.4). More recently Kelly and Wilson (1978) have partitioned
this diffusion process into two stages, which they attribute to
first- and second-order neurons. The diffusion process describes
only the high-frequency portion of the TCSF. To account for
the low-frequency performance Kelly (1971 a, 1971b) has ap
pended an inhibitory feedback loop whose parameters are con
trolled by the background intensity and spatial configuration.

Noting that certain pulse and pulse-pair thresholds call
for more low-frequency attenuation than is evident in the TCS~~

Raul's (1974a) has proposed that the TCSF is the envelope of
two underlying functions, one band pass and sensitive to middle
and high frequencies, the other low pass and sensitive only at
the lower frequencies. Though based on quite different evidence,
this theory closely resembles Kulikowski and Tolhurst's (197:)
conjecture of separate "transient" and "sustained" channels
(see Section 9.4). The two sets of authors agree in attributing
distinct threshold sensations ("agitation" and "swell" in Roufs'
terms) to the two filters.

(53)u(t - T)]I(t) ~ [PT(t) ~ [[u(t)

where PT(t) is a pulse of unit height and duration T that starts
at t ,.,., 0, I is the intensity of the pulse, and u(t) is the unit step
function. The pulse has a value of I within the interval (0, '1')
and a value of 0 elsewhere (see Figs. 6.2 and 6.10). Dividing
l(t) by the background intensity I H gives the target contrast
wave form C(t). Experimental studies of sensitivity to pulses
typically consist of measuring threshold intensity at various
durations. A plot of threshold as a function of duration, con
ventionally on log-log coordinates, is called a threshold-duration
junction.

There have been numerous studies of this function since
Bloch (1885). In most of the classical work, targets were circular
disks, and principal variables investigated were stimulus size
and backh'lound intensity. More recently, motivated by evidence
that contrast detectors are selective for spatial frequency (see
Chapter 7 by Olzak and Thomas), spatial grating targets have
also been used.

In early work the threshold-duration function was explained
largely in terms of "temporal summation," or integration over
some interval of time. More recent explanations appeal to the
integrative properties of a more general class of linear filters.
Recognition of the stochastic nature of the detection process
has led to additional improvements in our understanding of
the threshold-duration function, particularly for pulses of long
duration. Table 6.3 summarizes some of the published studies,
indicating the spatial configuration of the target and the prin
cipal variables investigated.

Landis (1953) provides an annotated bibliography of the pro
fusion of experimental work, and some theory, done on periodic
wave forms of various kinds during the years 1740-1952, The
earliest explicit model of flicker sensitivity was given by Ives
(1922), who proposed a log transform followed by diffusion, leaky
transmission, and peak detection, De Lange (1952, 1954, 1958)
explicitly introduced the application of Linear Systems Theory
to temporal sensitivity, and showed how treating the eye as a
linear Iilter could rationalize the great mass of data on flickering
periodic wave forms, He also argued that the Talbolt-Plateau
law (brightness above fusion is equal to time-average brightness)
implied that any nonlinear elements should follow rather than
precede the linear Iilter. His model of the filter consisted of 10
resistance~capacitance filters in cascade (see Section 2.10.5),
together with an induction element to attenuate at low fre
quencies. J. Z. Levinson (1966) has noted that the n low-pass
stages in de Lange's model are mimicked by a one-stage sta
tistical process, so the n-stage model need not imply n physical
stages.

Kelly (1961b) proposed a two-stage model to account for
the pronounced attenuation at low frequencies found with large
targets, and the effects of light adaptation. The first stage is a
linear filter with both differentiating and integrating compo
nents. The second stage is a "pulse encoder" that acts as a
nonlinear low-pass filter whose bandwidth is controlled by the
background luminance.

Fourtes and Hodgkin (1964) noted that changes in back
h'lound intensity have a much greater effect on sensitivity than
upon the CFF (see Fig. 6.30 in Section 11.4). They observed
that this was consistent with an n-stage low-pass filter with
time constant 'f, because sensitivity is proportional to 'fnt,

whereas CFF varies in inverse proportion to 'f. They extended
de l ..ange's model to a range of background intensities by in
troducing feedback stages controlling the time constants in each
stage. Sperling and Sondhi (1968) and Matin (1968) have pro
posed more elaborate but similar models.

Departing from the custom of following the linear filter
with a simple threshold mechanism, Rashbass (1970) pro
posed that the filter output was squared and integrated over
an epoch of about 200 msec, and that this signal was then
thresholdcd. Subsequent work has shown that this model, though
an elegant solution to the problem it addressed, is not consistent

bright phases. It would certainly be of interest to repeat these
experiments with a forccd~choice method, both to reexamine
the evidence for threshold asymmetry, and because they may
constitute the only known method of estimating the phase re
sponse of the linear model.

Using spatially sinusoidal grating targets, Watson (1977)
examined thresholds for combinations ofa wide range oftemporal
frequencies. The general finding was that for spatial frequencies
01'2,4, and 10 cyclcsodcgree- 1 and temporal frequencies of be
tween '1 and 20 H7., with pairs separated by as much as 8 Hz,
only modest departures were observed from the predictions of
a linear model with probability summation. The departures
were never of the size predicted by narrow band (less than 8
Hz) temporal frequency tuned channels, The data, however,
could not rule out the existence of two independent pathways,
one moderately selective for high temporal frequencies, the
other moderately selective for low,

5.11. Theory
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Table 6.3. Selected Studies of Sensitivity to Pulses

Reference Spatial Target Variables

Arend, 1976
Barlow, 1958
Baumgardt & Hillmann, 1961
Bouman, 1950
Breitmeyer & Ganz, 1977
Brindley, 1952
C. H. Graham & Kemp, 1938

C. H. Graham
& Margaria, 1935
Herrick, 1956
Keller, 1941
Krauskopf & MolIon, 1971

Legge, 1978
Nachmias, 1967
Owen, 1972
Rashbass, 1970
Raufs, 1972a
Schober & Rilz, 1965
Tolhurst, 1975a
Tulunay-Keese.y
& Jones, 1976

Sine grating
Foveal disk
Peripheral disk
Peripheral disk
Sine grating
Foveal disk
Foveal
hemidisk
Peripheral disk

Foveal disk
1° hemidisk
Foveal disk

Sine grating
Square grating
Peripheral disk
17° foveal disk
l<~oveal disk
Square grating
Sine grating
Sine grating

Size, background intensity
Size
Size, background intensity
Spatial frequency
brief durations
Background intensity

Size

Background intensity
Background intensity
Background intensity,
background wavelength
Spatial frequency
Spatial frequency
Size, background intensity

Si:w, background intensity
Spatial frequency
Spatial frequency
Stabilization,
spatial frequency

6.2. The Threshold-Duration Function

A classical formula relating sensitivity to duration is that, where
conditions are otherwise fixed, a pulse briefer than some critical
duration will be at threshold when the product of its duration
and intensity (the product of contrast and background intensity)
equals a constant. This is Bloch's law (Bloch, 1885). In units of
intensity it may be written

(54)

intensities ranging from 0 to 6500 td (Arend, 1976; Barlow,
1958; Herrick, 1956; Rashbass, 1970; Roufs, 1972a). Brindley
(1952) has shown that the range extends down to at least 400
nsec. rrhere are several reports of initial slopes more gradual
than prescribed by Bloch's law, but it seems most likely that
they arise from the ambiguities inherent in fitting straight
lines to a function whose slope changes gradually (l..egge, 1978;
Nachmias, 1967; Owen, 1972), If the fitting is confined to du
rations less than 20 msec, then there are no publi::;hed instances

where 1'(' is the critical duration and If: is the critical intensity
given by the threshold intensity at the critical duration. For
pulses longer than the critical duration, the classical formula
states that threshold amplitude is constant,

By dividing target intensity by background intensity, these
rules can be restated in terms of contrast, C1' = Cc 1'/: below
the critical duration, and C = Cc above it.

These rules are sketched in Figure 6.10. In log-log coor
dinates, Bloch's law IEq. (54) I describes a line with a slope of
-1. The second formula [Eq. (55)1 is described by a hori7.0ntal
line, These arc the "two limbs" ofthe threshold-duration function.
Actual data rarely conform precisely to this template, but it
nevertheless serves as a useful model from which departures
are readily described.

There seems little doubt that whatever the other dimensions
of the stimulus and whatever the background conditions, there
exists a critical duration below which Bloch's law is upheld.
Such a range has been demonstrated for foveal and peripheral
viewing, for disk targets with radii from 0.0059 to 17°, for targets
with and without a surrounding background, for sinusoidal
f.,'Tatings between 0,3 and 10 cycles·def.,'Tee· 1 and for background

- - - - - - - - -"-----------i
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FiKurc 6.10. An idealized threshold-duri1tinn function. The (unction dt'scribl"
thresholds for rectangular pulses as ,1 function of duration. In log-log coor
dinates, the left limb of the curvP has a slope of-I (Bloch's lilw); the righ
limb has a slope of O. The transition between the two limbs occurs at th(
critical duration Tc and the critical intensity 1(. The inset shows tlw W<lV(

form of a rectangular pulse with duration T and intensity I.

(55)for l' > Te .
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of a Rignificant violation of Bloch's law. As will be discussed,
there are theoretical reasons for expecting reciprocity between
amplitude and duration for some range of brief durations.

Outside of Bloch's regime, thresholds decline less rapidly
with increasing duration. There is considerable variety in the
actual pattern of decline, but two general trends are evident.
For relatively large or low spatial frequency targets, there is a
rapid transition to a slope ufO, consistent with Eq. (55), indicating
a threshold that is independent of duration. This pattern is
evident in Barlow's data shown in Figure 6.11, as well as in
Herrick's (I 956) and Roufs' (1972a) data for 10 foveal disks, in
Nachmias's (1967) data for 0.70 square-wave gratings and in
Legge's (1978) data for sine grating8 of 0.75 cycles·degree- 1

and below. For small or high spatial frequency targets, the
departure from Bloch's law is more gradual, and docs not nec
essarily resolve to a straight line in log-log coordinates. Barlow's
data in Figure 6.1] for small peripheral targets provide good
example8, as do Owen's data for small peripheral targets.

'l'hese two trends may be roughly characterized by the slope
of the .second limb of the threshold-duration function: for large
targets the slope approaches 0, for .small targets it is between
oand ]. Legge (1978) estimated the slope of this second limb
for targets of various spatial frequency. At 0.75 and 0':J75
cycles· degree 1 the slope was about -0.02; for frequencies be
tween 1.5 and 12 cycles· degree J it averaged about -0.29.

Higher background inten.sities also tend to reduce the slope
of the second limb of the threshold-duration function, as may
be seen in Barlow's data for small targets in Figure 6.]]. The
influence of both spatial confi6ruration and background intensity
upon this slope may be given a common theoretical interpre
tation, as discussed below.

BASIC SENSORY PROCESSES I

6.3. Critical Duration

When data conform to the template in Figure 6.10, there is
little ambiguity to the definition of critical duration. When,
however, the departure from Bloch's law is gradual, and when
the subsequent slope is not 7.ero, critical duration is difIicult
both to define and to measure. Although a conservative defi
nition, and that adopted here, is the duration at which the data
first depart from Bloch's law, some authors have defined it as
the point in the data at which the slope first changes (Breitmeyer
& Ganz, 1977; Legge, 1978). Elsewhere, it has been operationally
defined as the ratio of thresholds for short and long pulses,
times the duration of the short pulse (Krauskopf & Mollon,
1971). These different methods can give quite different estimates
of the critical duration.

In light of these difficulties, we may doubt whether the
critical duration, however defined, is a useful or robust measure
of the temporal properties of the visual system. For large or
low spatial frequency targets on backgrounds ofhigh intensity,
Tc and Ie do adequately characterize threshold as a function of
duration. For many other targets, they do not. Furthermore,
as will be discussed in Section 6.5.5, threshold-duration functions
are inherently incapable ofproviding a complete characterization
of the temporal response.

6.4. Effects of Background Intensity

The effects of light adaptation upon temporal sensitivity are
discussed in Section 11. Both critical duration and critical in
tensity vary systematically with background intensity. Critical
duration declines monotonically with background illuminance,
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Figure 6.11. Thrpshold for a rectangular pulse as a function of duration. Target was a disk with diameter
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Bar-low, Temporal and spatial summation in human vision at different background intensities, Journal of
/'hy,i(J/ogy, 195/1, 141. Reprinted with permission.)
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from a value of about 100 msec at 0 log td to about 25 msec at
4 log td, as illustrated in Figure 6.31, Section 11.5.

