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OVERVIEW

llOYD .. KAUFMAN
;

NewY'ork UniversitY,New York, New York

The first section of this Handbook. focuses on conceptual· and forced-choice experiment implies' a complex set.· of processes.
methodological issues that pertain broadly to the chapters of The multiplicity and complexityofthe models and assumptions
other sections. Many ofthe chapters ofother sections also contain entailed defy succinct summary. However, Falmagne's.chapter
such material but in 'a .form largely pertinent to the chapters will carry the reader a long way toward a fuller understanding
themselves. The three chapters here are· concerned with very ofthe implications ofeach choice about method.
general methQd~and techniquesand, more important, withthe . The concepts ofthreshold and ofsensitivity are given rigorous
theoretical underpinnings of the methods employed in other definitions, as are their relations to the now pervasive theory
chapters. Thus this section examinesthe often unstated reasons of signal detection. The latter theory·comes to grips with the
for the methods usedin fields as diverse as sensory psychophysics, fact that all psychophysical. tasks have cognitive components,
cognition, and information processing. and. the assumptions··wemake about the guessing strategy

The concepts described in the chapters by. Falmagne .and adopted by th~ subject affect our interpretation ofdata. Falmagne
bySperling and Dosher apply across virtually all the "bound- provides the reader with a basic understanding of the theory
aries"dividing the sections of this' Handbook. Even though ofsignaldetection and the assumptions it entails. This portion
there are real differences between a study of the sensitivity of ofFalmagne's chapterserves as an introduction to the chapter
a sensory system and of, say, divided attention, scientists in bySperling and Dosherthat follows.
both ·these· areas··oftenemploy the same basic assumptions. Sperling.a.ndDosher provide a very general.treatment of
Similarly, chapters in the. section on information processing methods and theories designed to deal with the strategies.em
a.nd those in the section on the perception of pattern and form ployed by humans performing perceptual and cognitivetasks.
are closely related to each other because both areas are strongly The choice andsequencing·of mental operations.by subjects in
a.ffectedbya common set of conceptual tools. the performance of many kinds oftasks may not be directly

Many ofthese conceptual tools are related to the problem observable, but strong inferences can often be drawn using the
of how one is to measure physical stimuli and patterns and methodsand modelsdiscussed inthechapter. The authors dem
relate those measures tothe ways in:which the organism trans- onstrate that these methods andtheories are closely related to

rm-s and responds selectively to attributes ofthe .stimuli and signal detection theory.
a.tterns.Thisproblem. has a longandhonora.ble .history in The. authors choose to examine the application of general
sychology, andit is dealt with atlength in Falmagne's chapter. principles of decision optimization and resource allocation to

its more precise form it is often referred to as Fechner's mental processes occurring within relatively short periods of
oblem, which can be described as the problem of finding a time. Signal detection theoryis one application ofthe concepts
ay to transform a scale of physical magnitudes so that .they of optimization '. to sensory-perceptual tasks. The receiver op-
eproportioIlally related to psychological magnitudes. To un- erating characteristic of signal detection theory is· shown to be
rstand this problem fully, one must grasp the notion of the closely related to the attention operating characteristic and other
,,£chometricfunction, dealtwith at length in this first chapter performance operating characteristics. The authors also discuss
the Handbook. '. Falmagne bases his discussion on the theory how operating characteristics can be used to decide ifindependent
m-easurementandhowit may be applied tomeasuringpsy- resources are being tapped in a complicatedtask or ifa single
010gical phenomena. Thisintroduction to measurement theory resource. is being depleted by' the several aspects ofsuch a task.
uips the reader to . understand better the· psychophysical The discussion ofconcurrent and compound tasks in this chapter
thodsandrelationshipsdiscussedinlaterchapters. provides information that is essential· to full understanding of
9hQJ~e~.~~.Qtl~.Il1ethoclus\lally£~)yithtl1~ma.~$MmptiolJ.~;.~.,.th~.cb.aptersby Welc,ha.l1.d·Warren, Gopher a.nd·.Donchin~Wick:.

out underlying models and processes. Forexample,a simple 'ens, and Moray (among others) in this Handbook. Despite the
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erating characteristic of signal detection theory is shown to be
closely related to the attention operating characteristic and other
performance operating characteristics. The authors also discuss
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diversity of their substance, these chapters reflect a common
need for basic methods, such.as those dealt with here~

The chapter by Sperling and Dosher could have been placed
in· the section on human information processing, and this. in
fact was the original intention. However, it soon became clear
that their message supplemented that of Falmagne and what
they had to say was equally important to chapters dealing with
topics as diverse as human performance, spa.ce perception, and
pattern vision. Therefore, it was placed in this first section.

The chapter by Freeman is quite distinct from the. other
two chapters in this section. It does not .address specific psy
chological or perceptual problems. We chose ·to .include this
chapter here because of the central role ofthe digital computer
as a tool for the perception researcher. We recognize that the
computer has changed the conduct of psychological inquiry,
and it must be given the same type of treatment as is given to
the physics of light in books on visual perception..Nearly all
workers in perception and cognition employ computers and their

THEORY AND METHODS

graphies.capabilities to produce the stimuli oftheir experiments.
This chapter is designed to inform the reader about how com
puters are used to generate stimuli for perception research. It
discusses methods ofdisplay and the ways in. which lines and
curves are generated, and it introduces the complexities of
transformations and· projections of images, all matters of vital
concern to the perceptionist. It is also relevant to more practical
matters, for example, the ability oftoday's computers to simulate
scenes, such as those used in flight simulators.

The sectiGn of Freeman's chapter on stereoscopic displays
is not as detailed as some of the other sections. The reason for
this is that the details of stereoscopic display techniques are
covered in the chapter by Arditi, and the reader wishing more
information is ref-erred to that source.

In conclusion, it. should be noted that there· was no single
editor for this section.. D. MacLeod, J. Thomas, M. Posner, K.
Boff, H. Sedgwick, and L. Kaufman all contributed to the editorial
process.
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PSYCHOPHYSICAL MEASUREMENT AND THEORY

2. CONSTRUCTION OFAPHYSICAl SCALE
FOR lENGTH (AN EXAMPLE OF EXTENSIVE
MEASUREMENT)

1.2. Key.. References

By extensive measurement, we mean the measurement offun
damental physical.quantities, such as mass or length, .using
qualitative devices. We shall give a concrete example. Consider
a collection ofthinrods. The problemat hand is the measurement
oftheir length, but no rulers or devices are A
natural way ofmeasuring the length
the following steps:

'Pick:aparticular,

2.1. Outline

.Auseful •. complement to this .chapter. is a monograph· by Ges
cheider (1976). As described in the preface,· it is addressed t
advanced undergraduate· students with some background i
statistics. This treatment differs from ours in that it covers a
greater variety of empirical. issues but .pays less attention to
the details ofthe mathematical aspectsofthetheories. Moreover,
noattemptis made to cast psychophysical mea~urementinthe
general framework ofmeasurement theory~

Sections 6 and 7. deal. with the Weber functions·Li'il" th
methods currently in use to estimate those functions experi
mentally (stochastic approximation, uIHlown),.and a numbe
of models proposed. to explain typical. data. Various general·
zations of Weber's law are considered.

Section 8 is devoted to signal detection theory,which i
presented so as to .play down·. the notion that the· subject .
behaving as a statistician applying some optimal decision pr
cedure. The. prominent place usually· given· to.· this. notion .
misleading, in our opinion. However interesting, it is·· only
case· ofa general theory justifying apa1ticular analysis of th
so-called receiver operating characteristic (ROC) curves.

As ·suggested by the title of Section 9, the material ther
is rather mixed, discussing a variety of topics, among ·whic
are."probabilitysummation," models for conjointmeasureme
(deterministic and probabilistic), bisection, and so on.

Finally, Section 10 is devoted to the many issues relate
to psychophysical scaling.

Although quite extensive, this chapter does not cover a
the topics that its title could evoke. Two omissions among othe
,ar~colq.r.theoryr,.·· whic~ is .•. disc~ss~d.by. Pokqrny •.~ndS,mit
Chapter 8, and byWyszecki,Chapter 9, and multidimensiona
scaling,·which isalso.discussedby Wyszecki, Chapter·9.

In writing, we·had illmirida readerwith.a·minimal back
groundin mathematics, corresponding to a few calculus course
and a good course in probability or· statistics.. Notions such a
.random. variables,·distributions, and.expectations are assume
to be solid items of the reader's statisticalequipment. A one
semester coursein algebra may be helpful at some point but i
by no rneans essential. . ... ... . ....• . . ..... .

Itis our firm belief that there 'has been in psychophysic
theory a great deal more controversy than there was reasonabl
ground for. The attentive readerwill notice a deliberate atte;mp
to minimize the disputes and.to give a unified presentatiop..

(1)Pa,b = F[u(a) - u(b)] ,

G. T. Fechner,··thefounder ofpsychophysics,· was originally a
professional physicist. At the age of39, he turned to psychology
and set out to apply the methods of experimental physics to the
measurement ofsensory events. To fully understand the details
ofFechner's idea, as well as some ofits difficulties, an excursion
into physicalIIleasurement is. necessary.

Section 2 contains a detailed description of the procedures
that are the basis for.the measurement offundamental physical
quantities, such as length or mass. The reader interestedonly
in· the applications.·of psychophysical models will be tempted
to skip this section and may do so without much harm. However,
we·urge anyone striving for a.solid understanding of the foun
dations ofpsychophysical measurement to study Section 2 care
fully.· A comparison between physical and psychophysical mea..
surement is ofinterest for two major reasons.

First,measurement procedures proposed by .Fechner for
psychophysical, pheno:rp.ena resultfrom a straightforward..
transposition of those applicable in physics. In both cases, the
procedures arejustified by .a testable theory, and a ·de~ailed

comparison of the two theories is instructive. Second,. on the
background·ofphysical measurement, it is·much easier to dis..
entangle substantive from philosophical issues, the confusion
of which has been an enduring plague in this field.·A number
ofauthors have contributed to a clarification of the foundations
of psychophysical measu:rement, and key references are given
in due place. The seminal role ofR.D.Luce is recognized here,
however. . ..

Section 3 contains.a description of Fechne~'sapproach to
psychophysics. The basic notion is that of a probability Pa,b

that stimulus a is perceived as exceeding stimulus b from the
viewpoint of. some sensory attribute. The theory justifying
Fechner's procedure. is. that this probability only depends on
the difference u(a) ~ u(b), in which uis some unknown sensory
scale, a candidate for a measure of"sensation." In symbols, this
gives rise.to the equation

with F a strictly increasing continuous function. This equation
occupies a central place in psychophysical theory. In fact, it
would be only a mild exaggeration to say that a substantial
part of psychophysical theory consists in comments onEq.(l).

Section 4 reviews various discrimination models, many of
which turn out to be specialcasesofEq. (I). This section contains
a discussion of the so-called law of comparative judgment of
Thurstone, a particular instance of which (case V) is obtained
when the functionFin Eq.(l) isthenormal integral.

The treatment of psychometric functions given in Section
5 may surprise the knowledgeable reader. It covers in detail a
number of important questions often left to the intuition of the
psychophysicist. Examples of such· questions are,.·Whatdoes it
mean to say that two or more psychometric functions are "par
allel" or that they can be rendered so by a transformation ·of
the physical scale? What is .the relationship between "paral
lelism" and Eq. (I)? lna two-alternative forced-choice design,
the probability· Pa,b is typically estimated ·.byaveraging the
frequencies in the twoalterriatives. What·'· is the· theoretical
impact'.i.~any,?f.·this.... standard· practice, in. particular with
respect'to 'Eq. (1)?· . '

1.1. Outline of This Chapter

1.· PREllMI NARIES

PSYCHOPHYSICAL MEASUREMENT AND THEORY

1. PRELIMINARIES

1.1. Outline of This Chapter

1.2. Key. References

By extensive measurement, we mean the measurement offun
damental physical quantities, such as mass or length, using
qualitative devices. We shall give a concrete example. Consider
a collection ofthin rods. The problem at hand is the measurement
of their length, but no rulers or other devices are available. A
natural way ofmeasuring the length ofa given rod would involve
the following steps:

1. Pick aparticular, fuedrddas a "Unit."

2.1. Outline

2. CONSTRUCTION OF A PHYSICAL SCALE
FOR LENGTH (AN EXAMPLE OF EXTENSIVE
MEASUREMENT)

Au.seful complement to this chapter is a monograph by Ges
cheider (1976). As described in the preface, it is addressed t
advanced undergraduate students with some background in
statistics. This treatment differs from ours in that it coverS a
greater variety of empirical issues but pays less attention to
the details ofthe mathematical aspects ofthe theories. Moreover,
no attempt is made to cast psychophysical measurement in the
general framework of measurement theory;

Sections 6 and 7 deal with the Weber functions A1l" th
methods currently in use to estimate those functions experi
mentally (stochastic approximation, up--<!.own), and a numbe
of models proposed to explain typical data. Various generali
zations of Weber's law are considered.

Section 8 is devoted to signal detection theory, which i
presented so as to play down the notion that the subject .
behaving as a statistician applying some optimal decision pr
cedure. The prominent place usually given to this notion i
misleading, in our opinion. However interesting, it is only
case of a general theory justifying a padicular analysis of th
so-called receiver operating characteristic (ROC) curves.

As suggested by the title of Section 9, the material ther
is rather mixed, discussing a variety of topics, among whic
are "probability summation," models for conjoint measuremen
(deterministic and probabilistic), bisection, and so on.

Finally, Section 10 is devoted to the many issues relate
to psychophysical scaling.

Although quite extensive, this chapter does not cover a
the topics that its title could evoke. Two omissions among othe
.are color theory, whic~ is discusse,d by Pokorny and S.mit
Chapter 8, and by Wyszecki, Chapter 9, and multidimensiona
scaling, which is also discussed by Wyszecki, Chapter 9.

In writing, we had in mind a reader with a minimal back
ground in mathematics, corresponding to a few calculus course
and a good course in probability or statistics. Notions such as
random variables, distributions, and expectations are assumed
tohe solid items of the reader's statistical equipment. A one
se:rnester course in algebra may be helpful at some point but i
by no means essential.

It is our firm belief that there has been in psychophysica
theory a gre,at deal more controversy than there was reasonabl
ground for. The attentive reader will notice a deliberate attemp
to minimize the disputes and to give a unified presentation.

(1)Pa,b = F[u(a) - u(b)] ,

G. T. Fechner, the founder ofpsychophysics, was originally a
professional physicist. At the age of39, he turned to psychology
and set out to apply the methods of experimental physics to the
measurement ofsensory events. To fully understand the details
ofFechner's idea, as well as some ofits difficulties, an excursion
into physical measurement is necessary.

Section 2 contains a detailed description of the procedures
that are the basis for the measurement offundamental physical
quantities, such as length or mass. The reader interested only
in the applications· of psychophysical models will be tempted
to skip this section and may do so without much harm. However,
we urge anyone striving for a solid understanding of the foun
dations ofpsychophysical measurement to study Section 2 care
fully. A comparison between physical and psychophysical mea
surement is of interest for two major reasons.

First, measurement procedures proposed by Fechner for
psychophysical phenoIllena result from a straightforward
transposition of those applicable in physics. In both cases, the
procedures are justified by a testable theory, and a detailed
comparison of the two theories is instructive. Second, on the
background of physical measurement, it is much easier to dis
entangle substantive from philosophical issues, the confusion
of which has been an enduring plague in this field.· A number
ofauthors have contributed to a clarification of the foundations
of psychophysical measurement, and key references are given
in due place. The seminal role ofR. D. Luce is recognized here,
however. .

Section 3 contains a description of Fechner's approach to
psychophysics. The basic notion is that of a probability Pa,b

that stimulus a is perceived as exceeding stimulus b from the
viewpoint of some sensory attribute. The theory justifying
Fechner's procedure is that this probability only depends on
the difference u(a) - u(b), in which u is some unknown sensory
scale, a candidate for a measure of"sensation." In symbols, this
gives rise to the equation

withF a strictly increasing continuous function. This equation
occupies a central place in psychophysical theory. In fact, it
would be only a mild exaggeration to say that a substantial
part of psychophysical theory consists in comments on Eq. (1).

Section 4 reviews various discrimination models, many of
which turn out to be special casesofEq. (1). This section contains
a discussion of the so-called law of comparative judgment of
Thurstone, a particular instance of which (case V) is obtained
when the function F in Eq. (1) is the normal integral.

The treatment of psychometric functions given in Section
5 may surprise the knowledgeable reader. It covers in detail a
number of important questions often left to the intuition of the
psychophysicist. Examples of such questions are, What does it
mean to say that two or more psychometric functions are "par
allel" or that they can be rendered so by a transformation of
the physical scale? What is the relationship between "paral
lelism" and Eq. (I)? In a two-alternative forced-choice design,
the probability Pa,b is typically estimated by averaging the
frequencies in the two alternatives. What is the theoretical
impact, if any, of this standard practice, in particular with
respecftoEq. (1)1
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2. Count. the maximUIn.number.of exact copies of this unit
which can be placed along the rod to be measured.w~thout

overlap.

The number sO'ohtained is a measure ofthe·length of the rod.
If exact measurement is required, some refinements must be
introduced. For the essentials, however,this 'algorithm is the
usual one. The·intuition supporting it is so compelling that. it
is at first difficult to realize (l)that quite a number of assump
tions about physical reality are implicitly made and (2) that it
involves a considerable amount of arbitrariness.

The concatenation procedure for two rods a, b involves plac
ing a and b end to end along a straight line, forming a new
object, which we denote ab. Using the comparison procedure,
this new object can be placed along some rod c to yield, for
example, ab ~ c.

Whenthe.,.rods ofa sequenceal,a2, ... , an are successively
concatenated in the order: al with a2, thenala2 with a3, and
so on,. the result is denoted ala2 ... an.. A convenient abbreviation
will be used to denote the successive concatenations of a with
(exact copies of) itself. We shall write

2.2. Notation n* a = aa ... a .

n times

(2)n * .. y ~. x < (n + 1) * y .

Goingbackto·themeasurement algorithm proposed in Section
2.1, consider the task of measuring the length of some rod x.
Wepickarbitrarily'some (small) rody as a unit, and we form
thesuccessiveconcatenation ofy with itself,until the following
situatign obtains .

2.3. first.Method

Thus, in particular, 1 *a = a, 2 * a = aa,b(3 * a) = baaa, and
so on. By convention, we shall admit that n. *.a -.n .* a,' for
n = 1, 2, .... It will be convenient by extension to also refer to
objects such as ab, aab, .... as rods. In the sequel, the letters x,
y,=., ... will refer either to rods in theoriginal sense or to objects
resulting froni somecoIlcatenation. Two methods for the mea
surement of the length of rods are described next.

Figure 1.1 illustrates the notions introduced in this subsection.
The case where bcovers a,but isIlot covered by it, will be
denoted

;"

Our discussion ofthese.issues will be facilitated by the'adoption
of a precise notation and terminology. The algorithm previously
outlined can .be analyzed into two distinct· experimental pro
cedures.

For any two rods a, b a comparison procedure is used to
decide which ofa, bhasthegreate'rlength.The rods are placed
alongside.each other, in. such a way.that they. coincide.at .one
end~If they als() coincide attheother'end, we' shall Write

A more compaetnotation is also useful. Whenever either a <' b,
or a- b, "fe writea~b. Thus

simply means that b covers a (whether or not a covers b ).

<··l[(n·····+'··l) *., yl··~ ····:(3)

z '~. w ... · iff· .. ·.·1Cz) ·.~l(w} .

First,itispossible thatx<y. Inthis case, we could assign the
number 0 tox, but this would not be very satisfying. Forexample,
there might be another rodx', such thatx- Xl <y, but y< xx'
<·2"'* y. Inotherwords,both'xandx'would have a scale value
equalto .0, butxx, would have a scale value equal tol.· A very
counte:rintuitive result! This shocking situation results from a
generaldefectof the method; it is not very precise. When mea
suring the lengthofa rod bythis method, we may commit an
error,. the size of which is smaller than ~helengthofourunit,'

which by convention is equalto 1. The reason for this iathe
following.·· For any rod x, let us denote its true length .by lex).
We assume that,·foranytwo·rodsz, .. w·we have

2.4. Difficulties

(In words: x covers n *y but does not cover (n +1) *y.)
We .. assign then the numbern tox as its value on a scale

measuringlength, and we proceed similarly with the other rods
in·the··collection. This method seems'reasonablebut encounters,
in fact, a number of difficulties. worth· serious consideration,
since they also occur in psychophysical' application of the'al
gorithlll.

. (Wewriteiffforifand only if.) In the situation symbolized by
Eq. (2), we obta.in

a~b

a-b
a

Ea
b

or

Figure 1.1. ;""easure~ent.?fleng~h:Cor:np~.ri,~()n and.~oncat~~ati()npr()
cedures.·
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1-4 THEORY AND METHODS

2. Count the maximum number of exact copies of this unit
which can be placed along the rod to be measured without
overlap.

The number so obtained is a measure of the length of the rod.
If exact measurement is required, some refinements must be
introduced. For the essentials, however, this 'algorithm is the
usual one. The-intuition supporting it is so compelling that it
is at first difficult to realize (l) that quite a number of assump
tions about physical reality are implicitly made and (2) that it
involves a considerable amount of arbitrariness.

The concatenation procedure for two rods a, b involves plac
ing a and b end to end along a straight line, forming a new
object, which we denote ab. Using the comparison procedure,
this new object can be placed along some rod c to yield, for
example, ab"" c.

When the,rods of a sequence aI, a2, ... , an are successively
concatenated in the order: al with a2, then ala2 with aa, and
so on, the result is denoted ala2 ... an' A convenient abbreviation
will be used to denote the successive concatenations of a with
(exact copies of) itself. We shall write

2.2. Notation n*a = aa ... a

n times

2.3. First Method

Going back to the measurement algorithm proposed in Section
2.1, consider the task of measuring the length of some rod x;
We pick arbitrarily some (small) rod y as a unit, and we form
the successiveconcatenation ofy with itself, until the following
situation obtains '

Thus, in particular, 1 *a = a, 2 * a = aa, b(3 *a) = baaa, and
so on. By convention, we shall admit that n * a - n * a, for
n = 1,2, .... It will be convenient by extension to also refer to
objects such as ab, aab, ... as rods. In the sequel, thelettets x,
y, z., '" will refer either to rods in the original sense or to objects
resulting from some cOIlcatenation. Two methods for the mea
surement of the length of rods are described next.

(2)n * y "" x < (n + 1) * y .

a < b •

a- b .

Figure 1.1 illustrates the notions introduced in this subsection.
The case where b covers a,but is not covered by it, will be
denoted

A more compact notation is also useful. Whenever either a < b,
or a - b, we write a "" b. Thus

Our discussion ofthese issues will be facilitated by the adoption
of a precise notation and terminology. The algorithm previously
outlined can be analyzed into two distinct experimental pro
cedures.

For any two rods a, b a comparison procedure is used to
decide which ofa, b has the greater length. The rods are placed
alongside each other, in such a way that they coincide at one
end. If they also coincide at the other end, we shall write

a "" b

simply means that b covers a (whether or not a covers b).

a

E:3
b

or

a-b

a:sb

(In words: x covers n * y but does not cover (n + 1) *y.)
We assign then the number n to x as its value on a scale

measuring length, and we proceed similarly with the other rods
in the collection. This method seems reasonable but encounters,
in fact, -a number of difficulties worth serious consideration,
since they also occur in psychophysical application of the -al
gorithm.

ab

=::=:::1===~:J:. I.

a

E?
b

\

c

a<b

¥
I

an

ab:s.:;

2.4. Difficulties

First,it is possible that x < y. In this case, we could assign the
number 0 to x, but this would not be very satisfying. For example,
there might be another rod x', such that x - x' < y, but y < xx'
< 2* y. In other words, both x and x' would have a scale value
equal toO, but xx' would have a scale value equal to 1. A very
counterintuitive result! This shocking situation results from a
general defect ofthe method; it is not very precise. When mea~

suring the length of a rod by this method, we may commit an
error, the size of which is smaller than the length of our unit,
which by convention is equal to 1. The reason for this is the
following. For any rod x, let us denote its true length by lex).
We assume that, for any two rods z, w we have

aa
I

b:Saa z. "" w ifi' l( z ) "" l( w) .

(We write ifffor if and only if.) In the situation symbolized by
Eq. (2), we obtain

Figure 1.1. Measurement of length. Comp~rison and concatenation pro
cedures. l(1t*j!)i,i:;l(x) <l(Ch + 1) *y]. (3)
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Pn(x) * W n ~ X < [Pn(x) + 1]* wn ,

p~(x) * wn>··~ Y < [p~(x) + ll*·wn

p~(x) l(wn ):I5.;l < [p~(x) + lll(wn ) .

which implies, with l(y} = 1,

l(p~(x) * wn ) :15.; l(y} < l[(p~(x) + 1) *wn ] ,

The basic idea ·isto use these inequalities to approximate the
unkIlow:n.qll~Ilti,ty.~(;)" Giye~YJ~Ithein~eg~.E&Pn(~),P~.(x)a~e

Solvability Axiom.. .For any Todz, thereexistsarodw suchthat
wW··~·Z.

The· precision of the algorithm describediri, ion 2.3 can· be
improved,provided that "fractions" ofthe "unit" can be used
for the purpose of measurement. Since the unit is arbitrary,
th.ismeaIlsthatanyrod,no matter howsma:ll,can be divided
more or lessat wilL A weak form ofthisnQti()n isemhodied in
the following axiom.

In.otherterms, ·for any.rod z,. the formulaww ..~·zcan··.always
be solved for somerodw. The method based on this axiom
requires more work than the preceding one and is based on a
rather subtle idea, the details ofwhich are worth careful study.
(As before, •.our••.....discussionwill .. be .heuristic; not.a.ll •..the...axioms
will be mentioned explicitly.) As a first step, we construct a
"distinguished"sequenceofshorter and shorter.rods, as foHows.
We choose wlarbitrarily. Next, wepickw2suchthatw2w2 ~

Wl, andso forth. In general, we shallhavewnwn ~wn-l.Thus

whenn becomes large,wnbecomesshorter and shorter..In par
ticular, ifnisl~rgeenough,.wecanachievewn··~.xandwn ~

y, wherexandyare, respectively, the rod to be measured and
our "unit."Using.the.Archimedean axiom, ...w.~·· alsoknow.that

for some positiveintegersPn(x),p~(x) .. (Th~·index n inpn(x),
P ~(x) isaremihder that theseintegers dependon the term Wn

inthe sequence; notice that p ~(x) does not depend on y,whic;h
isflxed.) Considering the (true) length of the rods involved in
these expressions, we obtain

2.5. Second Method

We stress the importall
form or other, is the· cent
extensive measurement. It
very enlightening,·to justify
axiom or axioms on whichi
purpose to remember that the
2.3, or its refinement, to which
axioms such as thoseexemplifie
reflection on their content, these
with the reader's experience·· of
experimental verification .is requir
obvious character of the. axioms <will
physical applications of thealgorithm~

(4)

that is,

n :15.; l(x) < n + 1,

Monotonicity Axiom. For anyrodsx,x',z,z', wheneverx·~z
and x' ,~. z', ..~P~Il xx' ~ zz'.

ArchimedeanAxiom. For any rods x,z,we.haveeither,x<z,
or thereexists"a'positive integer.n'such that'

n*z ~ x< (n+ 1)~ z.