Critical intensity increases monotonically with backf.,'Tound
intensity. Beyond about 10 td, the slope of the curve is about
--0.91, close to the value of· ··1 prescribed by Weber's law (Roufs,
1972a). This scaling of sensitivity is comparable to that seen
with thresholds for sinusoids and other wave forms. (See also
the discussion of temporal summation in Chapter 5 by Hood &
Finkelstein.)

6.5. Theory
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Figure ().12. An explanation of the reciprocity between threshold duriltion
,md intensity (Bloch's law) by a linear filkr. (a) Amplitudt' spf'ctril for- two
pulses of threshold intensity with durations within thl~ regime of Bloch's law.
Let the unit of intensity be the threshold for ill-msec pulse, so th,lt at
threshold n I when I is expresspd in rTlsec. Pulsp durations an' 10 (solid
line) ilnd 20 msec (dashpd line), and intensitil's <ln~ 1110 ,md 1/20. Both
spectra are sinc functions. Bec<luse both durations arc within the regime of
Bloch's law, and because for both II 1, both pulsps ill"(' atthn'sh(llrJ. (b)
Amplitude response of the linear filtpr of tlw working rTlmjpl, as t,lkp!1 (rom
hgurp 6."(b). (c) Amplitude spl'ctra of the responses of the filter to the 10
msec (solid line) and 20-msec (d<lshed line) pulses, obtained by multiplying
the spectril in (ill by the amplitude response shown in (b). The I'esulting
spectra arc nearly identical; hellef' tl1(' stimuli should Ill' ('qually visible.

(56)

6.5.1. Bloch's law. The most widespread interpretation
of Bloch's law is that the eye intef.,rrates perfectly over a time
interval equal to the critical duration. According to this theory,
it does not matter how the sif.,mal is distributed within the
critical duration, provided that its integral equals a criterion
value. That this interpretation is wrong may be clearly seen
in an experiment of Rashbass (1970). He first measured the
threshold-duration function for a 17° radius disk on a 700-td
backb'TOund. Critical duration was about 16 msec. He thcn
measured threshold for a pair of 2-msec pulses, one positive
and onc negative, their onsets separated by 10 msec. The integral
of this stimulus, all of which falls within the critical duration,
is O. If threshold is governcd by this integral, the stimulus
should be invisible. In fact, Rashbass found it required an am
plitude only about 1.85 times that for a single pulse.

A determined advocate of the complete integration theory
might counter that there arc many possible intervals of 16
msec over which the intef.,'Tal might be taken, many of which
would not give a 0 value. Presumably, then, the observer would
use the interval with the largest intcf.,'Tal, one containing just
onc of the pulses. But then why is the threshold 1.85 times that
for a single pulse?

Rather than pursue the various theoretical dodges that
might preserve some variant of the perfect integrator, we con
sider the more general class of causal, time-invariant linear
filters, ofwhich the perfect intef.,'Tator is but one. First we consider
the properties of the perfect integrator as a filter. Its impulse
response is a pulse of durabon T, equal to the epoch ofintegration.
This is rather implausible, if only because discontinuities are
rarely found in biology. The amplitude response is proportional
to Isin(TI wT)hr w I, which does not resemble very much the tem
poral amplitude sensitivity function of the human observer. In
short, although the perfect integrator may predict Bloch's law,
it is quite firmly refuted on other grounds.

In fact, Bloch's law is an inevitable consequence of any
linear filter that passes only frequencies below some cutoff.
This is most easily seen by considering the response in the
frequency domain. The amplitude spectrum of a pulse of intensity
I and duration T is given by

The peak amplitude of this spectrum is IT and hence any two
durations for which reciprocity holdH (for which IT are equal)
have amplitude spectra with equal peak values. Let us define
the unit of intenHity as the threHhold for a l~msec pulse. Then
two pulses, of durations 10 and 20 msec and amplitudes 1/10
and 1120, will each be at threHhold. Their amplitude Hpectra
arc sketched in Figure 6.12.

If the visual response to theHe signals iH linear, then the
amplitude spectrum of the response is the product of amplitude
spectra of signal and visual filter. The latter may be approxi
mated for conditions like Rashbass's by the linear filter of the
working model as fit to Robson's (1966) data Iscc Fig. 6.5(b)l.
These are drawn in Figure 6.12. The resulting productH, which
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Figure 6.13. Threshold-duration functions predicted by the working model
for two v<:llues of transience. Points are model predictions; curves are fitted
by eye. Panel (a) shows that when the model behaves in a sustained fashion
(trJnsience parameter s "" 0), threshold continues to improve beyond the
critical duration and the second limb of the function has a slope of -1!~ in
log-log coordinates, where ~ governs the slope of the psychometric function
of the model. When the model is transient (s = 1) as shown in panel (b),
the function is flat beyond the critical duration. Other parameters of the
model used here are 'T = 6.25 msec, K 1.:33, nl '"""' 9, n2 = 10, P = 1.0,

s =0

metric function. In particular, for the sustained detector the
asymptotic slope of the threshold-duration function is 1/[3 in
log-log coordinates. The predictions in Figure 6.13 employ a [3
of 3.5, typical of values found in many contrast detection ex~

periments. The lowest reported values for [3 are around 1.5;
hence the steepest asymptotic slope should be around -0.67,
and should be encountered with small targets in dark-adapted
conditions. This abl'J'ees with Barlow's data for a small target
at absolute threshold (Fig. 6.11).

6.5.3. Effects of Background Intensity on Critical Dura
tion. As shown earlier, a threshold duration function may be
easily calculated for any particular linear filter, once its transfer
function is known. An estimate ofthe critical duration can then
be taken from this curve. We have seen that as background
intensity is raised, the amplitude response of the hypothetical
filter, as reflected in flicker thresholds, is altered in characteristic
ways. From these changes in the amplitude response (and pro~

vided some phase assumption is made) changes in critical du
ration with backhl'J'ound intensity can be predicted. This direct
prediction of Tc from flicker data has not yet been attempted,
but the simpler qualitative prediction that follows suggests
that it would succeed.

The explanation of Bloch's law (Fig. 6.12) shows the rela
tionship between the critical duration and the high-frequency
fallofl' of the amplitude sensitivity function. A pulse disobeys
Bloch's law when its spectrum is narrow relative to this falloff.

o

are the amplitude spectra of the responses to 10- and 20-msec
pulses, are almost identical, as shown.

This argument is incomplete, because it says only that the
amplitude spectra of pulses briefer than the critical duration
are identical. The phase spectra of the two responses are in fact
different, but as we shall show, they differ in a way not likely
to affect threshold. The phase spectrum of a pulse centered at
o is 0 at all frequencies. To begin the pulse at time 0, as our
convention for inputs to a causal system requires, we delay the
pulse by half its duration. Table 6.1 shows that a delay of T/2
results in a phase shift of _. 'IT 7'w at each frequency w. The
phase spectrum of the response is obtained by simply adding,
at each frequency, the phase response of the visual filter. This
function is not easily estimated (sec Section 5.10). But the dif
ference in the phase of the response to two pulses of durations
T l and T 2 is TIw(7\ .- T z), regardless of the phase response of
the visual filter. This difference is just that which would result
from shifting the response by an amount (T t - T 2)/2. So we
see that two pulses with durations less than the critical duration
result in responses that are identical except for a shift in time
equal to halfthe difference in their durations. Because absolute
position in time does not usually influence sensitivity, we con
clude that the two pulses are equally visible.

6.5.2. Sensitivity at Long Durations. With increasing du~

ration beyond the critical duration, pulse thresholds either be
come independent of duration or decline at a more gradual rate
than prescribed by Bloch's law. The second limb ofthe threshold
duration function is steeper at low back/"l'J'ound intensities and
for small or high spatial frequency targets. The spatial effects
are somewhat more potent, as may be seen in Barlow's data in
Figure 6.11.

It is likely that these effects are due to variations in the
degree ofattenuation oflow temporal frequencies, in combination
with probability summation over time (Legge, 1978; Tolhurst,
1975a). All three manipulations-raising target spatial fre
quency, reducing target size, and lowering background inten
sity-elevate relative sensitivity to low temporal frequencies.
In terms of the working model developed in Section 4, these
manipulations reduce the transience of the underlying linear
filter. In the case ofbackhl'J'ound intensity, this change is probably
due to parametric change in the filter. When the spatial stimulus
is varied, it may occur because of a shift from one detector to
another. This issue is discussed in Section 9.4.

In a purely transient filter, a response occurs only at the
ont.;et and offset of the pulse. In a purely sustained filter, the
response persists fhr the duration of the pulse or longer. These
properties of sustained and transient pulse responses are illus
trated in Figure 6.13. As duration is increased, the sustained
response provides a greater number of opportunities to detect
the stimulus; hence threshold is reduced by probability sum
mation. For the transient response, the number of opportunities
remains constant, and threshold does not decline.

The two threshold-duration functions plotted in Figure 6.13
are predictions of the working model developed in Section 4. It
consists of a linear filter whose output is perturbed by noise
followed by a threshold mechanism. The two curves arc for
purely sustained (transience '-= 0) and purely transient (tran
sience ",~ 1) filters. The figure shows that a good qualitative
account of the continuing improvement in sensitivity at long
durations is provided by a sustained filter followed by probability
summation.

'l'he predictions of the working model depend somewhat
upon the parameter ~, which reflects the slope of the psycho-
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The width of the spectrum of a pulse is inversely related to its
duration, so the condition for reciprocity may be stated

6.5.5. Is the Thrcshold~Duration Function Informative?
Despite their long history of use in visual theory, we may ques~

tion whether the threshold-duration function and the critical
duration are useful measures of temporal sensitivity. We have
already noted the variety of forms that the curve may take,
and the difficulty of estimating the critical duration. Even when

(59)f))

where Pl'(t) is a pulse of unit height and width 7'. The intensities
I[ and /2 may be either positive (an intensity increment) or
negative (a decrement). Dividing by the background intensity
gives the contrast wave form C(t). An example of a pulse pair
is shown in Figure 6.14.

The pulse pair has most often been used to study the form
of the temporal response. Intuitively, the first pulse evokes a
response which may be probed by the second pulse. However,
to draw strong influences from the data we must know (or as
sume) how the two overlapping responses are combined, and
how the resulting quantity determines threshold.

A useful format in which to represent the results ofa pulse
pair experiment is sketched in Figure 6.14 (Rashbass, 1970).
Following Boynton, Ikeda, and Stiles (1964), we define 8, as
the intensity (or contrast) of the first pulse, divided by threshold
for the first pulse, and 8 2 as the intensity (or contrast) of the
second pulse divided by its threshold. Quantities scaled by
threshold in this way are sometimes called "sensation magni
tudes." Now we construct a plot in which the abscissa expresses
8 1 and the ordinate, 8 2 . Threshold for any particular pulse pair
can be represented as a point in this space. Several examples
are shown in Figure 6.14. A common experimental procedure
is to fix the ratio 8 2/8 1 and then to measure threshold for the
pair. 'Chis consists of moving along a ray at an angle of
tan 1(82/8J) in the summation diagram. For example, an ex
periment using only positive pulses of equal amplitude would
be confined to a ray at 45°. When the experiment is repeated

7. SENSITIVITY TO PULSE PAIRS

it can be estimated with confidence, it docs not give a generally
useful description of the temporal response. For a linear system,
this description would be provided by the impulse response or
by the system function (see Section 3). Neither the critical du~

ration nor the threshold~durationfunction is capable of defining
these functions (Norman & Gallistel, 1978). It should be clear
from the argument of Figure 6.12, for example, that the critical
duration and critical intensity are insensitive to changes in the
low-frequency end of the system function. Likewise they are
insensitive to the phase response of the system (unfortunately,
so are most other psychophysical measures). In certain simple
cases, the critical duration may indicate some useful feature of
the impulse response. For example, in the n-stage filter discussed
earlier (Sections 3 and 4) the critical duration will be T(n 

1)![e/(n - 1)]"-1 (Sperling, 1979). More generally, if the time
scale of the impulse response is multiplied by some constant k,
or equivalently the frequency scale of the system function is
divided by k, then the critical duration is multiplied by k. This
sensitivity of the critical duration to the time scale of the impulse
response is what has recommended its use as a measure of the
effects of light adaptation. But as we have seen, backb'TOund
intensity changes not only the time scale and sensitivity of the
system, but also its degree of transience. These two effects cannot
be separately assessed by a single measure of critical duration.