This'axiom is 'called Archimedean, since it evokes the so-called
Archimedean property ofreal numbers: for any real numbers
s,t with t>O,there exists a positive integern suchthat s""~

nt.
This method is based on the assumption that this law and

various .'. others are' empirically true. Inthe sequel,.' such laws
willbe referred ,to· as axioms. Anotherexample'ofan axiom,
intuitively consistent with the iIlterpretationofthe relation ~
as meaning "is covered by," is the following:

l( n *Z) = nl(z) .

n l(y) .....~··,·l(x.)<'(n +l}l(y) ,

with 0 '~' "«1. ConsequentlY,whenwe assign the numbern
to x as ascalevalue, we are making an error "(,the size ofwhich
is smaller than 1. Methods minimizing such an error-making
it as small, as one wishes-are not hard to design. One such
method is considered in Section 2.5.

A second difficulty is that we have a priori, no certainty
that the method will work. Evenify< x,howcanwebesure
that by successivelyconcatenating y with itself, we shall finally
obtainEq. (2) for some integer n?In the particularcaseanalyzed
here,considering the empiricalinterpretation ofsuch expressions
as y < x, n*y, and so on, it seems intuitively obvious that this
will be the case. But where does this intuition come from? The
answer is. that we have learned from experience that the "phys
ical" world around us satisfies a number ofconstraints,or"laws."
An instance of such a ,law. of immediate relevancetoourdis
cussionis the following:

n

Ll(Zi)
i=l

l(zw) =l(z) +l(w) .

whichimplies, sincel( y} = ·l(y is the unit),

Going back to Eg. (3), this gives

In particular

, In.general, for any·sequenceofrodsz1, Z2, . ••• , Zn·we must
have

PSYCHOPHYSICAL MEASUREMENT AND THEORY

The.natural interpretation ofthe concatenationprocedure
for rods leadsto th~ requirement that the length of a composite
rodzwmust be the sum of the length ofz and w,thatis,

b

PSYCHOPHYSICAL MEASUREMENT AND THEORY

The natural interpretation ofthe concatenation procedure
for rods leads to the requirement that the length ofa composite
rod zw must be the sum of the length of z and w, that is,

l(zw) = l(z) + l(w) .

In general, for any sequence ofrodszl, Z2, ... , Zn we must
have

n

2:1(zi)
i=l

In particular

We stress the importan<;~

form or other, is the cen
extensive measurement. It
very enlightening, to justifye~

axiom or axioms on which it j
purpose to remember that the
2.3, or its refinement, to which
axioms such as those exemplifie
reflection on their content, these
with the reader's experience ofth
experimental verification is requir
obvious character of the axioms will
physical applications of the algorithm.
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l(n * z) = n l(z) .

Going back to Eq. (3), this gives

n l(y) ... l(x) < (n + 1)l(y) ,

which implies, since 1( y) =. 1 (y is the unit),

(4) 2.5. Second Method

The precision of the algorithm described in section 2.3 can be
improved, provided that "fractions" of the "unit" can be used
for the purpose of measurement. Since the unit is arbitr~,

this means that any rod, no matter how small,can be divided
more or less at will. A weak form ofthis notion is embodied in
the following axiom.

..

n ... l(x) < n + 1 ,

that is,

l(x) = n + "1

with °... "1 < 1. Consequently, when we assign the number n
to x as a scale value, we are making an error "1, the size ofwhich
is smaller than 1. Methods minimizing such an error-making
it as small as one wishes-are not hard to design. One such
method is considered in Section 2.5.

A second difficulty is that we have a priori no certainty
that the method will work. Even ify < x, how can we be sure
that by successively concatenating y with itself, we shaUfinallY
obtain Eq. (2) for some integer n? In the particular case analyzed
here, consideringthe empirical interpretation ofsuch expressions
as y < x, n * y, and so on, it seems intuitively obvious that this
will be the case. But where does this intuition come from? The
answer is that we have learned from experience that the "phys
ical" world around us satisfies a number ofconstraints, or ''laws.''
An instance of such a law of immediate relevance to our dis
cussion is the following:

Archirnedean Axiom. For any rods x,z, we have either x < z,
or there exists a positive integer n such that

n * z ... x < (n + 1)* Z •

This axiom is called Archimedean, since it evokes the so-called
Archimedean property of real numbers: for any real numbers
s,t with t> O,there exists a positive integer n such.that s. ...
nt.

This method is based on the assumption that this law and
various others are empiricallY true. In the sequel,such la.ws
will be referred to as axioms. Another example of an axiom,
intuitively consistent with the interpretation of the relation ...
as meaning "is covered by:' is the following:

Monotonicity Axiom. For any rods x,x' ,z,z', whenever x ... z
and x' ... z' ,thc:ln xx' ... zz' .

Solvability Axiom. For anyrodz, there exists a rod w such that
ww"'z.

In other terms, for any rod z, the formula ww "6 z can always
be solved for some rod w. The method based on this axiom
requires more. work than the preceding one and is based on a
rather subtle idea, the details ofwhich are worth careful study.
(As before, our discussion will be heuristic; not all the axioms
will be mentioned explicitly.) As a first step, we construct a
"distinguished" sequence .of shorter and shorter rods, as follows.
We choose Wl arbitrarily. Next, we pick W2 such that W2W2 "6

Wl, and so forth. In general, we shall have WnWn ... Wn-l' Thus
when n becomes large, W n becomes shorter and shorter. In par
ticular, if n is large enough, we can achieve W n "6 x and W n :E6

y, where x and y are, respectively, the rod to be measured and
our "unit." Using the Archimedean axiom, 'We also know.that

Pn(x) * Wn "6 X < [Pn(x) + 1] * Wn ,

p~(x) * Wn :E6 Y < [p~(x) + 11* Wn

for some positive integers Pn(x), P ~(x). (The index n in Pn(x),
p~(x) is a reminder that these integers depend on the term W n
in the sequence; notice that P ~(x) does not depend on y, which
is fixed.) Considering the (true) length of the rods involved.in
these expressions, we obtain

l(p~(x) * wn) ... l(y) < l[(p~(x) + 1) * w n] ,

which implies, with l(y) = 1,

The basic idea is to use these inequalities to approximate the
unknownquantity.1(x).GiveIl wn,the integer!! Pn(x), P ~(x) are
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Combining Eqs. (5) and (6) and rearranging terms finally gives

Pn(x)/[p~(x) +ll~,,(x},(Pn{x) + 1]/p~(x)--7 1l(x) ,

A similar computation ofthe remaining inequalities yields

THEORY·ANO·METHODS

2.6. Representation Problem for Extensive
Measurement

Reflecting on the position adopted so far in this section, it·should
be recognized that it is not devoid of obscurities. In particular,
we discussed in detail two methods· for the construction of a
scale for length, without ever making exactly clear which prob
lems such a scale was supposed to. solve. At each step of these
constructions it was somehow natural or obvious that this was
the right course to follow. This approach leaves too many ques..
tions·unanswered to be satisfying.. Examples ofpuzzling ques..
tions are, What justifies the agreement existing in the scientific,
as well as in the social, community that the scales obtained by
such methods are appropriate? Is the agreement based onprac..
tical reasons, theoretical reasons, or both? Could a different
scale have been used and, if so, under which conditions?

Here we shall take·a more critical viewpoint regarding the
methods of scale construction "as previously discussed. Our ma
nipulations involve. two. empirical procedures: the. comparison
.procedure (symbolized by the re1ation"~),and the concatenation
l?:ro~~«i~~.·(sYm.b()lizedbywriting xy.for.the twcorodsx, y).·A
'sc'ale is essentially a device by which the rods are represented
by numbers. This suggests asking: By which nonons(operationsJ

'relations}iJf the real numbersystem are we representing the two
procedures? Some hints were .given earlier. In Section 2.4 it
was. argued that a function ldefined on' the .. set of rods and

"representing their. true length, should be· such that'

(6)

(5)p~ (x) l(x) < Pn (x) +. 1 .

'Pn (x) < l(x)[p~(x) + 11 .

Pn (x)/(p~ (x) + 11 < l(x) < [Pn (x) + l]lp~ (x), (7)

"
providing two bounds for lex). Let us investigate the situation
when n becomes large; as indicated earlier, this means that W n
gets shorter and shorter. In turn, Pn(x), P'n(x) mustincrease (a
greater number ofconcatenationsofW n with itselfare required
to exceed x or yr. In fact, whenn.~ OO,we havebothpn(x)~co
and P'n(x) --?><OC?• At-this stage the'consequences of this resulton
the two·bounds.in .. Eq.(7) .•..are.u~clear.F?rtunately,.itc~:rl·.bt}
shown that under the assumptions (Le., axioms) underlying
our. discussion, the .ratio .Pn(x)lp 'n(x) converges to some limit
" (x) . This Il1eans, of course, that the twoboundsin Eq.(7) con
vergeto the same limit. That is,

empirically determined (we can "compute"them). Alittle algebra
involving some ofthe these inequalities permits the elimination
of the bothersome quantities l(wn ); we obtain

(9)

(10)l(xy) =l(x) + l( y).

x.·.·~··.····y iff·.l(x)· .~. l(y).

In other words, the comparisonprocedure.is .. represented by the
'ordering relation oftherealnirinbe~(~), and the concatenation
isrepresented by the addition ·ofthe realnumbers{+ ).Turning
the .question around·leads·tothe following:

2.6.1. Representation·Problem. .Under which conditions
does there exist a functionl,definedon the set of rods and
taking its values in the positivereals, such that Eqs. (9) and
(10) are satisfied for allroQ.s x,y?

A typical answer to this problem isa list, call itA, of con
ditionsor axioms constraining the possible experimental results
obtained ·from applying the two procedures. An example ofsuch
a list A would contain themonotonicity,Archimedean,and
solvability axioms, plus' some other conditions.· The· solution to
the representation.problem would then be given·in·the form" of
a~~presentation·theorem:

2.6.2. .. Representation Theorem~ .. If all the axioms in the
listA are satisfied, then there exists a functionlmappingthe ,
set of rods in·the.positivereal numbers,·suchthatEqs.(9}and
(10) are satisfied for all rods x,y.

One proof ofsuch a theorem is based on the followiJ;lg idea.
We prove the existence ofthe function lbyconstructin~ritpiece
wise, so to speak. That is, we define lex) for every rod X, using
essentially the second method described· in Section·2.5. (Intu-
itively, the axioms are shown to imply that in Eq.(S), Pn(x)1

R.~~f}G9J!y~rges ~.~d that')'n ~.Q~Wedefine.l(x»::;.litP.n..-.:cPn{x)1

, In thesameconte~t,itwasalsomaintainedthat a natural
interpretation of the concatenationproce9.ure for, rods would
require that the length ofxy· shQuldbeequal·to the length ofx
added·to the length·ofy. Thus(8)l(x) = [Pn(x)lp~(x)l + "In'

~IPn(x)lp~(x)] X [p~(x) +1]-1 < "In < l/p~(x) .

impiying lex);:: .,,{x).The outcome is that we·can take. either
ofthe two bounds orpn(x)lp'n(x) itself as a scale value of ap~ .
proximatelyl(xJ, theapproxi:Q).ation becoming increasingly'ac
curate as n·gets 1arge.····For example,· we have

(We leave it to the reader to checkthe algebra.)
Takingpn(x)lp'n(x) as a scale value for x involves thus an

error "Yn,the absolute value ofwhich can be as small asrequired
by practical or scientific applications.

At this point,the· readerprobably feels somewhat·uneasy
about the .foundations ·of these· methods. A proof·of· the key
results, such as the convergence ofPn(x)lp ri(x), requires a more
precise" apparatus. than was given here. In particular, a precise
statement of all the axioms would be required. ·Such technical
treatment ()f our.·subject is beyond the scope of·this chapter,
however.

Our·aims in ..discussing these. algorithms· in .such minute'
detail were as follows. We .wanted to illustrate, with a minim~
offormalism, the process by '. which qualitative observations,
which are a typical outcom~ofan experiment, are progressively
transformed .. into .numerical .statements .regarding ·.extensive
IIleasurement.Thistype of measurement is not only the .most
important example so far provided by science but also the cor
nerstone.of various other .types.of measurement of interest to
the psychologist. In particular, Fechner'senterprise must· be
regarded as·allattemptto apply, in the. context ofpsychophysical.
experiments, such algorithms to the measurement.ofsensory
phenomena.
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Combining Eqs. (5) and (6) and rearranging terms finally gives

A similar computation ofthe remaining inequalities yields

Pn(x)/[p~(x) + 1].-, TJ(x) , (Pn(x) + l]/p~(x).-, TJ(x) ,
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2.6. Representation Problem for Extensive
Measurement

Reflecting on the position adopted so far in this section, it should
be recognized that it is not devoid of obscurities. In particular,
we discussed in detail two methods for the construction of a
scale for length, without ever making exactly clear which prob
lems such a scale was supposed to solve. At each step of these
constructions it was somehow natural or obvious that this was
the right course to follow. This approach leaves too many ques
tions unanswered to be satisfying. Examples of puzzling ques
tions are, What justifies the agreement existing in the scientific,
as well as in the social, community that the scales obtained by
such methods are appropriate? Is the agreement based on prac
tical reasons, theoretical reasons, or both? Could a different
scale have been used and, if so, under which conditions?

Here we shall take a more critical viewpoint regarding the
methods of scale construction as previously discussed. Our ma
nipulations involve two empirical procedures: the comparison
procedure (symbolized by the relation"';), and the concatenation
proc~dllre (symbolized by writing xy for the two rods x, y), A
scale is essentially a device by which the rods are represented
by numbers. This suggests asking: By which notions (operations,

.relations) ofthe teal number system are we representing the two
procedures? Some hints were given earlier. In Section 2.4 it
was argued that a function l defined on the set of rods and
-representing their true length, should be such that

(6)

(5)p~(x) lex) < Pn(x) + 1 .

Pn(x) < l(x)[ P~ (x) + 1] .

providing two bounds for lex). L~t us investigate the situation
when n becomes large; as indicated earlier, this means that W n
gets shorter and shorter. In turn, Pn(x), p~(x) must increase (a
greater number ofconcatenations of W n with itselfare required
to exceed x or y). In fact, when n'-' co, we have both Pn(x) .-,co

and P ~(x) .-, exl. Atthis stage the consequences of this result on
the two bounds in Eq. (7).are unclear.. Fortunately, it call be
shown that under the assumptions (i.e., axioms) underlying
our discussion, the ratio Pn(x)/p ~(x) converges to some lhnit
TJ(x).This weans, of course, that the two boundsin Eq. (7) con
verge to the same limit. That is,

empirically determined (we can "compute" them). A little algebra
involving some of the these inequalities permits the elimination
of the bothersome quantities l(wn ); we obtain

Pn(x)/[p~(x) + 1] < lex) < [Pn(x) + l]/p~(x), (7)

implying lex) O=TJ(x). The outcome is that we can take either
of the two bounds or Pn(x)/p ~(x) itself as a scale value of ap~
proximately lex), the approximation becoming increasingly ac
curate as n gets large. For exawple, we have

In the same context, it was also maintained that a natural
interpretation of the concatenl:ition procedure for rods would
require that the length ofxy shpuld be equal to the length ofx
added to the length ofy. Thuslex) = [Pn(x)/p~(x)] + "Yn' (8)

x"'; y iff lex) ".; l(y) . (9)

with l(xy) = lex) + l(y) . (10)

-(Pn(x)/p~(x)] x [p~(x) + 1]-1 < "Yn < 1/p~(x) .

(We leave it to the reader to check the algebra.)
Taking Pn(x)lp;"(x) as a scale value for x involves thus an

error "Yn, the absolute value ofwhich can be as small as required
by practical or scientific applications,

At this point, the readerprobably feels somewhat uneasy
about· the foundations of these wethods. A proof of the key
results, such as the convergence ofPn(x)/p ~(x), requires a more
precise apparatus than was given here. In particular, a precise
statement of all the axioms would. be required. Such technical
treatment of our subject is beyond the scope of this chapter,
however.

Our aims in discussing these algorithms in such minute
detail were as follows. We wanted to illustrate, with a minimum
of formalism, the process by which qualitative observations,
which are a typical outcome of an experiment, are progressively
transformed into numerical statements regarding extensive
Wl~aSUrE!mElnt. This type of measurement is not only the most
imnoTt.lHlt e:xaInple so far provided by science but also the cor

of measurement of interest to
parti,cul.ar, Fechner's enterprise must be

att,emlptrr, "n,n1., in the context ofpsychophysical
the.measurement of sensory

In other words, the comparison procedure is represented by the
ordering relation of the real numbers (::;;;), and the concatenation
is represented by the addition of the real numbers (+). Turning
the question around leads to the following:

2.6.1. Representation Problem. Under which conditions
does there. exist a. function l, defined on the set of rods and
taking its values in the positive reals, such that Eqs. (9) and
(10) are satisfiedJor all rods x,y?

A typical answer to this problem is a list, call itA, of con
ditions or axioms constraining the possible experimental results
obtained from applying the two procedures. An example ofsuch
a list A would contain the monotonicity, Archimedean, and
solvability axioms, plus some other conditions. The solution to
the representation problem would then be given in the formof
a representation theorem:

2.6.2. Representation Theorem. .If all the axioms in the
list A are satisfied, then there exists a function l mapping the
set ofrods in the positive real numbers, such that Eqs.(9) and
(10) are satisfied for all rods x,y.

One proof of such a theorem is based on the followi.~lgidea.
We prove the existence ofthe function l by constructingit piece
wise, so to speak. That is, we define lex) for every rod x, using
essentially the second method described in Section 2.5. (Intu
itively, the axioms are shown to imply that in Eq. (8), Pn(x)/
P'"Jx), GqIly~rges @d that"Yn'-' .0.. We define lex) = liWn.-o",Pn(x)/



,l(xy)'= l(x}+l( y)

one'forms, successively (see Figure 1.2),

ab ~,cde,

Figure 1.2., .Alternative procedures for the measurement of the length of a
collection of rods. We have ab :$ cde, since x:$ Z with ab -x/cd- y and
y~:~z~. Thero.dsx,.y,,(lnd.,z.arehYPQtenuses.of.right .. triangles.

if the ,rods a, b, and x can be used to form'a right triangle,with
x as its hypotenuse, and a, b as the two other sides. Thus~to
check whether

ab--x

ab -x ,

ey - z.
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cd -- y ,

5. A proofofthe existence of the scale 1was sketched, based
on an algorithm (Section 2.5) permitting the construction
of the scale within an arbitrarilysmall error.

At this stage, a scale for the measurement of length is
available which, obviouslY"is·the one commonly used. However,
itmust be realized that, in principle, the fact that steps 1-5
have been taken successfully does not guarantee that the re
sulting,scale ·.willbe adopted'for scientific 'or other practices.
Other procedures could have been u~ed, leading to a different
scale. (An example will. follow.)' A consensus of the scientific
community regarding a scale certainly requires the existence
of'·a.sound theoretical.foundation, but. it is also influenced by
otherconsiderations, such as,' Is the scale convenientto construct
and to use? Doesit have the property ofrendering the equations
of models reasonably simple and intuitive?

Few people realize the extent to which the basic physical
scales are arbitrary. As mentioned earlier, length, for example,
couldbe measured by procedures essentially different from those
di~cusse.dsofar in thjs section, with no other consequences
than .that of rendering the writing ofsome physical"laws more
cumbersome and the'actual application ofthe procedures more
painful. We are not suggesting that mathematical or practical
convenience is to be t~kenlightly.Clearly, however,,'. neither,of
these has a bearing on "physical reality." It is ofsome importance
for a .'. psychophysicist to have· a clear understanding of such
facts. Ultimately, the measurement of sensation will rely .on
an',.agreement in the psychophysical community, based essen
tially on 'considerations of convenience. The alternatiyoepro
cedure for measuring length to be discussed, illustrates these
remarks. (This example is due to Ellis, 1966.) . .

Thecomparison procedure·for noncompositerods is the same
as before, but the, concatenation differs. We write

and

4. A theory, thatis,a list A of axioms, 'was proposed, implying
the existence of the required scale l ..This.' theory can be
verified empirically. In particular, the validity of the mon
otonicity,axiom:

The adoption ofa measurement scale by the ,scientific community
is a complex process, the various aspects ofwhich have to be
distinguished sharply. The formalism introduced in this section,'
with its central' piece the representation problem, ,is' standard
in measurement theory. Its advantage is to make clear those
aspects of the process which are susceptible to empirical veri
fication.

Let us· summarize. In the case of the measurement of the
length of the rods in a collection, the scale was obtained bya
succession·of steps.

1. Two empirical procedures, comparison and concatenation,
were chosen, more or less" arbitrarily (no. theoreticfll justi
fications were givf3n).

2. A'representation of each of these procedures by anen,tity
(relation) ofthe real number system was adopted. The com
parison procedure ~'wasrepresentedby the inequality(~)

ofthe real numbers, and the concatenation was represented
by the addition (+ )of the reals. . '.'

3. The representation problem was formulated, i!-1volvingthe
search for a positive-valued function l, satisfying, for all
rodsx,y .

lex) ~ l( y) iff x ~y

When the axioms ofa list A are.sufficiently constraining, this
situation obtains. The result is then formalized as follows.

2.6.3. Uniqueness 'Theorem. Suppose that all the axioms
ina list. A .are satisfied. Let l,. l* be. two fllnctions ,satisfyillg.
Eqs. (9) and (10). Then, necessarily,'z(x) = al*(x) for some
constant et > O.

l*(x) = al(x)

wheneverx ~., yand x' ~ y', then xx' ::syy' ,

2.7. Summary and Remarks

,canin principle be che,eked.

for all rods x-also satisfies these formulas.
It is natural. to ask whether all functions satisfying Eqs.

(9) and (10) can be generated by this device. This questionis
of interest, since it corresponds to the situation commonly en
countered; .··all usual scales for length are related bya 'multi
plication,' for example (approximately),

lcm(x} =2.54 linch(X) .

PSYCHOPHYSICAL MEASUREMENTAND<THEORY

p 'n(x); thus, in particular, lCy) = I.} Next,weshow that the
function 'l, as defined, satisfies Eqs. (9) and (10).

Note that,if some function lhas beenfound to satisfy Eqs.
(9) and(lO), then any function l* obtained bymultiplyinglby
some constant et> O-that is,
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p~(x); thus, in particular, lCy) = 1.) Next, we show that the
function 1, as defined, satisfies Eqs. (9) and (10).

Note that, if some function 1has been found to satisfy Eqs.
(9) and (10), then any function 1* obtained by multiplying 1by
some constant Cl> O-that is,

l*(x) = Cl lex)

for all rods x-also satisfies these formulas.
It is natural to ask whether all functions satisfying Eqs.

(9) and (10) can be generated by this device. This question is
of interest, since it corresponds to the situation commonly en
countered; all usual scales for length are related by a multi
plication, for example (approximately),

lcm(x) = 2.54 Ilnch(x)

When the axioms of a list A are sufficiently constraining, this
situation obtains. The result is then formalized as follows.

2.6.3. UniquenessTheorem. Suppose that all the axioms
in a list A are satisfied. Let 1, 1* be two f]ll1ctions satisfying.
Eqs. (9) and (10). Then, necessarily, lex) = Cl l*ex) for some
constant Cl > O.

2.7. Summary and Remarks

The adoption ofa measurement scale by the scientific community
is a complex process, the various aspects of which have to be
distinguished sharply. The formalism introduced in this section,
with its central piece the representation problem, is standard
in measurement theory. Its advantage is to make clear those
aspects of the process which are susceptible to empirical veri
fication.

Let us summarize. In the case of the measurement of the
length of the rods in a collection, the scale was obtained by a
succession of steps.

1. Two empirical procedures, comparison and concatenation,
were chosen, more or less arbitrarily (no theoretic/ll justi
fications were given).

2. A representation of each of these procedures by an entity
(relation) of the real number system was adopted. The com
parison procedure "S was represented by the inequality ("S)

of the real numbers, and the concatenation was represented
by the addition (+) of the reals. .

3. The representation problem was formulated, involving the
search for a positive-valued function 1, satisfying for all
rods x,y

lex) "S l(y) iff x "S y
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5. A proof of the existence of the scale 1was sketched, based
on an algorithm (Section 2.5) permitting the construction
of the scale within an arbitrarily small error.

At this stage, a scale for the measurement of length is
available which, obviously, is the one commonly used. However,
it must be realized that, in principle, the fact that steps 1-5
have been taken successfully dOes not guarantee that the re
sulting scale will be adopted for scielltificor other practices.
Other procedures could have been used, leading to a different
scale. (An example will follow.) A consensus of the scientific
community regarding a scale certainly requires the existence
of a sound theoretical foundation, but it is also. influenced by
other considerations, such as, Is the scale convenient to construct
and to use? Does it have the property ofrendering the equations
of models reasonably simple and intuitive?

Few people realize the extent to which the basic physical
scales are arbitrary. As mentioned earlier, length, for example,
could be measured by procedures essentially different from those
discussed so far in this section, with no other consequences
than that of rendering the writing of some physical laws more
cumbersome and the·actualapplication of the procedures more
painful. We are not suggesting that mathematical or practical
convenience is to be taken lightly. Clearly, however,neither of
these has a bearing on "physical reality." It is ofsome importance
for a psychophysicist to have a clear understanding of such
facts. Ultimately, the measurement of sensation will rely on
an agreement in the psychophysical community, based essen
tiallyon cOllsiderations of convenience. The alternative pro
cedure for measuring length to be discussed, illustrates these
remarks. (This example is due to Ellis, 1966.)

The comparison procedure for noncomposite rods is the same
as before, but the.concatenation differs. We write

ab - x

if the rods a, b, and x can be used to form a right triangle, with
x as its hypotenuse, and a, b as the two other sides. Thus to
check whether

ab "S cde ,

one forms, successively (see Figure 1.2),

ab ~ x

cd - y ,

ey - z .

and

l(xy) = lex) + l( y)

4. A theory, that is, a list A of axioms, was proposed, implying
the existence of the required scale 1. This theory can· be
verified empirically. In particular, the validity of the mon
otonicity axiom:

a
d

whenever x "S y and x' "S y', then xx' ~ yy' ,

can in principle be checked.

Figure 1.2. Alternative procedures for the measurement of the length of a
collection of rods. We have ab :S cde, since x :S z with ab - x, cd ..... y and
ye ..... z.. The rodsx,y.,andz are hypotenuses of right triangles.
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(a, b) (c,d) iff Pa,b =Pc,d ,

3.1. Construction of a Fechnerian'Scale

(a,b) < (c,d) iff Pa,b < Pc,d,

2.8. Key References

3. FECHNER'S APPROACH TO PSYCHOPHYSICS
" .

Fechner's fundamental idea is that a sensory scale can be con..
structedby,adapting, to a particular kind ,ofsensory data, the
standard measurementprocedure for the measurement oflength
in physics. (We assume that, ata minimum, the material in
Section 2.1 is familiar to the reader.) This is by no means obvious,
and we shall proceed carefully.

Suppose that a, b, C ••• are numbers representing, in con
ventional units,values of some, physical magnitude, such' as
mass {or sound pressure, luminance,~tc.).Forsimplicity, we
shall refer to a, b,c ... as stimuli. Let Pa,bbe the probability
that a subject,presented with the pair (a,b) of stimuli in some
experimental paradigm, judges a at least as heavy as b. Forthe
timebeing,consider only the data obtained for pairs (a,b)such
thata ~'b. Let us assume that there exists a psychophysical
scale, the properties of whiehgovern important aspects of per
formance in this paradigm. Thus each stimulus a is mapped to'
a pointu(a)'in ,this scale. We also,'assume,that,this mapping is
order preserving (thatis, a<biffu(a)< u(b)) andthatPa,b is
strictly increasing with the distance u(a) - u(b)hetween the
points. representing a and b.