A pulse pair is a wave form consisting of the sum of two pulses
of equal duration T, intensities hand h, separated by a delay
D. The target intensity wave form can be written

7.1. Background

(58)

(57)

where F I : is some critical frequency and whereK is some constant.
The critical frequency specifies the location of the high-frequency
falloff, and is defined as the frequency at which the amplitude
response has fallen by some criterion amount from its maximum.
The precise value of K depends on this criterion and the shape
of the falloff, but so long as they are fixed, we may write

Any condition that alters F c should therefore produce an inverse
effect upon Teo

Increases in background intensity increase the value ofF c

without markedly changing the shape of the high~frequency

falloff (see Section 11). These background increases should
therefore result in decreases in 1'e, of a size predicted by Eq.
(58). Making a similar argument, Roufs (1972a, 1972b) has
made extensive measurements of Fc·and 1'e for backf.,rrounds
between - wand 4.4 log td, and has found that Eq. (58) is
obeyed reasonably well (compare Figs. 6.30 and 6.31 in Section
11). It seems then that the variation in critical duration with
background intensity may be explained by the same processes
required to account for the adaptive variations in the amplitude
sensitivity function. These processes are considered in more
detail in Section 11.

6.5.4. Relation Between Pulse and Flicker Data. A tradi
tional test of any model of temporal sensitivity is its ability to
account for sensitivity to both periodic and transient wave forms.
Models embodying a linear filter and threshold device, however,
invariably overestimate sensitivity to rectangular pulses relative
to that for sinusoidal flicker (Roufs, 1972a, 1972b; Sperling &
Sondhi, 1968). It seems quite likely that this discrepancy may
be removed by introducing probability summation into the
model. For example, in Roufs's experiments, observers were
allowed unlimited time to judge the presence of sinusoidal sig~

nals, whereas the time available to detect a pulse is limited to
its duration. This procedure enhances sensitivity to periodic
stimuli relative to that for transients.

Predictions from the working model (which includes prob
ability summation) can only be made for wave forms with finite
duration. This is a problem for the traditional test noted earlier,
because true sinusoids go on forever. Turning a sinusoid on
and off abruptly gives it a finite duration, but also introduces
a wide range of other frequencies. A practical solution is to use
as flicker wave forms sinusoids windowed in time by a Gaussian
function. These signals contain a narrow band of frequencies,
and hence more or less directly define the amplitude response
of the filter, yet they also have finite duration. Examples of the
use of these signals to estimate the amplitude response of the
filter of the working model may be found in Watson (1977,
1981).
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intensity (Ikeda, 1965; Roufs, 1973, 1974a; Uetsuki & Ikeda,
1970) and spatial configuration ofthe target (Watson & Nach
mias, 1977) have also been investigated. These developments
have generally shown that the pulse~pairresults can be under
stood in terms of the same model used to explain visibility of
other waveforms such as sinusoids and single pulses.

7.2. Data

.------~---------,

s,
Figure 6.14. Sc!wm,llic of d summation plot of thresholds for pulse pairs.
Ih' ,1bscisSd and ordinate indicate SI and S1., sensation magnitudes of first
and second pulses (intensities sC<1lcd by respective thresholds), Each point
in the plot represents a pulse pair at threshold. Points on the axes represpnt
thrt>sholds for single pulses. The collpction of all points in the plot is called
the thn~shold locus. The locus rll,ly be thought of as separating subthreshold
and suprathrcshold stimulus regions. The shape of the locus depends upon
the delay hetween pulses, as well as other variables. The inset shows the
limp wave form of a pulse pair. It consists of two pulses of intensities /1 and
III each of dlH<lLioll T, separaLed by a delay D. This plot is a useful summary
of summation between two rubes.

(f)'" 0

~ 1

-1 o

Figure 6.15 shows thresholds collected by Rashbass (1970). These
data closely resemble those of 1keda (1965) for a 30-min disk
target on a 6° surround. The threshold plotted is the scaled
contrast of the first pulse (81).

For like-signed pulses (filled symbols) the thresholds show
proh'l"essively less summation with increasing delay, reaching
a minimum of about 1 at around 60 msec. At this delay, the
pair has the same threshold as either pulse alone. If the response
to the two pulses did not interact, probability summation should
result, and the thresholds at the longest delay are consistent
with this condition (81 '-,," 0.84). The minimum at 60 msec shows
less than probability summation, and is therefore consistent
with partial cancellation.

Thresholds for opposite-signed pairs (open symbols) show
progressively less cancellation with increasing delay, reaching
a minimum at about 60 msec, then rising again to a value
consistent with probability summation. At short delays, the
pairs partially cancel (81 > 1), but at intermediate delays they
show partial summation (81 = 0.53), In other words, a pair of
pulse::; of opposite sign is considerably more visible than a single
pulse alone, or than a like-signed pair at the same delay. Houfs's
data for like-signed CRoufs, 1973) and opposite-signed pairs
(Roufs, 1974a) show a similar pattern. He used a 1° disk target
and no surround. Qualitatively, this behavior at,,:rrees with Ikeda's
hypothesis: at a delay ofabout 60 msec, like-signed pairs cancel
because opposite-signed phases of the responses overlap; opposite-

2

DELAY (milliseconds)

Figure 6.15. Sensitivity to pulse pairs as a function ()f delay bp!wet'n pulses.
The ordinate indicates the intensity of the first pulse divided by iLs thrl'shold
C)·I). 80th pulses were equal in intensity and 2 Illsec in duration. I-died
symbols indicate like-signed pulse pairs (both increnwnts ()r b()th dp(Tements),
and open symbols, opposite-signed. The target was a 1r disk; background
was 700 td. Data from Rashbass (1970). Likt>-signed p<lirs summate best with
() delay, and show a slight cancellation at about 6.s-rnsec df>lay. Opposite
signed pairs summate best at about 6.'i-msec delay.
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at a number of angles the threshold points may be connected
to form a threshold lOCliS.

Thresholds for pulse pairs frequently show one of the fol
lowing forms of interaction: summation, partial summation,
probability ~mmmation,partial cancellation, and cancellation.
These outcomes lie at progressively greater distances from the
origin.

Early studies of pulse-pair sensitivity were made by Granit
and Davis (1931), Bouman and van den Brink (1952), and
Blackwell (1963), all using two increments of equal size. They
found summation at the briefest durations, partial summation
at intermediate delaYH, and probability summation at the longest
delays. Blackwell's data also showed partial cancellation at
intermediate delays. Ikeda (1965) made extensive measurements
with a variety of amplitude ratios, including both increments
and decrements. Like Blackwell, he found intermediate delays
at which like~signed pairs showed partial cancellation, and
speculated that such results might be due to a biphasic internal
response, with two lobes of opposite sign. Cancellation betwecn
like-signed pairs would occur when the negativc phase of the
second response overlapped the positive phase of the first re
sponse.

SubHequent work has confirmed this r(~sult, and has refined
Ikeda's insight in the context of a linear filter followed by a
nonlinear detection process (RashbasH, 1970, 1976; Roufs, 197:3,
1974a; Watson & Nachmias, 1977). The effects of background
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Here a and b are the time limits of the stimulus and [) is a
parameter determined by the slope of the psychometric function
which typically has a value of between 3 and 6 (Nachmias,
1981; Watson, 1979). This model, when associated with a plau
sible impulse response, also predicts elliptical threshold loci
(Rashbass, 1976; Roufs, 1974a; Watson & Nachmias, 1977).

Figure 6.16. Summation between pulses at various delays. The pulses were
2-msec changes in the inh-'nsity of <l 700-td, 17" disk with no slHround. The
abscissa and ordinah' in each figure indicate SI and S2, respectively, dS

expl<:dned in r:igure 6.14. The delay between pulses in msec is indicated
near the origin of each plot. The curves <Ire ellipses of the form 1 Sri
s~ I- 2SIS2l.f). The eccentricity of the ellipse, p,lranwterizcd by Ill, v,Hies
as a function of delay. Tht' t'lliptical thn'shold contours arc pn'dic!ed by tfH'
model of I{ashbass. (r:rom c. I{ashbass, The visibility of transient ch ...1t1ges of

luminance, Journal of Physiology, 1970, 110. Kcprinted with permission.)

(62)1 .rICU) * hU)I~ dt

(60)

Theoretical concerns relating to pulse-pair data focus on models
that can account for (1) the elliptical threshold locus and (2)
the form of Lf) (or some comparable measure of summation
versus delay). Most treatments assume an initial linear filter,
but diiIcr on the nature of the nonlinear detection stage.

Rashbass (1970) proposed that visual transients are filtered
by an impulse response h(t), then squared and integrated over
an epochh' of about 200 msec. The stimulus was seen whenever
the result was greater than one. At threshold,

where LJ) is a constant at each delay D. An ellipse leaning to
the left has a positive value of Lv; a lean to the right has a
negative value. Apart from its possible theoretical meaning,
the reasonable fit of the ellipse recommends Lv as a summary
measure of pulse-pair summation. The variation of Lo with
delay from Rashbass's experiments is shown in Figure 6.17.

Several authors have examined the effect of background
intensity on pulse-pair thresholds. All report a change in the
time scale of the results, so that, for example, the minimum
threshold for opposite-signed pulses moves to longer delays as
the background is reduced. The data ofUetsuki and Ikeda (1970)
also show less cancellation between like-signed pulses at lower
baCkh'TOunds.

Watson and Nachmias (1977) and Breitmeyer and Ganz
(1977) have used pulse pairs to examine the temporal response
to gratings. Figure 6.18 shows the variation in LJ) with spatial
frequency at four selected delays. In each case, LJ) increases
with spatial frequency. At the three longer delays, values go
from negative to positive, indicating that the negative lobe of
the function disappears as spatial frequency increases.

7.3. Theory

signed pulses summate because like-signed phases of the re
sponses overlap.

The cases pictured in Figure 6.15 correspond to rays lying
at 45° (like-signed pairs) and 1350 (opposite-signed pairs) in the
summation diagram of Figure 6.14. Morc complete threshold
contours arc shown in Figure 6.16. The curve in each figure is
an ellipse centered at the origin with axes along the diagonals
whose equation is

If<: [C(t) * hU)I' dt= 1 .
()

(61)
o

PULSE DELAY (milliseconds)

Figure 6.17. Variation in sUlnlndtion bt'lwP{'1l pulse p;lirs iJS a function of
delay. TfH' quantity plotted is the eccentricity p;Hanll'ler LI) f!"Om the ellipses
ill Hgure ().Ib. When If) is positive, like-signed pulses summ<lte and opposit(~

sigm'd plJlses cancel; when it is rlPgativt', likp-siglwd pulses cancel and
opposite-signed pulses summate. Accmding 10 I{;]shbass's Inodel, this function
is the r:ourier transform of the amplitude spectl·urn of an unde'rlying linedl
filter. (From C. Rashbass, The visibility of transient changl's of luminiltlcc,
Journal of Phvs;n!of!v. 1Y70.1J(J. I{r'orint('d with [)('rrnission.l

This model predicts elliptical threshold loci, and leads elegantly
to the conclusion that L n is the inverse Fourier transform of
the amplitude response IH(w)1 (the autocorrelation function)
of the filter. In support of this model, the transform ofLn does
resemble qualitatively the TCSF, though no quantitative com
parison of the two functions under the same conditions has
been made. When transformed, the negative lobe of Lv will
result in attenuation at low temporal frequencies (transience).
Because transience as reflected in the TCSF is reduced when
background intensity is reduced or spatial frequency raised,
these manipulations should also reduce the size of the negative
lobe of L n , and they do (Broekhuijsen, Rashbass, & Veringa,
1976; Watson & Nachmias, 1977; Fig. 6.18).

An alternative is the working model developed in Section
4. A stimulus is seen whenever the noise-perturbed output of
fl linp::lr filt,pr PXCPPOS}J crih'!rion. At threHhold.
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Figure 6.18. Summation between pulsE's as a function of the spatial frequency of the target. Delay
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between oppositt,'-signed pulses; negative values indicate the opposite.l. l ) increases with spatial frequency
at <III four delays, so that at the highest spatial frequencies no negative values arc obtaitH-'d. This shows
that tflP system becomes more sustained at higher sp,ltial frequencies. Because the stimuli are briefly
exposed, tflP ch<lnge in LIl with spatial frequency is unlikely to be due to eye movements. T<:lrget was 1
x 1.5 0 with <l ()" diameter surround. Background and surround luminance were about 15 cd'm J.. (a)
Ohsprvpr 0/, {bJ observpr RP (from Watson, Note!).