The following illustrative device is helpful: identify a and
b ,in,•.~he.pair ,(a,b). as names, given'to.the two endpoints of a
"rod"; a is the rightendpoint, b the ·left.endpoint. In fact,· to
stressthe analogy with extensive measurement, the pairs (a,b)
themselves, in this section, will be referred to as rods. Thus
Pa,bincreases strictlymonotonicallywith the length of the rod
(a,b).We write

Since Helmholtz (1887), various axiom systems for extensive
measurement have 'been' proposed. The discussion given here,
even though it is only one ofmany possibilities, is representative
of the mainstream of these theories. Generally, the axiom sys
tems.diffE:}rJn,theempp.asis placed on. side conditions or in ,the
details ofthe representation. In m.ostcases, these axiom systems
deal.'wltha.deterministicsituation.Aprobabilistic, theory for
extensive' measurement has,been presented by Falmagne (1980).
A basicref~rence for this topic jsKr~ntz,Luce,Suppes, and
Tversky (1971) or, more recently, Roberts (1979).

numbers assigned by the spring balance are known, as a con
sequence of Hooke's law, to be proportional to those obtained
through the two-pan, equal..arm balance, so that, indirectly, a
measurement theory is available also in the case of the spring
balance.

Whether a rpeasurement theory can be dispensed with al..
together is unclear. Some" such as S. S. Stevens's followers,
would probably argue that this is the case. What cannot be
disputed is that a measurement theory isa highly desirable
rationale for any measurement scale designed to play an im
portant role in the scientific formulation ofthe data.

We define then

It is clear that these procedures cannot, give rise to the
same scale as the usual one. Nevertheless, as it turns out, all
the axioms that would be satisfied in the usual case would also
be satisfied here. (The reader may be tempted to check that the
Archimedean, monotonicity, and solvability axioms are verified,
and this ,may be moderately convincing. The key observation,
however, is that for positive real numbers, addition is isomorphic
to the operation (s,t) ~ (s2 + t 2)V2.) We may thus apply the
representation theorem, and claim that there is some function
(such that for allrodsx,y, "

ab ~ cde iff x ~ z .

and

x '~ y iff (x) ~ fey)

f(xy}=f(x) + f( y) .

We'emphasize that this concatenation is different from the usual
one. We do nothavel(xy):::: 'Z(x)7-l(y),wherelisthe ,usual
scale. CA different notation could have been used to stress the
fact that' thetwoconcatenationsunderconsiderationinvolve
distinct empiricaloperations. We couldhave written, for example,
f(x"y) ,= f(x) + {(y).lFromtheviewpointofphysical reality, f
is as ,defensible as 1 as a possible scale for length. The choice
between landf, orbetweenthetwoconcatenations,is in no
way based on empiricard~ta.ltisclearthat1 is preferable
because it is easier to construct empirically, and it renders the
writing',of physical laws somewhat easier. Fora more detailed
discussion of this practically minded, orpositivistic, attitude
toward measurement, the reader .is referred to Ellis (1966),
where several other empirical examples ofextensive measure..
ment will 'also be found. This raisesthe question ofthe relation
between ~and f.' The answer is simpleenough:f(x) = ,Z(x)2.

With~,'minor adaptation (the details ofwhich we', shall not
enter into here), the analysis of the measurement of length
given in this section intermsoftwoempiricalprocedures (com
parisoIlandconcateIlation) is alsoapplicabletp the measurement
of mass, using a two-pan, equa}.-armbalance.Jn this case, the
experimenter has a collection ofobjects a,b ... and writes ab to
signify that the objects a,bhavebeenplacedin the same pan
of thebalance."The experimenter also writes cde ~',ab if the

I pancontainingc,d, and edoes not'stabilize itself at. a lower
!' level than the pan containing a,b. An examination ofthis sit...
I uationindicates'that essentially the same axioms will apply.

The examples ,of extensive measurement given so far in
this section illustrate a type~ of measurement which is relatively
well' understood, one in which a measurement theory (alistA
ofaxiomsJisavailable, guaranteeing the existence of arepre..

I sentationoftheempirical structure into the real number system,
i with a specified cOlTespondencebetween the empirical procedures
i and some numerical relations. In this case, the scientist may
~ feel relatively confident of the interpretation of the, role played

bya number assigned to an object bya scale, since the inter
pretationis based on an explicit theory.

Obviously, there, are methods that are characteristically
different ,for, generating a measurement scale. For the, mea
surementofmass,an example is provided by the spring balance,'

I th.er:Cl.ding~of whi~~ cO\l~d,in principle,be~ccepted~pripri~!.. withoufanytheoretical justification. In fact; however, the ..

...

I

\

I

I
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We define then

ab :!i5 cde iff x :!i5 z .

It is clear that these procedures cannot give rise to the
same scale as the usual one. Nevertheless, as it turns out, all
the axioms that would be satisfied in the usual case would also
be satisfied here. (The reader may be tempted to check that the
Archimedean, monotonicity, and solvability axioms are verified,
and this may be moderately convincing. The key observation,
however, is that for positive real numbers, addition is isomorphic
to the operation (s,t) -... (s2 + t 2)!l2.) We may thus apply the
representation theorem, and claim that there is some function
(such that for all rods x,y,

x :!i5 y iff ((x) :!i5 ((y)

and

((xy) = ((x) + ((y) .

We emphasize that this concatenation is different from the usual
one. We do not have l(xy) = lex) + l(y), wherel is the usual
scale. (A different notation could have been used to stress the
fact that the two concatenations under consideration involve
ciistinct empirical operations. We couldhave written,for example,
((x'y) = ((x) + ((y).) From the viewpoint of physical reality, (
is as defensible as l as a possible scale for length. The choice
between land f, or between the two concatenations, is in no
way based on empirical data. It is clear that l is preferable
because it is easier to construct empirically, and it renders the
writing of physical laws somewhat easier. For a more detailed
discussion of this practically minded, or positivistic, attitude
toward measurement, the reader is referred to Ellis (1966),
where several other empirical examples of extensive measure
ment will also be found. This raises the question of the relation
between l and f. The answer is simple enough: ((x) = l(x)2.

With minor adaptation (the details ?f which we shall not
enter into here), the analysis of the measurement of length
given in this section in terms oftwo empirical procedures (com
parison and concatenation) is also applicabJe to the measurement
of mass, using a two-pan, equal-arm balance. In this case, the
experimenter has a collection of objects a,b ... and writes ab to
signify that the objects a,b have been placedin the same pan
of the balance. The experimenter also writes cde :!i5 ab if the
pan containing c,d, and e does not stabilize itself at a lower
level than the pan containing a,b. An examination of this sit
uation indicates that essentially the same axioms will apply.

The examples of extensive measurement given so far in
this section illustrate a type of measurement which is relatively
well understood, one in which. a measurement theory (a list A
of axioms) is available, guaranteeing the existence.of a repre
sentationofthe empirical structure into the real number system,
with a specified correspondence between the empirical procedures
and some numerical relations. In this case, the scientist may
feel relatively confident of the interpretation of the role played
by a number assigned to an object by a scale, since the inter
pretation is based on an explicit theory.

Obviously, there are methods that are characteristically
different for generating a measurement scale. For the mea
surement of mass, an example is provided by the spring balance,
the readings of which could, in principle, be accepted a priori,

.. without· any theoretical· Justification. In fa.Ct; howevet, the
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numbers assigned by the spring balance are known, as a con
sequence of Hooke's law, to be proportional to those obtained
through the two-pan, equal-arm balance, so that, indirectly, a
measurement theory is available also in the case of the spring
balance.

Whether a !p.easurement theory can be dispensed with al
together is unclear. Some, such as S. S. Stevens's followers,
would probably argue that this is the case. What cannot be
disputed is that a measurement theory is a highly desirable
rationale for any measurement scale designed to play an im
portant role in the scientific formulation of the data.

2.8. Key References

Since Helmholtz (1887), various axiom systems for extensive
measurement have been proposed. The discussion given here,
even though it is only one ofmany possibilities, is representative
of the mainstream of these theories. Generally, the axiom sys
temsdiffer)n the emphasis placed on side conditions or in th.e
details of the representation. In most cases, these axiom systems
dealwith a deterministic situation. A probabilistic theory for
extensive measurement has been presented by Falmagne (1980).
A basic reference for this topic is Krantz, Luce, Suppes, and
Tversky (1971) or, more recently, Roberts (1979).

3. FECHNER'S APPROACH TO PSYCHOPHYSICS

3.1. Construction of a Fechnerian Scale

Fechner's fundamental idea is that a sensory scale can be con
structed by adapting, to a particular kind of sensory data, the
standard measurement procedure for the measurement oflength
in physics. (We assume that, at a minimum, the material in
Section 2.1 is familiar to the reader.) This is by no means obvious,
and we shall proceed carefully.

Suppose that a, b, c ... are numbers representing, in con
ventional units, values of some physical magnitude, such as
mass (or sound pressure, luminance, etc.). For simplicity, we
shall refer to a, b, C ... as stimuli. Let Pa,b be the probability
that a subject, presented with the pair (a,b) of stimuli in some
experimental paradigm, judges a at least as heavy as b. For the
time being, consider only the data obtained for pairs (a,b) such
that a ;.: b. Let us assume that there exists a psychophysical
scale, the properties of whieh govern important aspects of per
formance in this paradigm. Thus each stimulus a is mapped to·
a point u(a) in this scale. We alsO assume that this mapping is
order preserving (that is, a < b iff u(~) < u(b)) and that P a,b is
strictly increasing with the distance u(a) - u(b) between the
points representing a and b.

The following illustrative device is helpful: identify a and
b inJhe pair (a,b) as names given to the two endpoints of a
"rod"'; a is the right endpoint, b the left endpoint. In fact, to
stress the analogy with extensive measurement, the pairs (a,b)
themselves, in this section, will be referred to as rods. Thus
Pa,bincreases strictly monotonically with the length of the rod
(a,b). We write

(a, b) < (c,d) iff Pa,b < Pc,d ,

(a, b) (c,d) iff Pa,b = Pc,d ,

(a, b) ~·(c,d) Iff P~,b'~ Pc,d

I
-



ao al a2 a3 a4

ao 0 1 2

al 0 1

a2 0

ao at a2 a3 a4

ao .5 .75 .80 .90 .95

al .5 .75 .80 .90

a2 .5 .75 .80

a3 .5 .75

a4 .5

3.:2. Remarks

In our deliberate emphasis of the relation between Fechner's
scaling. method and extensive measurement, we were led,'for
simplicity's sake, to make a somewhat unrealistic assumption.
We supposed that any rod (a,b) could be "squeezed" between
two rods (bo,bn) and (bo,bn +I ), inthe sense ofEq. (11). In practice,
however, ifa,bare far enough apart, the probabilityPa,bWill
bt!.equal to l·{or O"if"b <,a)'andwillbe'unaffected by small
changes of the, values of a'and,b. This means'ofcoursethat,Eq.
(11} cannot. hold. A minor modificationof the .algorithm takes
care ofthis difficulty, without alteringthe spiritofthe method.
We assign the number n to (a,b) if there exists a sequence ao,
aI, ..., an+lsuch that

(i). a, = ao < al·< ..... < an ~·b < an +l.

(ii}, Pai+l,ai=.75 for O~i~ n.

Thedistanceai+1 - aiisoften referred to asajust'-noticeable
difference(jnd). Unfortunately, this· term is ·used fora variety
ofclosely related, but different, indices. To eliminate confusion,
we shall reserve the term for one particular such index, which
is defined in Section,7.4.

The Fechnerian metho<tof scale construction, describedin
Section 3.•1 is an adaptation ofthe algorithm for the measurement
of the length of rods outlined earlier (see the first method in
Section 2.3). We have seen that such an algorithm lacks precision.
In fact, it can be ',shown. that a full psychophysical scale, one
that would assign a scale value to each stimulus, could not be
constructed using this method. A more sophisticated'algorithm
mustbe used, similartothe second method described in Section
2.5. This~pointwasmadeby Luce and Edwards (1958}.

Even assuming that an appropriate refinement oftheal..
goritlim·'·is'used,'thete 18.' no'guarantee' thattlie'rhetli'od, .will

We leave it tothe readerto verify this in detail. (The values
0-3 fol~owfrom a straightfonvardapplication ,of the,criterion
represented byEq~(ll).TheYalue4>wouldrequire a refinement
of that criterion.) The five stimuli can thus be represented as
pointsQna straight line, say, with aoat the point 0, and the,
distance between ai andai+lbeing constant, equal to ·1.

Except for unessentialdetails,this is Fechner's fundam~ntal
idea.

(11)

We have thus by definition of the concatenationoperation

Thus a comparison of (a,b)(b,c) with (d,e) ismade possible
by a comparison of (a,c) with (d,e)..For example, if (a,c) <. (d,e),
one concludes that

Figure 1.3 summarizes the situation.·We have thus. a collection
ofrods and a comparison procedure represented by the relation
~. This analogy with the extensive measurementofthe length
of rods discussed in Section. 2 ,also suggests a 'concatenation
procedure..For example, (a,b)concatenated with (b,c) should
have alength,equal to thatof.(a"c).Wesymbolizethisfactby,
the formula

(bo,bn) ,.. ~, (a,a') < (bo,bn +1) ,

The lengthn will be assigned to (a,a')(n being some positive
integer). if

bad c .Physical

,) ~ / ~scaleL Psycho-
- -~ ,-- ... --- physical

I ,.~".." ",~ scale
I ~,.. I ,..'"
I ".."" I ,..~

_~~~ L ~~: _

that is,'ifcorrespondingly,the probabilities satisfy theinequal..
ities

The number n is thus a measure of the length of the rod (a,a'),
that is, ofthe distance between a and a' on the psychophysical
scale. Let us apply this idea in an example. Suppose that the
probabilities for all the pairs of stimuli in a set {ao, aI, a2,a3,
tL4}"are'given'oy the"'matrix

Figure 1.3. In a discrimination experiment, the two pairs ofstumuli (a,b),
(c,d) considered as rods; (a, b) -< (c, d).

This, ofcourse, isa special ca.se.Generally,tworodsto be,
concatenated need not have a common endpoint. A discussion
of the more general situation, although quitestraightforward,
involves technical details and will be omitted here.

Let us proceed to· construct a scale measuring the length
ofthe rods (keeping in mind that the' "length"of (a,b) is the
distance between the stimuli a,b on some psychophysicalscale).
Suppose that we decide to use the method of Section 2.3 to
measure, the length of some rod (a,a'). We picksom,e ,rod (bo,
bl)as a unit, together with any number of exact copies of that
rod;
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ao al az as a4

ao 0 1 2 3 4

al 0 1 2 3

0 1 2
(13)

az

as 0 1

a4 0

3.2. Remarks

In our deliberate emphasis of the relation between Fechner's
scaling method and extensive measurement, we were led, for
simplicity's sake, to make a somewhat unrealistic assumption.
We supposed that any rod (a,b) could be "squeezed" between
two rods (bo,bn) and (bo,bn+1), in the sense ofEq. (11). In practice,
however, if a,b are far enough apart, the probability P a,b will
b~. equal to 1 (or 0, if b < a) and will be unaffected by small
changes of the values of a and b. This means of course that Eq.
(11) cannot hold. A minor modification of the algorithm takes
care of this difficulty, without altering the spirit ofthe method.
We assign the number n to (a,b) if there exists a sequence ao,
ab ..., an + 1 such that

(i) a = ao < al < ... < an ... b < an+l.
(ii) Pai+1,ai= .75 for 0,.. i,.. n.

The distance ai+1 - ai is often referred to as ajust~noticeable

difference (jnd). Unfortunately, this term is used for a variety
ofclosely related, but different, indices. To eliminate confusion,
we shall reserve the term for one particular such index, which
is defined in Section 7.4.

The Fechnerian method ,of scale construction described in
Section 3.1 is an adaptation ofthe algorithm for the measurement
of the length of rods outlined earlier (see the first method in
Section 2~3).We have seen that such an algorithm lacks precision.
In fact, it can be shown that a full psychophysical scale, one
that would assign a scale value to each stimulus,could not be
constructed using this method. A more sophisticated algorithm
must be used, similar to the second method described in Section
2.5. This point was made by Luce and Edwards (1958).

Even assuming that an appropriate refinement of the ai
gorithIri. is used, there is no guarantee that the method win '.

We leave it to the reader to verify this in detail. (The values
0-3 follow from a straightforward application of the criterion
represented by Eq~ (11). The value 4 would require a refinement
of that criterion.) The five stimuli can thus be represented as
points ona straightline,say, with ao at the point 0, and the
distance between ai and ai+lbeing constant, equal to 1.

Except for unessential details,this is Fechner's fundamental
idea.

If we take (aO,al) as a unit, this method leads us to assign the
values in the matrix below, as measuring the distance between
the points:

(11)

We have thus by definition of the concatenation operation

that is, ifcorrespondingly, the probabilities satisfy the inequal
ities

The length n will be assigned to (a,a') (n being some positive
integer) if

(a,b)(b,c) - (a,c)

(a, b)(b,c) < (d,e) .

The number n is thus a measure ofthe length of the rod (a,a'),
that is, of the distance between a and a' on the psychophysical
scale. Let us apply this idea in an example. Suppose that the
probabilities for all the pairs of stimuli in a set {aa, al, az, as,
a4}are given by the matrix

Figure 1.3 summarizes the situation. We have thus a collection
ofrods and a comparison procedure represented by the relation
"'5. This analogy with the extensive measurement of the length
of rods .discussed in Section 2 also suggests'a concatenation
procedure. For example, (a,b) concatenated with (b,c) should
have a length equal to that of(a,c). We symbolize this fact by
the formula

Thus a comparison of (a,b)(b,c) with (d,e) is made possible
by a comparison of (a,c) with (d,e). For example, if (a,c) < (d,e),
one concludes that

This, of course, is a special case.. Generally, two.rods to be
concatenated need not have a common endpoint. A discussion
of the more general situation, although quite straightforward,
involves technical details and will be omitted here.

Let us proceed to construct a scale measuring the length
of the rods (keeping in mind that the "length" of (a,b) is the
distance between the stimuli a,b on some psychophysical scale).
Suppose that we decide to use the method of Section 2.3 to
measure the length of some rod (a,a'). We pick someirod (bo,
bl) as a unit, together with any number of exact copies of that
rod;

Figure 1.3. In a discrimination experiment, the two pairs of stumuli (a, b),
(c,d) considered as rods; (a,b) < (c,d).
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iff F[u(a) - u(a')] ~ F[u(b) - u(b')]

holds for some .strictly increasing, continuous functions u, F.
Indeed, suppose that

iff u(a) - u(a') .~ u(b) - u(b')

(17)
ift Pa,a' .~. Pb,b'. ,

I
.(

t

for all positive real numbersa,b. (As customary, we denote by
<l> the distribution function of a standard, normal random vari
able.) It is easy to check that, as defined by Eq. (17), theprob
abilitiesPa,b satisfy all the conditions ofa balanced pychophysical
discrimination system. (This verification isleft to the reader.)

This model, however, is. incompatible with Eq. (15).· The
reason for this is that the (functio~al)equation

has no sol~tion for the f"Qnction~u,F. (That is, th.ere are no
functions u,F "solving" this equati~n; cf. Iverson, 1979). Thus
additional.conditions onthech()iceprobabilitiesare.needed,if
Eq.(15) is to hold. Two such conditions are introduced in the
next definition.

'. . -.

3.5.2..... Definition. .A psychophysicaldiscrimination system
(I,C,P) is called Fechnerian iff the equation Pa,b= F[u(a)
u(b)] holds for some. strictly increasing continuous functions u,
F.

We· say •that (I,C,P)· satisfies the .bicancellation condition
iffwheneverPa,b~Pa',b"Pb,e ~ Pb',e,and(a,c),(a',c') EC, then
Pa,e ~ Pa',e'.. .... .. ... ... . .

A psychophysical discrimination system (I,C,P).satisfies
the quadruple condition iff

establishing the quadruple condition. The second implication,
(i) :;> (iD, is· obtained by a similar method.

Placed on the background of the· conditions defining a bal
anced psychophysical discrimination system,. the. bicancel1ation
and the quadruple condition each constitutes a complete solution
to the representation problem in Section 3.3.2. To put it another
way: any model for choice probabilitiesPa,b· satisfying either
bicancellation or the qu'adruple condition can be put in the form
ofEq. (15). In principle, these conditions can be testedexperi~

mentally. In practice, however, rather delicate statistical issues
arise (cf. Iverson & Falmagne, in press).

The importance givenin this chapterto Eq. (15) may surprise
the reader. Actually, this representatiorihas an" impact beyond
:Fechn~r's scalingm~thod. Many current models for choice

~ <: probaBilities. are'Fechnerian (in the sense of the definition in
Section 3.5.2). As we shall see, these models differ in the specific
assumptions made regarding the mechanisms ofchoice, which
in turn determine the form of the function Fin Eq. (15).

The critical issue remains of the status of the scale u, once
it has been constructed. Doesit make' sense,as proposed by
Fechner,to'consider that such a scale measures the magnitude
of the "sensation" evoked by thestimulus?We.shall postpone
this' discussion for the moment (see Section 10).

3.6. KeyReferences

4. MODELS OF DI.SCRIM1NATION

The. discussion of Fechner's scaling. methods given here,even
though perfectly compatible with Fechner's own presentation,
was strongly influenced by the developments. of measurement
theory,asgiven,forexample,in Krantz and colleagues (1971)
or Roberts(1979). In this context, Fechner's problem is a case
of difference measurement. The notions of a representation
problem, representation theorem, and uniqueness theorem are
standardin measurement theory.

This modern viewpoint regarding Fechner's enterprise is
dueto Luceand his collaborators(Luce, 1959a; Luce & Edwards,
1958; Luce & Galanter, 1963). The solution to the representation
problem given here iSIJlostly due to DoignonandFalmagne
(1974; see also Falmagne, 1971, 1974). Related references are
Levine (1971,1972) and Krantz(1971). Eq.(15)also appears
inthegeneral context of choice theory, where it is dubbed the
strong utilitymQdel (Luce &Suppes, 1965). The quadruple con..
dition has been investigated by Marschak(1960) and Debreu
(1960).

As indicated, statistical issues·regarding the empirical
testing ofaxiomssuch.as bicancellation or the quadruple con
dition are discussed in Iverson and Falmagne (in press}.

In Section 3 we considered a forced-choice paradigm,inwhich
a subject .is presented with pairs (a,b) of.stimuli .. (a,bare·real
numbers,' representing the stimulus values on some physical

~. F [u(aI )-u(b')] scale). The task is to select oneofthe two stimulias exceeding
.. -,. .< .the·other,intermsQfsomesubjective·attribute, such,asloudness

-> uCb') or perceived weight, depending on the nature of the stimuli.

Pa,b ~ Pa',b' iff Pa,a' ~ Pb,b'

whenever all four probabilities are defined. The importance of
the bicancellation condition has been·· emphasized earlier, ·in
connection with· a 'similar condition ,in extensive measurement
(cf. SeCtion' 3.2). The relation between the three concepts in
this definition is made clear in the theorem in Section 3.5.3.

3.5.3. Representation and Uniqueness Theorem. Let'l' he
a balanced psychophysical discrimination.system. Then the fol
lowing three conditions are equivalent:

(i) '1" is Fechnerian
(ii) 'I' satisfies bicancellation

(iiD 'I' 'satisfies the quadruple condition.

Moreover, if any of these conditions is satisfied and (u,F),
(u*, F*}.aretwo .pairs of functions satisfying Eq. (15), then
u*(a)=au(a) + ~andF*(s) = F(s/a) for some constants a>
O··and ~.

The r~lationbetweenthefunctions uandu*in thistheorem
is sometimesexpressed bystatingthat"uis an interval scale"

Section 10,in this connection).
A full proofofthistheorem would take many pages and is

beyondthe scope of this chapter. Some parts··of this result ·are
easy to obtain.h()wever, for example, the two implications (i)
::;>(ii}and (i):;>(iii).Assume, for example, that{i).holds, and
letu, Fbethe two functions satisfyingEq.(15).Successively?

\,
I
I
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holds for some strictly increasing, continuous functions u, F.
Indeed, suppose that

iff u(a) - u(a'):s;. u(b) - u(b')

iff u(a) - u(b):s;. u(a') -u(b')

Pa,b :s;. Pa',b' iff F[u(a) - u(b)] :s;.F[u(a') - u(b')]

Pa,b :s;. Pa',b' iff Pa,a' :s;. Pb,b'

- u(b')]- u(a')]:s;. F[u(b)

iff

iff F[u(a)

4. MODELS OF DISCRIMINATION

In Section 3 we considered a forced-choice paradigm, in which
a subject is presented with pairs (a,b) of stimuli (a,b are real
numbers, representing the stimulus values on some physical
scale). The task is to select one of the two stimuli as exceeding
the other, in terms ofsome subjective attribute, suCh as loudness
or perceived weight, depending on the natur.eof the stimuli.

The discussion of Fechner's scaling methods given here,. even
though perfectly compatible with Fechner's own presentation,
was strongly influenced by the developments of measurement
theory, as given, for example, in Krantz and colleagues (1971)
or Roberts (1979). In this context, Fechner's problem is a case
of difference measl,ll'ement. The notions of a representation
problem, representation theorem, and uniqueness theorem are
standard in measurement theory.

This modern viewpoint regarding Fechner's enterprise is
due to Luce and his collaborators (Luce, 1959a; Luce & Edwards,
1958; Luce & Galanter, 1963). The solution to the representation
problem given here is IJlostly due to Doignon and Falmagne
(1974; see also Falmagne, 1971, 1974). Related references are
Levine (1971, 1972) and K.rantz (1971). Eq. (15) also appears
in the general context of choice theory, where it is dubbed the
strong utility mQdel (Luce & Suppes, 1965). The quadruple con
dition.has been investigated by Marschak (1960) and Debreu
(1960).

As indicated, statistical issues regarding the empirical
testing of axioms such as bicancellation or the quadruple con
dition are discussed in Iverson and Falmagne (in press).

3.6. Key References

establishing the quadruple condition. The second implication,
(i) ::> (ii), is obtained by a similar method.

Placed on the background of the conditions defining a bal
anced psychophysical discrimination system, the bicancellation
and the quadruple condition each constitutes a completesolution
to the representation problem in Section 3.3.2. To put it another
way: any model for choice probabilities Pa,b satisfying either
bicancellation or the quadruple condition can be put in the form
of Eq. (15). In principle, these conditions can be tested experi"
mentally. In practice, however, rather delicate statistical issues
arise (cf. Iverson & Falmagne, in press).

The importance given in this chapter to Eq. (15) may surprise
the reader. Actually, this representation has an-impact beyond
Fechn:r's scaling method. Many current models for choice
probabilities are Fechnerian (in the sense of the definition in
Section 3.5.2). As we shall see, these models differ in the specific
assumptions made regarding the mechanisms of choice, which
in turn determine the form of the function Fin Eq. (15).

The critical issue remains of the status of the scale u, once
it has been constructed. Does it make sense, as proposed by
Fechner, to consider that such a scale measures the magnitude
of the "sensation" evoked by the stimulus? We shall postpone
thisdiscllssion for the moment (see Section 10).

(17)P a,b = <Il [ a - bl0.!]
(a + b)

whenever all four probabilities are defined. The importance of
the bicancellation condition has been emphasized earlier, in
connection with asimilar condition in extensive measurement
(cf. Section· 3.2), The relation betWeen the three concepts in
this definition is made clear in the theorem in Section 3.5.3.