Unlike Rashbass's model, it can predict threshold for stimuli
of long durations. For example, it correctly predicts that when
the delay between pulses is very long, the contour will be a
square with rounded corners, not an ellipse (Watson & Nachmias,
1977)

The defining equations ofthe two models arc quite similar;
only the exponent and limits of integration differ. Indeed a
third model, a llnear filter not followed by probability summation,
can also be represented by Eq. (62), by setting the exponent to
infinity. This allows a test among these models. Equation (62)
predicts that sensitivity to a sinusoid will increase as the r:r!
power of duration. Estimates of r) obtained in this way are
between 3 and 6, in ah'Teement with the predictions ofthe work
ing model (Watson, 1979).

The assumptions made about the final detection stage of
the model can have considerable effect upon the interpretation
of experimental results. For example, Rouis and Blommaert
(1981) assume a deterministic threshold (effectively a ~ of 00),

, .

data. However, when a more realistic model is assumed (~ be
tween 2 and 6) the interpretation of the data is quite different
(Watson, 1982). As Rashbass has pointed out, when p ~ 2 all
phase information is lost and the complete impulse response
cannot he recovered (Rashbass, 1970, 1976). Conversely, when
f3 = 00 the complete impulse response can be recovered quite
directly from pulse-pair data (Roufs & Blommaert, 1981). Be
cause it appears that r) is nearer 3 or 4, it is possible that the
impulse response might be recovered from pulse-pair data,
though probably not in a simple or elegant way. More likely, a
brute-force fitting procedure will be required.

8. SENSITIVITY TO INCREMENTS AND
DECREMENTS

8.1. Background

A decrement in light intensity can serve as a stimulus for vision,
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relative visibility of increments and decrements of light is a
matter ofpraetical and theoretical interest. The practical interest
arises from the question of whether positive or negative contrast
(e.g., bright or dark letters) provides the better visual signal.
Our theoretical interest begins with the observation that a simple
linear model of temporal sensitivity predicts equality of incre
ments and decrements, because they should produce internal
responses equal in magnitude but opposite in sign.

Thresholds for both increments and decrements have been
measured by numerous authors. Wherever substantial or con
sistent differences are found, the threshold for a decrement is
lower than for an increment. But the reliability of these differ
ences, between subjects and across conditions, is less than might
be desired.

8.2. Data

Using a red, 10~min increment or decrement upon a 100,10,400
td largely green surround, Boynton, Ikeda, and Stiles (1964)
found a decrement threshold 0.17 log unit lower than an in
crement. Patel and Jones (1968) used disks of several sizes and
durations 7° from the fovea upon a·14° surround at various
backgrounds. They reported a decrement advantage of about
0.3 log units for a 15-min, 50-msec target on a 6.1 quanta'
degree- 2 ·sec·- 1 background. 'rhe advantage declined for larger
targets, longer durations, and higher backgrounds.

Short (966) also showed consistently h'Teater visibility of
decrements. He used a 57-min disk, 100 msec long, positioned
15° into the nasal visual field, upon a large surround, and found
a difference averaging about 0.24 log unit at low backgrounds
(below about I td) almost vanishing at higher baekgrounds.
There were, however, sizable differences among the three ob
servers.

Herrick (956), using a 1° target, no surround, various du
rations, and backgrounds between about ··1 and 4 td, and
Rashbass (1970), using a 17° target, no surround, various du
rations, and a background of 700 td, found little difference in
results for increments and decrements, but neither author di
rectly compared the two thresholds under the same conditions.
Using conditions very similar to those ofHerrick, Roufs (1974a)
found little consistent difference in increment and decrement
thresholds. However, Roufs's observers used a threshold criterion
("agitation") that may measure thresholds different from those
of other authors (see Sections 5.11 and 9.4.1.4). Contrary to the
finding of Patel and Jones (1968), neither Herrick's nor Roufs's
data show any systematic effect of duration.

Some explanation of this variability of results may be in
order. First, it should be noted that no two of these reports have
employed the same conditions. Second, without exception, the
authors used methods such as yes/no and method of adjustment,
which permit the observer to use different criteria for increments
and decrements. Some of the differences reported are larger
than might be expected to arise from criterion variations, but
in general we cannot be certain what portion of the difference,
if any, we should attribute to this source. It would be useful to
compare the two thresholds with a method, such as two-alter
native forced-choice, which is not subject to this objection.

The reports cited used spatial targets (disks) that arc all
of one sign. When a spatial target is used, such as a sinusoidal
grating, that has positive and negative excursions of equal sign,
then it is more appropriate to speak of a comparison between
thresholds for positive and negative contrast. These can differ
only ifthe local position of the spatial increments and decrements
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case for very low spatial frequencies, but is unlikely in most
other situations. Thus it is not surprising that Watson (1977)
found equal thresholds for positive and negative contrast grating
targets of 3.5 cycles.degrees- 1

8.3. Theory

A difference between thresholds for positive and negative con
trast can be included in the working model by introducing dif
ferent thresholds for positive and negative excursions of the
internal response (Kelly & Savoie, 1973). Thus we assume that
detection occurs whenever a positive excursion exceeds 1, or a
negative excursion is less than --- p. The parameter p is the
as'ymmet~y factor of the model Isee Section 4.3 and Eq. (52) I.
Data are best described by the model when p is set equal to the
ratio of increment and decrement thresholds. This asymmetry
factor is also able to account for some aspects of the thresholds
for combinations of different temporal frequencies (Section 5.10)
and threshold as a function of duration (Section 6.5).

Explanations for the difference between increment and
decrement thresholds have generally appealed to physiological
mechanisms such as "on-center" and "off-center" cells. Cohn
(1974) has offered an interesting alternative, based on the ob
servation that the distributions of quanta absorbed during in
crements and decrements arc diflcrent in form when the number
absorbed from the background is small. But this hypothesis
predicts differences over a much smaller range of backgrounds
than found by Short (1966) and Patel and Jones (1968). It is
difficult to judge any theory without knowing what proportion
of the eflcct is due to different criteria for increments and dec
rements.

9. SPATIAL EFFECTS

9.1. Background

Though it is convenient to consider the temporal wave form in
isolation from the other dimensions of the visual stimulus, sen
sitivity is unavoidably governed by all the dimensions in concert.
In some cases, the effects of two dimensions are sepa.ra.ble. Sen
sitivity is separable along two dimensions if it is given by the
product of sensitivity along the individual dimensions. For ex
ample, if the function that describes sensitivity as a function
of spatial frequency (u) and temporal frequency (w) were sep
arable, it could be written

(63)

where su(u) is a spatial contrast sensitivity function and sw(w)

is a temporal contrast sensitivity function like that described
in Section 5. In this case, a change in spatial configuration
would only scale the results up or down by a constant factor,
and we could reasonably exclude consideration of su(u) from
this chapter. In human vision, however, spatial and temporal
sensitivity are not separable. Instead, the temporal response
depends upon the spatial configuration of the stimulus. This
dependence is evident in the full range of temporal phenomena:
in sensitivity to various wave forms, in r\.:~~etion times, and in
discriminability of various stimuli.

Theoretical interest in this area has f()cused upon incor~

porating spatial effects into models of temporal semlitivity. This
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control the parameters of a single temporal filter (BuTbeck &
Kelly, 1980; Kelly, 1972b; Robson, 1966) or by allowing the
spatial configuration to determine the pathway in which the
stimulus will he detected, different pathways having different
temporal properties. The latter notion is generally associated
with the idea of separate "sustained" and "transient" pathways
for visual signals (Kulikowski & Tolhurst, 1973).

9.2. Spatial Effects upon Temporal Sensitivity

Four distinct aspects of the spatial configuration have been
shown to influence temporal sensitivity: size, the surround,
edges, and spatial frequency. These effects are evident in the
threshold-duration function, as well as the TCSF, though we
shall focus upon the latter.

9.2.1. Size. Enlarging a disk target lowers sensitivity at
low temporal frequencies without much altering sensitivity at
high frequencies. When changes do occur at high frequencies
they take the f(lrm of a vertical shift ofthe high-frequency limb
of the TCSF. rrhese changes are illustrated in Figure 6.19. The
open squareR Hhow sensitivity to a 2° disk on a large, 600 sur
round; the open circles are for a 65° disk with blurred edges.

9.2.2. Effects of the Surround. The filled symbols in Figure
6.19 show sensitivity to a 4° disk without a surround. Between
the 2() disk and these data there is a profound loss in sensitivity
at low temporal frequencies. It is not clear whether this loss is
due to doubling the size of the target or removing the surround.
Roufs (1972a) has shown that removing the surround from a
1° disk target has little encct upon high temporal frequencies,
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Figure 6.19. TI](, dft'ct of target sizc and surmund upon temporal contrast

S{'nsitivity. Ternpordl WdVP form was sinusoidal and background intensity

wdsl 000 tel. (,1) Open squart': 2" disk, 60° surround, observpr V (de Lange,
1Y5B). (b) Filled circles: 4° disk, no sunound (Kclly, 1959). (c) Open circles:

(lSO disk, bluncd edw's, no surround, observer P (Kelly ,1959). Enlarging the

target and removing the surround reduce sensitivity at low tempor,J1 fre

qlH'ncips, thus making tl1(' syslp!Tl more transient. (Ft'orn D.II. Kelly, Effects
of sharp l'dges in a flickering field, journal of the Optical Society of Anwrica,
llJSlJ, 4lJ. Reprinted with perITlissioll,)
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but reduces sensitivity by about 0.5 log units at low frequencies.
This suggests that much of the difference between the open
squares and filled circles in Figure 6.19 is due to the surround.
Harvey (1970), Kelly (1969b), Keesey (1970), Teller (1971), and
Westheimer (1967) also provide evidence on the effect of the
surround on temporal sensitivity.

Data collected without a surround are subject to other dif
ficulties ofinterpretation, because the state of light adaptation
in the vicinity ofthe border is somewhat ambiguouR. For detectors
whose receptive fields lie within the borders of the target, we
may be fairly confident that their state of adaptation is governed
by the background, regardless of the presence of the surround.
But some targets may be detected by mechanisms whose re
ceptive fields span the border of the target, and their adaptive
states are much less easily determined when a Hurround is
absent.

9.2.3. Edges. Visually effective edges in the target elevate
sensitivity to low temporal frequencies. For example, Kelly
(1969b) showed that blnrring a 3" disk on a 16" snrround reduced
sensitivity by about half at low temporal frequencies but had
no effect at high temporal frequencies. Very similar results
were obtained by blurring the central edge of a counterphase
modulated 8 x 16" bipartite field.

Enlarging a disk target moves its edges to regions of the
retina of lower spatial resolution, and thus renders them less
efIective. Thus much ofthe effect of disk size may be due to this
reduction in the visual effectiveness of target edges. This may
also partially explain the action of the surround. Without a
surround, any visual mechanism sensitive to the edge would
be massively stimulated, even in the absence of the target.
PreRentation of the target would change its response by only a
fraction. Thus removing the surround may effectively desensitize
the observer to the edges at the border of the target.

9.2.4. Spatial Frequency. Robson (1966) measured the
TCSF with sinusoidal gratings of four different spatial fre
quencies. As shown in Figure 6.20, the two highest spatial
frequencies exhibit no decline in sensitivity at low temporal
frequencies, whereas at the lowest spatial frequency, a very
large low-frequency decline was observed. Similar results have
been obtained by van Nes et a1. (1967), Koenderink and van
Doorn (1979), and Kelly (1972a).

Robson also noted that the shape of the TCSF at high tem
poral frequencies was invariant with spatial frequency, as shown
by the curves superposed on the data, which am the same except
for a vertical shift. A change in spatial frequency merely shifted
the high-frequency limb up or down in sensitivity. Furthermore,
at high spatial frequencies, the spatial contrast sensitivity
function is invariant with temporal frequency, apart from a
vertical shift. A summary statement of these invariances is
that at high spatial and temporal frequencies, spatial and tem
poral contrast sensitivities arc separable Isec Section 9.1 and
Eq. (63) I. This means that at these frequencies, the spatiotem
poral contrast sensitivity function is simply the product of the
spatial contrast sensitivity function, which describes sensitivity
as a function of spatial frequency, and the TCSF. At low spatial
or temporal frequencies, the two functions are clearly not sep
arable. These interactions are easily seen in a view of the spa
tiotemporal contrast Rensitivity function such as that provided
by Koenderink and van Doorn (1979). Reproduced in Figure
6.21, their figure showH isosensitivity curves for f..,rratings of
various spatial and temporal frequencies. Separability of tem
poral and spatial contrast sensitivity functions is reflected by
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Figure 6.20. The dfect of spatial frequency upon thp temporal contrast
sensitivity function. The target was a sinusoidal grating with a spatial frequPtlcy
of O.'i, 4, 1(), or 21 cycles'degree --I. BilCkground luminance was 20 cd _m 1

,

target was 2.5 x 25°, surround was 1() x 10", viewing WilS binocular with
natural pupils from 2 m. I-'oints arc averages of four adjustment thresholds.
Thp curws (including dashed section'll differ only in vertical position. Spatial
and temporal sensitivity are spp,nable at high tf'rnporal and spatial frequencies,
but allow spatial frequencies sensitivity at low temporal frpqupncies is reduced.
(From). C. Robson, Spatial and temporal contrast sensitivity functions of the
visu<ll sysh'ITl, journal of the Optical Society of i\meric<l,1966, 56. R.eprinted
with permission.)