3.5.3. Representation and Uniqueness Theorem. Let 'I' be
a balanced psychophysical discrimination system. Then the fol
lowing three conditions are equivalent:

(i) 'I' is Fechnerian
(ii) 'I' satisfies bicancellation

(iii) 'I'satisfies the quadruple condition.

Moreover, if any of these conditions is satisfied and (u, F),
(u*, F*)are two pairs ·of functions satisfying Eq. (15), then
u*(a) = au(a) + (3 and F*(s) = F(s/a) forsome constants a>
oand (3.

The relation between the functions u and u*in this theorem
is sometimes expressed by stating that "u is an interval scale"
(see Section lOin this connection).

A full proofof this theorem would take many pages and is
beyond the scope of this chapter. Some parts of this result are
easy to obtain however, for example, the two implications (i)
::> (ii) and (i) ::> (iii). Assume, for example, that (i) holds, and
let u, F be the two functions satisfying Eq. (15). Successively,

[
a - b ]

P a,b = <Il (a + b/12 = F[u(a) - u(b)]

for all positive real numbers a,b. (As customary, we denote by
<Il the distribution function of a standard, normal random vari
able.) It is easy to check that, as defined by Eq. (17), the prob
abilitiesPa,b satisfy all the conditions ofa balanced pychophysical
discrimination system. (This verification is left to the reader.)

This model, however, is incompatible with Eq. (15). The
reason for this is that the (functio~a1)equation

has no solution for the fiJ,nctionsu, F. (That is, there are no
functions u, F "solving" this equation; cf. Iverson, 1979). Thus
additional conditions On the choice probabilities are needed,if
Eq. (15) is to hold. Two such conditions are introduced in the
next definition.

3.5.2. Definition. A psychophysical discrimination system
(I,e,p) is called Fechnerian ifi'the equation P a,b = F[u(a) 
u(b)] holds for some strictly increasing continuous functions u,
F.

We say that (l,e,p) satisfies the bicancellation condition
iffwhenever P a,b :s;.pa',b', Pb,e:s;. Pb',e' and (a,c),(a' ,c') Ee, then
Pa,e:s;. Pa',e"

A psychophysical discrimination system (l,e,p) satisfies
the quadruple condition iff
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Noticethatthenornialityassumption is not critical in the above
discussion. Suppose that in Eq. (19) the random variables Ua,

Ubare independent. and identically distributed except for a
"shift" parameter. Thatis, suppose that for any stimulus c, Uc

has the same distributionasuCc)· +~,where u iaa real-valued
function and; is a fixed random variable. FromEq. (19), we
have with '~,~'independentand identically distributed

Prob{~' - ..~. ~ u(a) - u(b)}

G[u(a} -u(b)]

Pa,b= Prob{Ua - Db ~ .. O}

Pa,b Prob{u(a) + ~ ..... [u(b) + ~'] ~O}

Pa,b = <I>[u(a) - u(b)] ,

4.3. DrQppingthe·...·Normality.Assumption

whereGis thedistributionfunctionof~'-~. This is a special
case of Eq. (18), generalizing case V of the law of comparative

-judgment.

a special case ofEq.(18),withF '=<1>. The models embodiedin
Eqs. (20) and· (21) are usually referred to as cases 111 and V,
respectively, of Thurstone's law ofcOrnparativejudgment
(Thurstone, 1927a, 1927b;a very complete discussion of Thur
stone:'s theory can be found in Bock & Jones, 1968). Thurstone
case Vhas been given a special interpretation in a psychoacoustic
context and has been applied to an impre'ssive body of data by
Durlach, Braida, and their cowQrkers (Braida &Durlach, .1972;
Durlach&Braida,1969;Jesteadt& Bilger, 1974; Jesteadt &
Sims,1975; Lim,Rabinowitz, Braida, & Durlach, 1977; Pynn,
Braida,&··Durlach,··.·1972).

where <I> is the distribution function of a unit normal rando
variable (Le., anormal.random variable with ameanequalt
oand a variance equal to1). Suppose, moreover,that the rando
variables have equal variances, say,a2(c) =a2/2 for all stimul
c.Then dividing byetin boththe'Ilumeratorandthedenominator
ofEq. (20), and writing u(c)=p,(c)!a, yields

More specifically, suppose that Ua and Ubare independent an
normally distributed,with respective meansandvariancesfJ.(a
fJ.(b), a(a)2, cr(b)2. Thus Ua ---Db is normallydistributed,wit
meanp.(a)- J.L(b) andvariancea(a)2+ a (b)2. We obtain

This·general·model is.consistent·with the·Fechnerian E
(18). In other words, under specific'assumptions on the.joi
distribution of the random variables Ua and Ub, Eq. (18) wi
be obtained. An example is given in Section 4.2.

(18) 4.2. Thurstone Law of Comparative JudgmentsPa,b··= F[u(a) - u(b)]

4.1. Random Utility Models

Letus assume that to each presented stimulus a, corresponds
a random variable·Ua symbolizingthe effect of the stimulus on
thesubject's sensory apparatus. We also assume that a appears
atleastas intense as some other offered stimulusbifthesampled
value OfUb.does not· exceed that ofUa ; formally

The distributions of the random variables Ua are unspecified.
Inthe literature ofchoice theory, this modelisoften referred

to as the random utility model (Block & Marschak, 1960; Luce
&Suppes, 1965; Marschak, ·1960). Since no assumptions are
made regarding the joint distribution of the random variables
Ua , one may ask whether this model sets any constraint on the
data. Actually,it may be shown that ifsome collection ofrandom
variablesUa exists satisfying this model, then (in the case of
a balanced system, cf. Section 3.5) we must have

for these choice probabilities. In this equation,u and Fare
assumed to·be real-valued,. continuous, and strictly·increasing
functions,but· are· otherwise unspecified. Such a model says
little regarding the details ofthe mechanism ofchoice. Certainly,
the choice of a stimulus is the final stage ofa cornpiex process,
involving physiological and psychologicalcomponents. All these
aspects· are somehow captured by the functions uand F. This
rather ·abstract viewpoint· is.· open to criticisms,·in particular
regarding the. interpretation ofthe functions u and F..Suppose,
for example, that the subject is under time pressure. Say the
choice response must be madewithintsec after the presentation
ofthe .. stimuli, witht varyinga.crossconditions(e~g.,t=1, 3"
10J.AssumingthatEq. (18)hoids in each condition, will the
value oft affect u,F,· both.ofthese functions? Without. a more
explicit model, it is difficult to· venture a guess. One could ob
viously assume, for instance, that only F willvary acrosscon~

ditions. However, some·.may feel uneasy aboutthe·(absence.of)
rationale for such a position. Totake another example, suppose
that thestimulia,b ....are pu.retones,presented.on a background
n o~ noise .(say, .n is the average .sound pressure of a Gaussian
noise). The values of n, if their range is chosen appropriately,
will·certainly affect the choice probabilities. Again,however,
the impact of non uorFisdii?cultto predict..Inturn, one may
argue, this uncertainty regarding the role of u and F in these
experiments casts some doubt on the interpretation of u as a
"sensation scale" (cf. Section 3).

This section is devoted to a discussion.ofa number ofmodels
consistent with ·.Eq.(18).Thismeans that a given model is
either a special case.ofEq.(18)(itsassumptions imply a par
ticular functional form for the function F) or hasaspecial case
that takes the form of Eq. (18), withFspecified.

PSYCHOPHYSICAL MEASUREMENT AND THEORY

The basic· theoretical notion was a probability Pa,b that the
subject chooses a over b. It was assumedthatP is strictly in
creasing in a and strictly decreasing in b. A detailed theoretical
analysis was made of the representation

4.4. Dropping the Constant Variance Assumption

for allstimulia,b,and c (Block & Marschak, ·1960). This is a The constant variance assumptionusedin thetwo.preceding
.ratherw~~k cpnclition, buton~,whichcanc()nceiyablyberej~~ted, ... , ex~mplesis,n()t;.~ssential .... SuPpos~· th~t,.in~q ..,(2Q) .fJ. varies
for some·data. 'linearly withtr: . , '

.~

I

(18) 4.2. Thurstone Law of Comparative Judgments

More specifically, suppose that Ua and Ub are independent an
normally distributed, with respective means and variances Il-(a
Il-(b), u(a)2, u(b)2. Thus Ua - Ub is normally distributed, wit
mean Il-(a) - Il-(b) and variance u(a)2 + u(b)2. We obtain

(1Pa,b = Prob{Ua - Ub ;a. O}

<P{[Il-(a) - ll-(b)]/[u(a)2 + u(b)2t/2}

Notice that the normality assumption is not critical in the above
discussion. Suppose that in Eq. (19) the random variables Ua ,

Ub are independent and identically distributed except for a
"shift" parameter. That is, suppose that for any stimulus c, Uc
has the same distribution as u(c) + g, where u is a real-valued
function and g is a fixed random variable. From Eq. (19), we
have with~, g' independent and identically distributed

a special case ofEq. (18), withF= <P. The models embodied in
Eqs. (20) and (21) are usually referred to as cases III and .V,
respectively, of Thurstone's law of comparative judgment
(Thurstone, 1927a, 1927b; a very complete discussion ofThur
stone~s theory can be found in Bock & Jones, 1968). Thurstone
case V has been given a special interpretation in a psychoacoustic
context and has been applied to an impressive body of data by
Durlach, Braida, and their coworkers (Braida &Durlach, 1972;
Durlach & Braida, 1969; Jesteadt & Bilger, 1974; Jesteadt &
Sims, 1975; Lim, Rabinowitz, Braida, & Durlach, 1977; Pynn,
Braida, & DUrlach, 1972).

4.3. Dropping the Normality Assumption

Pa,b = <P[u(a) - u(b)] ,

where <P is the distribution function of a unit normal rando
variable (Le., a normal random variable with a mean equal t
oand a variance equal to 1). Suppose, moreover, that the rando
variables have equal variances, say, u 2(c) = a.2/2 for all stimuli
c. Then dividing by a. in both the IlUInerator and the denominator
of Eq. (20), and writing u(c) = ll-(c)/a., yields

This general model is consistent with the Fechnerian E
(18). In other words, under specific assumptions on the join
distribution of the random variables Ua and Ub,Eq. (18) wi
be obtained. An example is given in Section 4.2.

Pa,b = F[u(a) - u(b)]

4.1. Random Utility Models

Let us assume that to each presented stimulus a, corresponds
a random variable Ua symbolizing the effect of the stimulus on
the subject's sensory apparatus. We also assume that a appears
at least as intense as some other offered stimulus b ifthe sampled
value ofUb does not exceed that ofUa ; formally

for these choice probabilities. In this equation, u and Fare
assumed to be real-valued, continuous, and strictly increasing
functions, but are otherwise unspecified. Such a model says
little regarding the details ofthe mechanism ofchoice. Certainly,
the choice of a stimulus is the final stage of a complex process,
involving physiological and psychological components. All these
aspects are somehow captured by the functions u and F. This
rather abstract viewpoint is open to criticisms, in particular
regarding the interpretation of the functions u andF. Suppose,
for example, that the subject is under time pressure. Say the
choice response must be made within t sec after the presentation
of the stimuli, with t varyingacrosscpnditions (e.g., t = 1,3,
10). Assuming that Eq. (18) holds in each condition, will the
value of t affect u, P, both of these functions? Without a more
explicit model, it is difficult to venture a guess. One could ob
viously assume, for instance, that only F will vary acrosscon
ditions. However, some may feel uneasy about the (absence of)
rationale for such a position. To take another example, suppose
that the stimuli a,b ... are pure tones, presented on a background
n of noise (say, n is the average sound pressure of a Gaussian
noise). The values of n, if their range is chosen appropriately,
will certainly affect the· choice probabilities. Again, however,
the impact of n on u or F is difficult to predict. In turn, one may
argue, this uncertainty regarding the role of u and F in these
experiments casts some doubt .on the. interpretation of u as a
"sensation scale" (cf. Section 3).

This section is devoted to a discussion ofa number ofmodels
consistent with Eq. (18). This means that a given model is
either a special case of Eq. (18) (its assumptions imply a par
ticular functional form for the function F) or has a special case
that takes the form ofEq. (18), withF specified.

I

PSYCHOPHYSICAL MEASUREMENT AND THEORY

The basic theoretical notion was a probability P a,b that the
subject chooses a over b. It was assumed that P is strictly in
creasing in a and strictly decreasing in b. A detailed theoretical
analysis was made of the representation

The distributions of the random variables Ua are unspecified.
In the literature ofchoice theory, this model is often referred

to as the random utility model (Block & Marschak, 1960; Luce
& Suppes, 1965; Marschak, 1960). Since no assumptions are
made regarding the joint distribution of the random variables
Ua , one mayask whether this model sets any constraint on the
data. Actually, it may be shown that ifsome collection ofrandom .
variableSUa exists satisfying this model, then (in the case of
a balanced system, cf. Section 3.5) we must have

Pa,b = Prob{u(a) + ~ ... [u(b) + g'] ;a. O}

Prob{g' -g :s; u(a) - u(b)}

G[u(a) - u(b)]

where G is the distribution function of g' - g. This is a special
case ofEq. (18), generalizing case V of the law of comparative
judgment.

1 .:;;; Pa,b + Pb,c + Pc,a :s; 2 4.4. Dropping the Constant Variance Assumption

for all stimuli a, b, and c (Block & Marschak, 1960). This is a
rather WE!.ak conditiOn, but onE!. which can conceivably be reJec::ted
for some data.

The constant variance· assumption used in the two preceding
exa.mples is)l,otE!ssential. Suppose tP,l:l:t inEq. (20) Il- varies
linearly with d:

r
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J..L(e). = aa(e) + .fj ,

THEORY AND METHODS

(22) 4.6. An Extreme Value Model and the Strict Utility,
or logistic, Model

for some constants a > 0 and fj. Successively, from Eqs. (20)
and (22)

Pa,b q,{a[a(a) - a(b)] I [a(a)2 + a(b)2t/2}

<P{a[(a(a)la(b» - l]I[(a(a)la(b»2 + 1]112} (23)

ThusPa,b only depends on the ratio a(a)la(b). Defining

In the psychoacoustic paradigm used earlier, we suppose with
Thompson and ·Singh (1967) that the neural coding of sound
pressure is b~sed on the combined effect of the stimulus on
many independent, parallel channels. The sensory effect of a
stimulus of level e in channel j, (1 ~ j ~ n), is represented by
a random variable Xc,j.