It-_MPORAL 1-)-jEOlJt-NCY (lwr!/)

Figure 6.21. Isosensitivity curves for tdrgets thil! M(' sinusoidal in both
space and time. I-:ach curve connects points of equal scnsitivily obtainpd by
Iine{lr interpc}liltic}fl from data Iike those in rigul'e 6.20. The spacing l)('Jwpc'n
lines is 0.1 log unit, corresponding approximiltely to a st'Hldard deviation.
The contour at sensitivity = 100, and till' pc-'aks at 270 and 204 arc marked.
fhe heavy line separates regions the observer judged as giving sPllsations
of "flicker" or "pattern" (SC(' Scctioll 1).4.1.4). Sensitivity falls when ('ithcr
spatial Jnd temporal frequency ,He high, or whpil both M(' low. (I-rom I. J.
Koenderink & 1\.). Vdn Doorn, Spatiotemporal contrilst ddection tlHC'shold
surfJce is bimodal, Optic Idtcrs,]lJ79, 4. Reprinted with pNmission.)

Reaction times to sinusoidal gratings increase with the spatial
frequency of the grating (Breitmeyer, 1975; Harwerth & Levi,
1978; Lupp, Hauske, & Wolf, 1976; Vassilev & Mitov, 1976),

9.3. Spatial Effects upOn Reaction Times

10

estal when a low spatial frequency is used. For higher spatial
frequencies, detection is enhanced for the duration of the
subthreshold grating. Breitmeyer and Julesz (1975) demon
strated that abrupt onsets enhanced visibility relative to gradual
onsets at low spatial frequencies but not at high. This is con
sistent with a reduced sensitivity at low temporal and spatial
frequencies, because abrupt transients contain higher frequen
cies than do gradual transients. They also showed that of the
abrupt onset and offset of a pulse, only the onset was effective
in enhancing sensitivity. They provided no explanation of this
effect, but in fact it is expected in a linear system that is not
purely transient. The onset response transient is the step re~

sponse of the system, but the offset response transient is the
step response subtracted from the sustained portion of the re
sponse and thus usually has a smaller peak value. Furthermore
Stromeyer, Zeevi, and Klein (1979) found that offsets and onsets
enhanced visibility by about the same amount when somewhat
different background intensities, and spatial and temporal wave
forms were used. This discrepancy is not surprising because all
of these variables will influence the degree of transience.

Legge (1978) has shown that at high spatial frequencies
thresholds continue to decline as duration increases beyond the
critical duration, whereas at low spatial frequencies no further
improvement is found. He found in addition that brief masking
pulses at the start and end of a test pulse had the same effect
regardless of test duration for low spatial frequencies, but at
high spatial frequencies the effects declined as duration in
creased. Evidently, only the start and end of the pulse are ef
fective in the first case, whereas in the second case all parts of
the signal are eflective.
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the roughly parallel contours beyond 10 Hz and 10 cycles'
degree I . The valley ncar the origin confirms Robson's earlier
observation that a decline in sensitivity at low temporal fre
quencieR occurs only when the spatial frequency is low.

There is a qualitative agreement among the effects of disk
size, edges, surrounds, and spatial frequency. It was suggested
that the effects of disk size and surround upon the low temporal
frequencies arc mediated by the visually effective edges in the
target. Edges are the repositories of high spatial frequencies.
When they are removed by blurring, or made less visually ef
fective by moving them into the periphery, the effective spatial
frequency ofthe target is reduced and we should expect temporal
sensitivity to resemble more that obtained with low Rpatial
frequencies; that is, we should observe a more severe attenuation
at low temporal frequencies. Thus enlarging a target, blurring
its edges, removing its surround, or lowering its spatial frequency
should all selectively lower sensitivity at low temporal fre
quencies, and this does occur.

9.2.5. Miscellam..1ous Spatial Effects upon Sensitivity. Many
other experiments give a Rimilar result through leRR direct
means. Kulikowski and Tolhurst (1973) found that sensitivity
to a grating with a square-wave temporal wave form was about
twice that for a grating turned on for half a period, then off for
half a period, provided the spatial frequency was low. The spec
trum of the on-oil' wave form is equal to half the amplitude of
the square-wave spectrum, plus a component at 0 Hz. If low
spatial frequency detectors are purely transient they will not
reRpond to the O-Hz term, and the response to the square wave
will be twice that to on-off, as observed. At higher spatial fre
quencies the system becomes more sustained and the O~Hz term
becomes more effective, reducing the difference in sensitivity
between the two wave forms. Tolhurst (1975b) has shown that
the detection of a brief increment upon an extended subthreshold
pedestal is influenced only near the onset and offset of the ped-



6-30

The differences persist when the contrast at each spatial fre
quency is set to equal apparent contrast (Breitmeyer, 1975) or
to a fixed number of threshold units (Lupp, Hauske, & Wolf,
1976; Vassilev & Mitov, 1976). As shown in Figure 6.22, the
difference between reaction times to 1 and 16 cycles·degree- 1

is about 90 rnsee, and this figure is the same whether the targets
are three or six times above threshold. These figures are slightly
larger than those found by Breitmeyer (1975). These results
have sometimes been explained in terms ofthe different latencies
of x- and V-type retinal ganglion cells, but as Lennie (1980a)
points out, the differences in conduction times are orders of
magnitude too small, and the latencies to near-threshold lights
may not differ at all (Lennie, 1980b).

'I'olhurst (1975a) examined the distributions of reaction
times to ncar-threshold high and low spatial frequency gratings
at various durations. The distribution was unimodal to a high
spatial frequency (3.5 cycles·debrree 1), but bimodal to low. This
outcome is consistent with the low~frequencygrating being de~

tected only at its onset or offset, as would be the case for a
transient mechanism. 'l'his view is reinforced by Tolhurst's ob
servation that the position of the second mode of the distribution
is always about 250 msec after the offset of the target.

9.4. Sustained and Transient Mechanisms

To characterize the dynamic behavior of some visual cells, Cle
land et al. (1971) adopted the terms sustained, indicating a
response extending for the duration of the stimulus, and tran
sient, indicating a response primarily at stimulus onset and
offset. Watson and Nachmias (1977) have proposed formal def
initions filr these terms. Transient behavior is indicated by an
impulse response whose integral is 0, for example, a biphasic
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Figure 6.22. RCilCtion time as (I function of spatial frequency. Thp threc
curvcs indicl!l' target contrasts of ], 4.'), or 6 times thrt'shold. Thn'sholds
wert' estimated ,IS tht, .'i()'){, point of a yes/no frequency-of-s{>eing curve.
fargets were').J x J.Bo gl·atings with no surround. Background intensity
was 2:1 cd'lll- 2. A 2.J-mm diarlH'lpr <lrtificial pupil was used. Reaction times
inert'asc by about 90 rnscc between spatial frcquencips ofl and 1()
cydps·degrcc 1. (From LJ. !.upp, C. H,luskp, & w. Wolf, Perceplu,lliatencics
to sinusoidal gr,ltings, Vi"ion Rf'w'drch, 16. Copyright 1976 by I'prgamon
Press, Ltd. Repr-intcd with pl'l·rnission,)
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response with positive and negative lobes of equal area. The
transient amplitude response has severe attenuation at low
temporal frequencies, reaching 0 at 0 Hz. In a sustained system
the impulse response is all of one sign, and the amplitude re
sponse has a maximum at 0 Hz. A system intermediate between
these extremes may be relatively sustained or transient. In the
working model (Section 4) the degree of transience has been
captured by a single parameter that governs the amplitude of
a second, negative lobe in the impulse response. Further dis
cussion of these terms was given in Section 3.

The evidence in Sections 9.2 and 9.3 cited above indicates
that the higher the effective spatial frequency of the target,
the more sustained the temporal response. These and other
results led Tolhurst (1973) and Kulikowski and Tolhurst (197il)
to propose the existence of two classes of visual mechanisms:
transient and sustained. This hypothesis has considerable im w

plications for models of temporal sensitivity, and has found
wide acceptance, so it deserves critical examination.

Mild and strong versions of this theory can be distinh'Uished.
rrhe mild version only asserts a relationship between spatial
configuration and the temporal properties of the detecting
mechanism; the strong version proposes the existence of two
distinct classes of mechanisms that respond in parallel to a
visual stimulus. By analogy to physiology, the mild version
imagines the same cells to be capable of either sustained or
transient behavior depending upon stimulus conditions, whereas
the strong theory assumes separate populations of sustained
and transient cells acting in parallel. Examples of the mild
theory are provided by Robson (1966) and llurbeck and Kelly
(1980), who attribute these effects to differing spatial and tem~

poral properties of the center and surround of retinal units.
Proponents of the strong version are Kulikowski and Tolhurst
(1973) and Roufs (1974a).

All the data cited to this point are consistent with either
mild or strong theories. In the absence of further evidence, the
mild theory would be preferred because it is more parsimonious.
The strong theory would be called for by evidence of two sorts.
The first would show that both sustained and transient mech
anisms exist at one spatial frequency. The second would show
that mechanisms operating in the two regimes are functionally
distinct.

9.4.1. Evidence for Parallel Operation

9.4.1.1. Subthreshold Summation. The most direct test for
parallel operation of sustained and transient mechanisms is
subthreshold summation between different temporal frequencies.
Sustained mechanisms are generally thought to be more sen
sitive at low temporal frequencies, and transient mechanisms
at high. The strong theory therefore predicts that low and high
temporal frequencies will excite different mechanisms, and will
show little subthreshold summation. The mild theory on the
other hand predicts that summation between the two frequencies
will be consistent with a single pathway. Using this technique,
Watson (1977) found only modest departures from the predictions
of a single linear pathway with probability summation over
time. However, the data could not rule out the existence of two
independent pathways, one moderately selective for high tem~

poral frequencies, the other for low. In these experiments the
separation between frequency was never larger than 8 Hz; more
convincing evidence oftwo pathways might have been provided
by a larger separation.

9.4.1.2. Adaptation. If sustained and transient mecha
nisms respond in parallel to the same spatial target, as the
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intersect at an intermediate temporal frequency, so that at
high temporal frequencies, flicker sensitivity is hrreater than
pattern, whereas at low temporal frequencies the reverse is
true. Their interpretation was essentially that of Keesey; each
criterion was attributed to a different mechanism, as though
the two curves described the temporal contrast sensitivities of
distinct flicker and pattern detectors. As further evidence for

Figure 6.23. Ratio of identification and detection thresholds for differmt
temporal frequencies. The stimuli were patdll's of Spiltial grating modulated
sinusoidally in time. The spatial envelope was a Caussian in both horizontal
and vertical dimensions, with width bplw{'enl/e points of 12" {al, ,md
J/16° (b). Background intensity was 340 cd'm- L, vipwing was binoculal'
with natural pupils. In each eXperiITH->nt two temporal frequencies wpre used,
one indicated by the arrow, the other by the horizontal position of HlP data
point. On each trial the observer tried to detpct and identify the stimulus,
and separate thn-'sh(llds for detection and idcntificati(lll were cstirniltcd from
the same data. When the ratio of these two thresholds isl (0 dB), the two
frequencies are discriminated as well as thl'Y ,Ire (Il'll'(:ted. -lhl' fillt'd symb(lls
show cases in which ,I statistical test indicated that thl' two stimuli were
discriminated as well as they were detected. This occurs only when one
tempmal frt'quency is very high and the other wry low. TIH'sC results ,He
consistent with two I,lbpled pathways, one selectiw fm high temporal frc
quencies, the other fot" low. Similar rl'sults are obtaim~d at both low (<I) and
high (b) spati<:d frequencies. (From A. 13. Watson &. J. C. Robson, Discrimination
at threshold: Labellpd dptectors in human vision, Vision Rpsf'drch, 2/ . Copy
right 19t1 1 by Perg<:lmon Pr'pss, Ltd. Reprinted with permission.)
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strong theory supposes, then it might be possible to adapt se
lectively one of the two. For example, if transient mechanisms
are morc sensitive at high temporal frequencies, then adapting
to a high temporal frequency might reduce their sensitivity
and produce a selective reduction in sensitivity at the high
frequencies. More quantitative predictions have not been made,
and would require assumptions regarding the temporal sensi
tivity of each mechanism, the manner of adaptation, and how
thresholds are determined when both mechanisms are active.

Evidence for temporal frequency selective adaptation has
been sought by numerous authors (Green, 1981; Nilsson, Rich
mond, & Neh;on, 1975; Pantle, 1971; Pantle & Sekuler, 1968;
Smith, 1970, 1971). Despite the variety of techniques used,
these experiments are unanimous in showing very little selective
adaptation. In addition, the experiments have not generally
avoided various sources of artifact, such as adapting stimuli of
equal contrast rather than equal "sensation magnitude," and
testing and adapting stimuli with different average intensity.
We may also question whether selective adaptation is compelling
evidence for parallel operation ofindependent pathways. A single
pathway may contain elements that are frequency selective
and adaptable, yet do not themselves constitute a "mechanism."
This issue is discussed by Watson (1977).

Tolhurst (1973) has shown that following adaptation to a
stationary grating, different patterns ofthreshold elevation are
found depending upon whether the test pattern moves or is
stationary. He proposed that the stationary test revealed the
adaptation of the sustained system, the moving test that of the
transient system.

.9.4.1.3. Discrimination at Threshold. If sustained and
transient mechanisms are "separate labeled" pathways (see
Section 3.6), then a stimulus that at threshold exclusively excites
the transient mechanism should be perfectly discriminated from
a stimulus which exclusively excites the sustained mechanism.
In agreement with this prediction, Watson and Robson (1981)
found that a low and a high temporal frequency were perfectly
discriminated. Some of their data are shown in Figure 6.23.

.9.4.1.4. Threshold Sensations. In his 1958 report, de Lange
noted a difference in the nature of the flicker perception de
pending on "frequency" (p. 782). This observation has been echoed
by numerous authors. At detection threshold a spatial pattern
that is modulated sinusoidally in time may appear as primarily
a spatial or a temporal variation. These two threshold sensations,
called "pattern," and "flicker," "swell," and "agitation," as well
as other names, have been described by van Nes et a1. (1967),
Rashbass (1968), Watanabe et al. (1968), Richards (1971), Keesey
(1972), Kulikowski and Tolhurst (1973), and Roufs (1974a).
The threshold sensation ofpattern predominates at low temporal
and high spatial frequencies, whereas flicker predominates at
high temporal and low spatial frequencies. Figure 6.21 shows
the approximate extent of these two regimes.

Van Ncs et al. (1967) noted that thresholds for bofh sen
sations could be measured for the same stimulus. At detection
threshold either pattern or flicker is evident; at some higher
contrast the other sensation emerges. Keesey (1972) had ob
servers adjust the contrast of a thin bar to each threshold at a
number of temporal frequencies, thus tracing out TCSFs for
each of the two criteria. The two curves differed in shape, and
Keesey proposed that the two thresholds were due to difIcrent
mechanisms with different temporal properties. Kulikowski and
Tolhurst (1973) used the same technique with spatial grating
targets, with the results shown in Figure 6.24. The two curves
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TEMPORAL FREQUENCY (hertz)

Figure 6.24. Temporal contrast sensitivity functions meilsured with flicker
,mel pattern criteria. TfH' spatial target was il sinusoidal grating of 0./\ (upper
graph) ml2 cycles·degree I (Iowpr grilph). Temporal wave form was si
nusoidal. OP{'11 symbols result when the observer is instructed to adjust
contrast until the sfirnuills appCilfS to "flicker"; f'dled symbols result when
contrast is adjusted until "spalial pattcrn" is evident. The curves in the lower
graph arc the S,HT1P i15 those in the upper graph but shifted vertically by
different amounts. F1ickt~r and pilttern thresholds have different temporal
contrast spnsitivity functions which mow independently with changes in
spalial frequency. Flicker sensitivity is high allow spatiill <ltld high temporal
frequencies; pattern smsilivity is high at high spatial and low tempordl fre
quencies. O'rorn J. J. Kulikowski & D. J. Tolhurst, Psychophysical evidence
for sustained and transienL rnechcHlisms in human vision, Journal of ehysiology,
19n, 2.>1. Reprinted with permission.)

Although the two sensations discussed are robust and vivid,
a compelling arb'Ument that they are due to parallel independent
mechanisms has not yet been provided. Furthermore, various
results suggest that observers are not very good at describing
their own threshold criteria, and that at threshold in the flicker
regime observers retain some information about pattern,
whereas in the pattern regime they retain information about
temporal attributes.

Nachmias (1967) found "sustained" and "transient"
threshold-duration functions at high and low spatial frequencies,
respectively, even though he used forced choice between or~

thogonal orientations to measure threshold. If only sustained
mechanisms convey pattern information, only sustained thresh~

old duration curves should have been observed. Similarly, Der
rington and Henning (1981) have shown that at both high and
low rates of temporal modulation, thresholds for forced-choice
discrimination between orientations of 0 and 900 are similar to
thresholds for simple detection measured with a two~interval

forced~choice method. When the rate of temporal modulation
is high (10 Hz), the orientation thresholds show little decline
in sensitivity at low spatial frequencies. If the mechanisms that
detect low spatial, high temporal frequency stimuli conveyed
no information about spatial pattern, they would be incapable
ofdistinguishing between gratings at right angles, and threshold
for this discrimination would be higher than for detection. As
Derrington and Henning note, this result casts doubt upon the
ability of the observer to describe the information present in a
threshold stimulus, because their observers were unaware of
spatial information in stimuli whose orientations they judged
correctly.

Watson and Robson (1981) looked at discrimination at de
tection threshold between hrratings ofvarious spatial frequencies.
Even when they were well within the transient regime (16 Hz),
observers could discriminate perfectly between very different
spatial frequencies. Again this suggests that if there are distinct
transient mechanisms, they are not entirely without spatial
selectivity.

9.4.2. Other Differences between Sustained and Transient
Regimes. Although the experiments cited in Section 9.4.1.3
clearly indicate spatial selectivity in the mechanisms that op~

erate in the transient regime, they do not imply that the spatial
selectivity is the same as that in the "sustained" regime. For
example, Derrington and Henning (1981) only examined dis
crimination between orthogonal gratings, and not between
gratings at smaller angles. Sharpe and Tolhurst (973) found
that spatial adaptation had a considerably broader orientation
bandwidth (22°) when the gratings drifted than when they were
stationary (13°). Pantle (1973) examined summation between
gratings an octave apart in spatial frequency and found more
summation when the compound pattern moved than when it
was stationary. Watson and Robson (1981) compared the relative
discriminability of spatial frequency at threshold for 6rratings
modulated at high and at low spatial frequencies. They found
that discrimination was much poorer at high temporal fre
quencies; only an octave difference in spatial frequency was
required for perfect discrimination at 0 Hz, but 2-3 octaves
was required at 16 lb:. To summarize, the mechanisms that
detect patterns at high temporal frequencies do not appear to
be completely without spatial selectivity, but do seem to be less
selective for spatial frequency and orientation than are the
mechanisms that detect stationary or slowly moving patterns.

Another difference in the selectivities of the mechanisms
that serve the "sustained" and "transient" regimes is that the
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this idea, they noted that a change in spatial frequency shifted
each curve vertically, but did not change its shape. This meant
that within each pathway, spatial and temporal sensitivities
were separable. Furthermore, the vertical shifts were different
for the two criteria, implying that the two mechanisms had
different spatial sensitivities, the flicker mechanism being rel
atively more sensitive at low spatial frequencies and the pattern
mechanism at high, in agreement with Figure 6.21.

King-Smith and Kulikowski (1975) used Jiicker and pattern
criteria and the technique ofsubthreshold summation to examine
the spatial selectivity of sustained and transient mechanisms.
The receptive fields they inferred from their data were two to
four times wider fhr the flicker than for the pattern criterion.
This agrees with the generally higher spatial acuity of the
pattern criterion (see Fig. 6.21).
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latter are selective for direction of mation, whereas the former
are not. E. Levinson and Sekuler (1975) showed that the sum
of two gratings drifting in opposite directions (equal to a coun~

terphase grating of twice the contrast) was little more visible
than either component alone, as though each was detected by
a separate direction-selective mechanism (see Section 10). Wat
son, Thompson, Mnrphy, and Nachmias (1980) showed that
this result held only when the spatial frequency was low or the
temporal frequency was high, that is, when the velocity was
above about l°'sec <I, This corresponds closely to the "transient"
regime as reflected by "flicker" sensations (see Figure 6.21),
Watson et al. (1980) also showed that the observers were able
to discriminate the direction of motion at detection threshold
in the "transient" regime but not in the sustained regime. This
is again consistent with the idea that the transient mechanisms
respond selectively to motion, and signal motion to the observer.

10. IMAGE MOTION AND TEMPORAL
SENSITIVITY

between sensitivity to temporal fluctuations and to moving pat~

terns.

10.2. Direction Selectivity

A mechanism is direction selective if it responds primarily or
exclusively to movement of a pattern in one direction but not
in another. In view of the eye's evolutionary adaptation to its
environment, we might expect it to be optimized for the analysis
of motion, and hence to contain direction~selectivemechanisms.
A review of the literature on direction selectivity is given by
Sekuler (1975). Evidence for direction selectivity is of three
sorts: subthreshold summation, adaptation, and discrimination
at threshold.

10.2.1. Subthreshold Summation. E. Levinson and Sekuler
(1975) noted that a sinusoidal grating modulated sinusoidally
in time is equal to the sum of two gratings with half as much
contrast moving in opposite directions,

COS(21TUX) cos(21Trut) = lh{cos[21TU(X - rO[

{\o(u,v,w) '-= Cl(U, v, W + rxu + ryu) . (65)

Consider an image as defined in Section 2 with a contrast dis~

tributlon C'(x, y, t). Let the image be moved at a rate of rO·sec· 1

in direction O. The speed in the horizontal direction is rx = r
cos e, and in the vertical direction, ry = r sin A. The contrast
distribution in the moving image is then

The three~dimensionalFourier transform of the original image
can be written C(u, v, w), where u and u are horizontal and
vertical spatial frequency in cycles' degree -1 and w is temporal
frequency in hertz. This (complex) transform describes the spatial
and temporal frequencies that make up the image. The transform
of the moving image is then

Much of the temporal variation in light intensity in natural
visual experience arises from motions of objects or of the eye.
In this section, we consider briefly some relationships between
temporal sensitivity and sensitivity to image motion. The theory
of motion sensing is dealt with at greater length in Watson and
Ahumada (l983a, 1983b, 1985).

10.1. Moving Images

f cosI21fu(x + rt)1} (66)

where r is the speed of motion. A direction~selective mechanism
would respond to only one or the other of the two moving com~

ponents. Thus if the counterphase grating is detected by a di~

rection~selective mechanism, it should have a threshold about
twice that for either of the drifting components. rl'heir data
were largely consistent with this direction-selective prediction.

Using a forced~choice method, Watson et al. (1980) tested
this prediction at a wider range of spatial and temporal fre~

quencies. They found it held only when the velocity was above
about lO·sec- I . At lower velocities, moving and counterphase
thresholds were more nearly equal. They proposed that within
this latter range the stimuli were detected by nondireetion~

selective mechanisms. These two regimes correspond roughly
to the sustained and transient regimes discussed::'n Section 9.4,
which supports a suggestion ofE. Levinson and Sekuler (1975)
that the direction~selectivemechanisms are part of the transient
system.

These important results further constrain any model of
temporal sensitivity. It must acknowledge that temporal fluc
tuations with a "velocity" above 1. cycle· degree I are detected
by direction~selectivemechanisms. This is a further nonlinearity
in the detection pathway, because in a direction~selectivc system,
response to left and rightward moving stimuli will fail to add.
This is so even though each direction-selective mechanism by
itself may be linear. A model of a linear direction~selective

mechanism is given in Section 10.3.

10.2.2. Discrimination at Threshold. If two stimuli are
detected by different labeled mechanisms, they should be dis
criminated as well as they are detected (see Section a.6). By
this logic, if gratings arc detected by direction~selcctivemech
anisms, two gratings that drift in opposite directions should be
identified as well as they are detected. Watson et al. (1980)
tested this prediction by measuring separate thresholds for de~

tecting and identi(ying the direction of a grating moving in
either of two opposite directions. As shown in Figure 6.25,
thresholds for detecting and for identifying the direction are
about equal at 2 cycles·degree- l regardless of the temporal
frequency, and at 8 cycles·de6:rree·· 1 when the temporal frequency
is high. These arc roughly the same conditions in which

(64)C',.,o(x,y,t) = C(x - rxt,Y - ryt,t)

Thus moving an image does not introduce new spatial fre~

quencies, but rather alters the temporal frequency associated
with each spatial frequency component. For example, if the
original image is constant in time (w = 0 Hz for all u,u), then
movement imparts to each spatial frequency a temporal fre~

quency equal to the inner product of velocity (rx , Ty ) and spatial
frequency (u, u), that is, rxu + 'yyv. This is equivalent to the
product ofthe spatial frequency and the component ofthe velocity
in the direction of the spatial frequency. In the simple case of
a vertical sinusoidal grating of frequency u cycles·det,,:r:ree 1

moving horizontally at speed TO'sec 1, the resulting temporal
frequency is ru. This is the rate at which contrast will vary
over time at any point in the image.

Equation (65) states the fundamental relationship between
the velocity of an image and its temporal frequency components.
TI. ~',--,.......... " ......"~,,... ~l h~ .. ~~ -I',,~ •• _.-J~_~-l-~_.-J:__ -l-L" 1~-l-:~__ ~1_: __



TEMPORAL FREQUENCY (hertz)

FiI,;urc 6.25. Ratio of thresholds for detecting ilnd for identifying the direction
of a moving grdting. Each trial consisted of two intervills; in one a grating
moved either to the left or tht' right. The observe I" reported the interval
containing the grilting, and the grating direction. Detection thresholds were
('stirn,lt{~d from interval judgments, identification thresholds from direction
judgments. ()pPI1 symbols ,lre for a cyclcs·degr"ee- I, filled symbols are for
:2 cyclcs·dcgIT~{, I. Different symbols arc for three different observers. Detection
<mel identification thresholds arc about equal except when the spatia! frequency
is high and the temporal frequency is low, that is, at low velocities. (from
A. B. Watson, P. C. Thompson, B. J. Murphy, & J. Ni.lchmias, Summation
of gratings moving in opposite directions, Vision Research, 10. Copyright
19BO fly Pprgamon Press, Ltd. Reprinted with permission.)
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spatiotemporal character when they wish to explain the visibility
of targets that move. Section 10.3 shows how this may be done.

10.3. Model of a Motion Sensor

To answer the need for an explicit theory of sensitivity to moving
stimuli, Watson and Ahumada (1983a, 1983b, 1985) have con·
structed a model of a direction-selective motion sensor. Th€
sensor is a linear spatiotemporal filter with a temporal amplitude
response equal to that of the working model described in Section
4. The spatial amplitude response is a Gaussian, centered on a
frequency of u, u, with a bandwidth of 1 octave. The impulSE
response is approximately a patch of sinusoidal grating moving
briefly in a direction orthogonal to its bars. The sensor is selectiVE
for direction, but also for spatial frequency, orientation, and
location. Each sensor is a discrete entity located at a point, and
the visual field is imagined to be covered by sensors at different
locations, orientations, and spatial frequencies.

When stimulated by targets that are separable in spaCE
and time, this sensor behaves identically to the linear filter oj
the working model. The motion sensor may be regarded as a
version of the working model in which selectivity for direction
and for spatial frequency have been made explicit.

A second, nonlinear stage of the model uses the output oj
the linear sensors to estimate the two-dimensional velocity oj
image components localized in space and spatial frequency
(Watson & Ahumada, 1985). However, the spatial and temporal
sensitivities of the model are governed by the first stage, se
that the second stage is beyond the scope of this chapter.

10.4. Stroboscopic Apparent Motion

results are consistent with the existence of direction-selective
mechanisms at medium to high velocities and nondirection
selective mechanisms at low. However, when the velocity is
low, the retinal velocity of the target may be due more to eye
movements than to motions ofthe target, thus preventing correct
identification of direction. This possibility has been excluded
by Mansfield and Nacbmias (1981), who showed that the results
of Watson et al. (1980) arc essentially unaltered by image sta
bilization.

10.2.3. Adaptation. Following adaptation to a leftward
moving grating, threshold is elevated more for a leftward-moving
grating than for a rightward-moving grating (Pantle & Sekuler,
1969; Sekuler & Ganz, 1963; Tolhurst, ] 973). This is consistent
with the idea that the leftward-moving grating selectively ex
cites, and adapts, a mechanism selective for leftward motion.
The smaller threshold elevation in the unadapted direction is
usually attributed to a nondirection-selective elem(Omt in the
pathway prior to the direction-selective stage CK Levinson &
Sekuler, 1975).

10.2.4. Summary. For grating stimuli, detection in one
regime appears to be direction selective, and in the other regime,
nondirection selective. These two regimes correspond roughly
to the "transient" and "sustained" regimes, respectively. In light
of the evidence that many, perhaps all, stimuli are detected by
the same mechanisms that detect gratings (N. Graham, 1977),
this suggests that many of the stimuli used to study temporal
sensitivity are detected by direction-selective mechanisms. This
view is not inconsistent with the working model used throughout
this chapter, because the nonlinearity implicit in direction se
lectivity can be part of the threshold process. However, it does
require that models of temporal sensitivity take on an explicitly

Stroboscopic apparent motion is the illusion of smooth motior
produced by a rapid sequence of static views of an object ir
motion, as in movies and television. Recently, this phenomenor
has been reexamined (Morgan 1980; Watson & Ahumada, 1982
Watson, Ahumada, & Farrell, 1983). Watson and colleague~

have explained the relationship between this illusion and the
spatial and temporal sensitivity of the eye. They note that ir
a plot of the spatiotemporal frequency domain, with 11 runnin€
horizontally and w vertically, the spectrum of a line moving tc
the left with velocity r is a line impulse passing through th(
origin with slope ~ r. The spectrum of stroboscopic motion i1
the same, with the addition of parallel replicas at intervals 0

the strobe frequency (Crick, Marr, & Poggio, 1981, made th(
same observation), They reason that these replicas will be in
effective, and smooth and stroboscopic motion will appear iden
tical, when the replicas lie outside the region of spatial ane
temporal frequency to which the eye is sensitive. They note
that to a first approximation, this region is a rectangle wit}
halfwidth of wHz and halfheight of acycles' degree [(see Fig
6.21). This leads to the prediction that, for smooth and strobee
lines to appear identical, the strobe rate must be b'Teater thar
or equal to w + ilr. Figure 6.26 shows the success of thes(
predictions for two observers. For both observers, the tempora
frequency limit is about 30 Hz, which is a good estimate ofth(
CFF under their conditions. The spatial limits are 13 cycles
degree I (ABW) and 6 cycles'degree I (JEF), which are lov
but not unreasonable, given the brief exposure, low contrast
and other masking components. In conclusion, stroboscopic ap
parent motion can be qualitatively explained in terms of thl
known temporal and spatial filtering action of the eye. From:
practical point of view, this explanation provides a formu};
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Figure 6,26. Critical temporal sampl ing frequency as a function of velocity
for a moving line. Critical silmrling frequency is the lowest rate at which
the image can be time-sampled (strobed) keeping smooth and strobpd
motion indistinguishablp. Criti(:;l! sampling frequency was ll1C'dsured by means
of a forced-choice task in which the observer selected which of two presen
tations he or she believed to be strobed. The stimulus was a vertical line 50
min in length and 0.65 min wide which moved horizontally at the specified
velocity (r). Observers fixated a point in the center of the path of travel. The
distance traveled w<:lsVr S/4° and the duration S/(4Vr) sec. Background
intensity was 50 cd-m/.. The straight lines are fittpd by eye, and are consistent
with the hypothesis that stroboscopic apparent motion is due to spati;:ll and
temporal filtering by the visual system_ The slope and intercept of the line
(Ire estimates of the spatial and temporal frequency limits of the filter. For
both observers, the intercept is about JO liz; the slopes are 6 cycles' degree-I
OIT) and 1.·~ cycles·degree 1 (ABW). (From Watson, Ahurnada, & F<lrrell,
198].)

that can be used to specify the temporal strobe rate required
to display any particular moving image.

11. LIGHT ADAPTATION AND TEMPORAL
SENSITIVITY

11.1. Background

rrhe sensitivity of the eye declines as the average level of il
lumination increases, and this phenomenon is referred to as
light adaptation. A comprehensive discussion of light adaptation
is provided by Barlow (1972) (also see Hood & Finkelstein,
Chapter 5, and Pokorny & Smith, Chapter 8). The degree of
adaptation is not the same for all stimuli, and thiH has made
the subject a matter of continuing interest in all areas of vision
research. This is certainly true in the area oftemporal sensitivity,
in which the amount of adaptation depends upon the temporal
wave form of the stimulus. For example, light adaptation has
a greater effect on low temporal frequencies than on high, and
on long pulses than on short. The following sections document
some of these results, and show that they may have a common
interpretation in terms of a linear model whose parameters
depend upon backf,:r:round intensity.

11.2. Intensity and Contrast Thresholds

Recall that target contrast is defined as target intensity divided
hu h~~ly~~•• ~,l ~~.j.~~f>~-I-" '1'1--;" ro_",,-I-, ,,,,,;1--1,, _" .. c _
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fusion in discussing light adaptation, because contrast and in
tensity thresholds change at different rates as a function of
background intensity. For example, if intensity thresholds rise
in proportion to background, contrast thresholds remain con~

stant, whereas if intensity thresholds remain constant, contrast
thresholds decline in proportion to background intensity. In
general, if the slope of the relation between log intensity
threshold and log background is S, then that between log contrast
threshold and log background is S 1. Similar rules apply for
sensitivity, defined as the inverse of threshold. For example,
the slope relating log intensity sensitivity and log background
would be - S, and that between log contrast sensitivity and log
backb'TOund would be 1 - S,

11.3. Weber, de Vries-Rose, and Linear Laws

As background intensity is raised from zero, thresholds usually
pass in sequence through three regimes. In the first, threshold
intensity is unaltered by background intensity. This regime is
called linear, because the principle of superposition, as applied
to target and background, is upheld. The second regime, which
has considerable theoretical importance but few empirical in
stances, is the de Vries-Rose law, in which the intensity threshold
rises as the square root ofbackground intensity (de Vries, 1942;
Rose, 1942). This is the behavior expected of an ideal detector
limited only by quantum fluctuations (though it may also be
generated by quite different processes). Note that de Vries-Rose
behavior may be exhibited by a detector whose responses, prior
to the decision stage, are linear. Thus the "linear" designation
applied to the previous regime should not be taken too literally.
In the third regime, intensity thresholds rise in proportion to
the background intensity. This is the well~known Weber law.
In a plot of log threshold intensity versus log background in
tensity, these three laws arc straight lines with slopes of 0, y~,

and 1, respectively. In a plot of log contrast sensitivity, they
are transformed into straight lines of slope 1, 1/~, and O. These
three sorts of adaptation behaviors are sketched in the insets
to Figure 6.27. As with most sensory "laws," these rules should
be regarded only as prototypes, which approximate the data
within some regime.

11.4. Sinusoidal Wave Forms

Figure 6.27 illustrates some general properties of the effect of
background intensity upon temporal sensitivity. (1) Intensity
thresholds rise with increasing background intensity. (2) The
rate of rise increases as background increases. This rate of rise
is approximately consistent with the linear law at the lowest
backgrounds, with the de Vries~Roselaw at intermediate back
grounds, and with the Weber law at the highest backgrounds.
(3) The rate of rise is greater at low temporal frequencies than
at high. Consequently, the Weber regime begins at a lower
background for lower temporal frequencies.

There is a lower limit to the background intensity that
may be used to measure thresholds for sinusoidal targets,
reached when background intensity and threshold intensity
are equal. The linear region, when it is present, extends from
this lowest usable background up no farther than 1.5 log units.
The de Vries-Rose law appears only as a brief transition between
linear and Weber regions.

Another perspective on the relations among contrast sen
sitivity, temporal frequency, and background intensity is pro-

,. 1 " 1
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Figure 6.27. fhreshold as a function of background intensity. The temporal
wave form was sinusoidal at 1,S Of 20 liz. The spati<:ll target was il r disk
with no surround. Thresholds were measured by adjustment. The same dat'l
Me plotted both as intensity thr"csholds (a) und contrast sensitivities (b). The
small insPls show the log-log slopes corresponding to linear (ll, de Vries
Rose (DK), and Weber (W) laws. The d,)la pass in sequence through each of
thl' laws, At tlU' lower lernpor<ll frequency adilptation is Illore pronounced
and the Weber law regime is entered at il low{'r background intensity {data
(rom de Li1llge, 19SII).

sensitivity. The outermost curve, for a sensitivity of 1, represents
the CFF. It grows roughly in proportion to log background in
tensity, as prescribed by the Ferry-Porter law. This figure also
illustrates the relative insensitivity oflow frequencies to back
h'Tound intensity, and the enlarged bandwidth at higher back
grounds.

Because light adaptation affects each temporal frequency
differently, the TCSF changes shape as background intensity
is altered. This is evident in Figures 6.7, 6.28, and 6.29. At the
lowest backgrounds, it is "low-pass" in form, showing relative
attenuation only at high frequencies. As background intensity
is increased, low temporal frequencies move quickly into the
Weber regime and show no further improvement in contrast
sensitivity. The high frequencies, on the other hand, continue
to gain in sensitivity so that the relative attenuation at low
frequencies becomes pronounced, and a clear peak in sensitivity
emerges at a middle frequency. Furthermore, as backgrounds
become more intense, higher frequencies show greater gains
in contrast sensitivity. One by one the lower frequencies reach
their Weber regime and cease to improve, whereas higher fre~

quencies continue to accrue sensitivity. As a result, the peak
in sensitivity increases and moves to higher and higher fre~

quencies, the high-frequency limb moves progressively right
ward, and the overall bandwidth of the TCSF is enlarged. These
effects agree with the common observation that the light-adapted
eye is "faster" and more "transient." In terms of the working
model, these changes correspond to a decrease in the time con
stant (T), an increase in the transience parameter ('), and an
increase in sensitivity (~) as background is increased.

An alternative view of data like those in Figure 6.28 is
given in Figure 6.29. The data in panel (a) of this figure are
the same as those in Figure 6.7, but arc plotted here as intensity
sensitivities rather than contrast sensitivities, achieved by
simply dividing each contrast sensitivity by the corresponding
baCkh'TOund intensity. In log-log coordinates, these divisions
correspond to vertical shifts. Despite substantial differences in
experimental conditions, and differing behavior at the low fre
quencies, all three experiments show that, as noted by Kelly
(1961a) and.J. Z. Levinson and Harmon (961), above about 1
td all the data appear to approach a common curve. Where
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curves for two adaptation levels coincide, then over that region
of frequency and background intensity, thresholds obey the
linear rule (Kelly, 1961a). Note, however, that at any given
frequency, the linear rule extends, if at all, only over a small
range of backgrounds from the lowest upon which it is visible
up by 1 log unit or less. Beyond that point, sensitivity moves
towards the Weber law. Likewise, at any given background,
only a very small range of frequencies will be included in the
linear regime, extending down from the CFF. Kelly (1969a)
and Kelly and Wilson (1978) have attributed this linear high
frequency asymptote to a diffusion process (sec Section 5.11).

Because a large part of the effect of light adaptation takes
the form of vertical and horizontal shifts of the high-frequency
limb of the TCSF, we might expect that suitable scaling of
frequency and sensitivity (equivalent to horizontal and vertical
displacements in log-Jog coordinates) would approximately su
perimpose the TCSFs measured at different background inten
sities. Raul's has attempted this exercise, with the results shown
in Figure 6.30. 'rhe curves agree only to within a factor of about
5, the largest discrepancies being at the lower temporal fre
quencies. Furthermore, Raul's used a small target and no sur
round. Use of a surround and/or a larger target (as in the data
of de Lange and Kelly in Fig. 6.29), would produce still larger
discrepancies at low frequencies. The scaling docs not work
well at low temporal frequencies because, as we have seen, the
TCSF becomes more transient at high backgrounds, and this
change is not included in the scaling operations performed in
Figure 6.30. Nevertheless this scaling procedure provides a
useful condensation of at least the high-frequency data, and
Roufs has shown how it provides a qualitative explanation of
the luminance dependence ofpulse thresholds (sec Section 6.5.3).

11.5. Pulse Wave Forms

As shown in Section 6, the function relating threshold to duration
for a rectangular pulse (the threshold-duration curve) has an
initial segment that falls with a slope of -1, and a second segment
that falls at a more gradual rate. The transition between these
two segments occurs at the critical duration T c with intensity
threshold I(~ (the critical intensity). A rough summary of the
eHect of light adaptation upon pulse thresholds can therefore
be obtained from plots of T,: and Ie as functions of background
intensity. These are seen in Fihrure 6.31, which shows that critical
duration declines as background intensity is raised, going from
about 100 rosec at 0 log td to about 25 rosec at 4 log td. The
figure also shows the differences that may be expected between
observers in the same or difIerent laboratories, and the degree
of precision with which statements may be made about critical
duration. Because both are measures of the time scale of the
temporal response, we might expect a simple relation between
the critical duration and the corner frequency of the 'l'CSF. In
particular, Section 6.5.3 gives theoretical reasons why these
two quantities should be inversely related. Roufs (1972a) has
shown that they are, and this may be appreciated by comparison
of Figures 6.30 and 6,31.

Just as the adaptational changes in the TCSF cannot be
captured completely by scaling of sensitivity and corner fre
quency, so too changes in the threshold-duration curve arc not
completely characterized by changes in critical duration and
critical intensity, In both cases, the missing parameter is the
transience, which also increases with background intensity. As
noted in Section 6.5.2, a transient system shows little or no
imorovement in sensitivitv hevnnrl the ('.ritie;l] nllnlt,illn WhIWPH<.::
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a sustained ::;ystem continues to improve at a rate of about 0.25
in log-log coordinates. Thus we expect the second limb of the
thrm;hold-duration curve to be somewhat flatter at higher
background intensities than at low. This trend is evident in
Barlow's data shown in Figure 6.11.

11.6. Other Wave Forms

At very low background intensities (below 1 td) some authors
have found that the threshold for a decrement may be as much
as o.a log unit less than for an increment. This difference tends
to disappear at more intense back!-,'Tounds.

Pulse-pair thresholds (see Section 7) show the effect of light
adaptation in two ways. First, as back!-,JTound intensity increases,
the time scale of the results is compressed so that, for example,
the delay, at which threshold for an opposite~signed pair is

least, moves from about 50 msec at 328 td to about 70 msec at
61.2 td (Ikeda, 1965; Uetsuki & Ikeda, 1970). Second, on less
intense backgrounds, the second, negative lobe ofthe [.If) function
is reduced or absent. This effect is evident in data of Uetsuki
and Ikeda (1970). Because this second lobe is associated with
the transience ofthe linear model, this result is consistent with
an increasing dehJTee of transience as background level is raised.
This result agrees with observations made with sinusoids and
pnlses. Roufs (1974a) has also studied the effects oflight adap
tation upon pulse-pair thresholds.

11.7. Spatial Effects

As noted in Section 9, temporal contrast sensitivity is not sep
arable from the spatial configuration of target and surround.
Likewise, the effects of adaptation upon temporal sensitivity
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as background level is raised. At 11 cycles·degree I, however,
this feature is absent. Above about 1 td, background intensity
merely shifts the curve vertically and horizontally with little
change in shape. Data from Kelly (1972a), some of which are
shown in Figure 6.32, confirm these observations. One way of
describing the interaction between spatial configuration and
light adaptation is that if the eflective spatial frequency is low,
the transience increases with background intensity; if the ef
fective spatial frequency is high, the system is sustained at all
background intensities.

Kelly's data also show that at low spatial frequencies, as
with disk targets, the adaptive response proceeds from a Weber
law at low temporal frequencies to a linear rule near to the
CFF, passing through an intermediate regime at middle fre
quencies. Kelly's data suggest that at higher spatial frequencies
the intermediate de Vries-Rose regime is enlarged, 80 that the
linear regime may be absent altogether and the Weber regime
present only at the highest baCkh'Tounds.

The following is a summary ofthe effects ofbackground intensity
on temporal contrast sensitivity. The "strenf,rth" of adaptation
can be characterized by the slope of the relation between log
threshold inten8ity and log background. This is equivalent to
the exponent of a power law relating these two quantities. As
we have seen, this slope is bounded by values of 0 (linear regime)
and 1 (Weber regime). We note the following trends in the
strenhrth of adaptation:

1. As background intensity increases, strength increases.
2. As temporal frequency increases, strenf,rth decreases.
3. As spatial frequency increases, strength decreases.

Hegarding the form of the 'I'CSF, as background intensity
is increased, the following occur:

1. Contrast sensitivity increases.
2. Corner frequency increases.
3. Transience increases.

11.8. Summary

This chapter reviews a small part of the very large literature
on human visual temporal sensitivity. An effort has been made
to show that the visibility of many different wave forms, both
periodic and aperiodic, can be understood in the context of a
rather simple model of temporal sensitivity. Some of the effects
of spatial configuration and background intensity upon temporal
sensitivity have also been examined.

Much of experimental and theoretical eHort in this area
has been spent finding ever better mathematical representations
of the relation between the stimulus temporal wave form I(t)

and threshold, and of including ever more refined parametric
efleets of spatial wave form and background intensity. ThiR
endeavor now seems largely complete. A model like the one
proposed in Section 4 seems likely to provide a fairly complete
quantitative account of the visibility of arbitrary temporal wave
forms.

However, a major task for the future will be the integration
of models of temporal sensitivity with models of spatial and
chromatic sensitivity. We may expect future theoretical devel
opments also to include physiological explanations of temporal
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depend upon spatial configuration. I have suggested that many
of the complex spatial effects may be understood by considering
the visually effective spatial frequency of the target. '1'0 this
point, only disk targets have been considered. For a disk target,
this frequency is generally low, and may be lowered by enlan"ring
the disk or removing the surround. Consequently, we might
expect that data for low spatial frequency grating targets would
resemble thresholds for disks.

The first experiments to consider the diflerent efleets of
background intensity on the 'I'CSF at low and high spatial fre
quencies were conducted by van Nes et a1. (1967). Their mea
surements were made with drifting, rather than sinusoidally
modulated gratings, but as noted in Section 10, thresholds for
these two stimuli agree to within a factor of 2. As expected, at
a low spatial frequency (0.64 cycles' degree 1) their data show
a progressively stronger attenuation at low temporal frequencies

Figure 6.31. Critical duration T, (a) and critical intensity 'e (b) as functions
of background intensity. Critical duration is the longest duration of a rectangular
pulse for which reciprocity holds between intensity and duration (Bloc;h's
law). The critical intensity is the threshold intensity at the nitical duration.
filled circles an~ averages of eight subjects of C. II. Craham dnd Kemp
(193H), filled square arc average of two subjects of Keller (1941), filled
triangles are two subjects of Herrick (l 956J, open symbols are subjects from
Roufs (1972a). Target was a 1" hernidisk (C I!. Craharn & Kernp, 19:1B;
Kcller,1941) or a 1" disk (Herrick, 19S6; f{ou(s, 1972a). Critical duration
declines from about 100 msec <:It 0 log td to <:Ibout 25 msec at 4 log td.
Critical intensity im:tl-'<lspS with background intpnsity, entpring <l Weber reginw
at the more intense backgrounds. (From J. A. J. Raufs, Dynamic properties
of vision-I. Experimental relationships between flicker <:Ind flash thresholds,
Visiol) Rp.'ieilrr:h, /2. Copyright 1972 by Pergamon Press, I.td. Reprinted with
permission.)
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sensitivity (which cells do what, and why?). We may hope for
a better understanding of sustained and transient channels in
human vision. Do they exist, what are their roles, and how arc
they involved in the processing of temporal, spatial, motion,
and chromatic information? An area largely untouched in this
chapter that seems likely to receive more attention in the future
is the relation between wavelength and temporal sensitivity.
This includes the wavelength distribution when it is constant
(separable from the temporal wave form) and when it changes
as a function oftime. Another challenge is the effect of temporal
wave form upon color discrimination.

Finally, we are likely to sec less emphasis upon sensitivity
per se and more upon visual information processing of su
prathreshold temporal and spatiotemporal stimuli. A prime
example iH the study of how we deduce the speed and direction
of motion of objects from the spatioternporal intensity distri~

bution I (x, .Y, t) (Fahle & Poggio, 1981; Watson & Ahumada,
1983a, 1983b, 1985).

REFERENCE NOTE

1. Watson, A. B. UnpUblished observations on summation between
pulse pairs as a function of delay and spatial frequency.
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