We assume that nee) channels aretriggered by stimulus c,
the combined effect ofwhich is·represented by a random variable

u(a)· = In' a(a) ,

we rewrite the ratios a(a)la(b) inEq. (23) as differences u(a) 
u(b), obtaining

Pa,b F[u(a) - u(b)] , (24)

In· words, the neural code of a stimulus c is the maximum of
the .excitation levels in n(e) channels. As a basic equation spec
ifying the choice probabilities, we have

where

(26)

(27)

n(a)

n(a) +n(b)

F[u(a) -iu(b)] ,

{I '+e-[1nn(a) - Inn(b)]}-l

with u(e) =·In nee) and

4.7. Remarks

Taken· by itself,Eq.·· (26) .defines the strict .utility model
(Luce&·Suppes, .1965), also called .the BTL. (Bradley-Terry
Luce)system, extensively investigated by Bradley(1954a, 1954b,
1955),'Bradl~y and Terry (1952), and Luce(1959a)-(cf.Suppe$:
&Zinnes,1963).Eq. (27) ··is the defining equation of the ·distri
butionfunction·ofa ·standard logistic random variable (Johnson
&.Kotz, 197Ob,Chatlter22) .. This result, .leading toEq.(26),. is
duetoThompsonan~Singh(1967),basedonextensive earlier
work on the so-called extreme value distributions (Fisher &
Tippett, .·1928; Frechet, 1927; Gnedenko, 1943; Gumbel, 1958;
von Mises, 1939}. For some recent applications ofthese notions
in ·choice····theory.and. psychophysics, .the reader..is referred··to
Yellott(1977},andWandelland Luce (1978), respectively.

:It'carlbeshown that if the'raridomvariables' Xc,} are, with
(25) ,respectto c and}, independent and identically distributed (thus

only the number of channels· n(a); ·n(b) distinguishes the dis
It is easy to check that F is strictly.increasing. This model is tribution of Ua from that of Ub) .and moreover satisfies some
sometimes referred to as case VI ofThurstone's law ofcompar- stability property, then we have approximately forlarge n(a),
ativejudgments(Bock&Jones, 1968;8. S.8tevens,1959,1966b). ~···n(b),.· I

Again; the normality.assumption is not essentialinthe above
derivation.

4.5. A Timing Model

.Pa,b =Prob{ Sn,a ~ . Sn,b}'

8incen.can be assumed·to· belarge ··(n > 100),Sn(c)isdistributed
very nearly normally,. with expectation .. A(e)-l and variance
A(c)-2In. The standard deviation is thus a linear function ofthe
expectation, as in·Eq.(22).We obtain

The linearity assumption,Eq.(22),Jinking mean andst~aard
deviation ofa random variableUcmay seem arbitrary. Actually,
the above model arises quite naturally in psychoacoustics.Let
a·and b denote the sound pressure levels oftwopuretonespf'
the· same frequency, say,. 1000 Hz, presented successively. and
monaurally.Fairly detailed hypotheses will be made regarding ,
the·neural coding ofphysicalsonnd intensity. We assull1ethat
a tone oflevel e applied· in the auditory· channelgives·rise to a.
homogeneous·Poisson processLt(e) ()fneural point events, with
mean A(e) . The interarrival times ofthese events (the interspike
intervals) arethus independeIl~anddistributedexpQnen;p~ally,
with expectation A(e)-l. Alongiines explored by Luceand(}reen
(1972,<1974a), supposethatasampleaverageSn,c of these in
terarrivaltimes is used as the basis for loudness discrimination
(where n· denotes the size ·of the sample). Stimulus a will be
judged at least asloudasstimulus~bifSn,a ~Sn,b;·that·is,

The diversity of these examples, which all lead to Eq.(18),
justifiesthe central place given here to this equ~tion.This di
versity also carries animportantle$son. Ineachofthes~ex
amples, a ·key role is played for ea~h stimulus c, by a basic
random variable Uc~formalizingthe neural coding ofthe stim
ulus..The discrimination probabilities·· are·symbolized by· the
equation

.,.I__.....- ..- ....----__-------
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/-L(e) = eta(e) + 13 ,

THEORY AND METHODS

(22) 4.6. An Extreme Value Model and the Strict Utility,
or Logistic, Model

for some constants et > 0 and 13. Successively, from Eqs. (20)
and (22)

Pa,b 4l{et(a(a) - a(b)]/(a(a)2 + a(b)2]1/2}

4l{et(a(a)/a(b» - 1]/(a(a)/a(b»2 + 1]1/2} (23)

Thus P a,b only depends on the ratio a(a)/a(b). Defining

In the psychoacoustic paradigm used earlier, we suppose with
Thompson and Singh (1967) that the neural coding of sound
pressure is b.ased on the combined effect of the stimulus on
many independent, parallel channels. The sensory effect of a
stimulus oflevel e in channel}, (1 :so;) :so; n), is represented by
a random variable Xc,i'

We assume that n(c) channels are triggered by stimulus c,
the combined effect ofwhich is represented by a random variable

u(a) = In a(a) ,

we rewrite the ratios a(a)la(b) in Eq. (23) as differences u(a) 
u(b), obtaining

Pa,b F(u(a) ~ u(b)] , (24)

In words, the neural code of a stimulus c is the maximum of
the excitation levels in n(c) channels. As a basic equation spec
ifying the choice probabilities, we have

where

F(s) = 4l(et(eS ~ l)/(e2s + 1)112] . (25)

It is easy to check that F is strictly increasing. This model is
sometimes referred to as case VI of Thurstone's law of compar
ativejudgments (Bock &Jones, 1968; S. S. Stevens, 1959, 1966b).
Again, the normality assumption is not essential in the above
derivation.

It can be shown that if theraridom variablesXcJ are, with
respectto eand}, independent and identically distributed (thus
only the number of channels n(a)jn(b) distinguishes the dis
tribution of Ua from that of Ub) and moreover satisfies some
stability property, then we have approximately for large n(a),
n(b), '

n(a)

n(a) + n(b)

4.7. Remarks

Taken by itself, Eq. (26) defines the strict utility model
(Luce &Suppes, 1965), also called the BTL (Bradley-Terry
Luce)system, extensively investigated by Bradley(1954a, 1954b,
1955), Bradley and Terry (1952), and Luce (1959aHef. Suppes
& Zinnes, 1963). Eq. (27) is the defining equation of the distri
bution function of a standard logistic random variable (Johnson
& Kotz, 1970b, Chapter 22). This result, leading to Eq. (26), is
due to Thompsonand Singh (1967), based on extensive earlier
work on the so-called extreme value distributions (Fisher &
Tippett, 1928; Frechet, 1927; Gnedenko, 1943; Gumbel, 1958;
von Mises, 1939). For some recent applications of these notions
in choice theory and psychophysics, the reader is referred to
Yellott(1977), and Wandell and Luce (1978), respectively.

(26)

(27)

u(b)] ,F(u(a)

with u(e) = In n(c) and

Since n can be aSSJ.lIIled to belarge (n > 100), Sn(c) is distributed
very nearly normally, with expectation },,(eVl and variance
Me)-2In. The standard deviation is thus a linear function of the
expectation, as in Eq. (22). We obtain

Pa,b = Prob{Sn,a :so; Sn,b} .

4.5. A Timing Model

The linearity assumption, Eq. (22), linking mean and standard
deviation oh random variable Uc may seem arbitrary. Actually,
the above model arises quite naturallY in psychoacoustics. Let
a and b denote the sound pressure levels oftwo pure tones of
the same frequency, say, 1000 Hz,presented successivelY and
monaurally, Fairly detailed hypotheses will be made regarding
the neural coding of physical sotmd intensity. We assume that
a tone of level c applied in the auditory channel gives rise to a
homogeneous·Poisson process Lt(e) of neural point events, with
mean Mc). The interarrival times of these events (the intersplke
intervals) arethus independent and distributed exponentiallY,
with expectation },,(c)-l. Along iines explored by Luceand 9reen
(1972, 197480), suppose that a sample average Sn,c of these in
terarrival times is used as the basis for loudness discrimination
(where n denotes the size of the sample). Stimulus a will be
judged at least as loud as stimulus.b if Sn,a :so; Sn,b; that is,

Po"b 4l{n
1
/2(Mb)-1 - Ma)-1]/(Mb)-2 + },,(a)-2]1h}

4l{n1h[(Md)lMb» - 1]/(M~)/},,(b»2 + 1]1/2},

a special case ofEq.(23.). In particular, Eqs. (24) and (25) follow
withu(a) = In X(a) and et = nY'2.

The diversity of these examples, which all lead. to Eq. (18),
justifies the central place given here to this equation. This di
versity also carries an important lesson. In each of these ex
amples, a key role is played for each stimulus c, by a basic
random variable Uc; formalizing the neural coding of the stim
ulus. The discrimination probabilities are symbolized by the
equation

1-------------------



(33)

F[u(a) -

f1 (1 + e- 9ab)-nab(1+ e~9ba)~nba .
(a,b)

1(6)

for all·· stimuli a, b, and c. In particular,

Thereis a good reason for thisreparameterizationofthe modeL
The .new parameters 9"qb have to be estimated from the data,
subject to the linearconstraint,Eq.(32). This.is a·standard
situation in statistics, .which leads naturally to·a likelihood
ratio procedure. Let nab be .the number of choices ofstimulus
a observed in the course of nab + nba trials. Lete be the vector
of all the parameters 6ab.Undertheusualconditions.. concerning
the independence of trials, the likelihood of the data is the
product

6aa = 0 ,

4.9.

Thelllodelsdisctissed inthis section can be tested empirically
by standard statistical techniques. ·A.likelihood ratIo method
is sketched below forthe logistic model, the principle of which
is easily extended to other .cases.

According to the logistic model defined by Eqs. (26) and
(27),thechoiceprobabilitiesmust satisfy the equation

For l~rge I\.(a),-, J\(b}r,the random. variables Na , Nb are nearly
normal (Cramer, 1963, p. 250),yieldingapproximately

This model, which,as far as we know, was proposed originally
by Strackee and vanderGon (1962; see also Luce & Green,'
1972, 1974a; McGi11 & Goldberg, 1968), is incompatible with
Eq. (18);there are no (continuous, moIiotonic)functions J,L, u,
and Fsatisfying the equation

ofthe two stimuli a,b.Thus Na, Nb are two independent Poisson
random variables, with expectations t-t(a) = I\.(a}r,t-t(b) = J\(b}r,
respectively. (We recall the variance ofa Poisson random variable
is equal to its expectation.) Assume further that

(28)

Now ·let. us consider a neural· Poisson .counting ·modelincom..
patible with the equationPa,b= F[u(a) - u(b)].As in the
psychoacoustic example in Section 4.6, suppose that a tone of
level cgenerates a.homogeneous Poissonprocess of spike events
Lt(C),ofmeanl\.(c). Suppose now, however, thatintensity dis
crimination,rather than·being based on· the·average spike in
tervalsasin Section 4.5, relies on a-count ofthe number of
spikes during a fixed interval T. LetNa, Nb be two random
variables representing the number ofspikes-counted for each

4.8. A ·Neural .. Poisson·CountingModel

whereF is the distrjbution functionofa standard logistic random
variable, 'while in·Thurstone.case V, the same. equation is.ob
tained, exceptthat F is replaced bycI>, the distributionfunction
ofa standard normal random variable. Itturns out that Fand
<I:> .are close approximations to eachother (see Johnson & Kotz,
1970b, for details on this matter), so close, in fact,that choosing
one model, over· the other by.some·empirical test is practically
hopeless.

The reason for this· paradox-drastically, different· .as
sumptions but indistinguishable .. predicti()lns - is that· these
models consist of ··veryelaborate .. constructions concerning
unobservable choice mechanisms fora rela,.tively scarce data
base.·There are simply notenough data to support the edifice.
This is especially true for thee)Ctremevalue model.

It is certainly temptingtomodeltheunobservable details
of the choice mechanisms, and 'itmay even be useful to do so,
since .. this may provide· insightful interpretations. of the data
and suggest usefulexperirp.ents.. Thelesson is,· however, that
such ·detailed ·assumptions·shouldproba.blynot be taken too
se:r:iously, except in cases in whichthe data base is much richer,
relative to the theoretical construction, than was assumed here.

PSYCHOPHYSICAL MEASUREMENT AND THEORY

Pa,b =F[u(a) - u(b)]

Assuming that such a· theoretical device is warranted and that
the particularform ofCthe distribution function of) these random
variables is taken seriously, it· may seem·sensible to assign a
fundamental role·.toa. central location indexofthese·random
variables. This would suggest adopting ECUc)-the expectation
of the random variable Uc--:as a measure of the magnitude of
the·sensation evokedby.the·stimulus.c. Notice, however, that
E(Uc) does not necessarily coincide with u(c) inEq. (18). Such
coincidenceis obtained in Eqs. (20). and (21) but not in (22)and
(23) (wherewehaveu(c)=Jn E(Uc)) and not,aswe shall see,
in· our next model.

ThuseventhoughEq. (18) may play a fundamental role,
the theoreticalstatus ofthescaleu entering in this equation
is .•. not necessarily clear.

It is natural to ask, Are there. reasonable· models incom
patible with Eq. (18)? The example in Section 4.8 provides an
answer.

There is another lesson to be derived from these examples.
Comparing the extreme value •modeLEq. (24)with the law of
comparativeJudgment, .case V,Eq.(20), it must be concluded
thatthe.mechanisms postulated are very different. Nevertheless,
these models are extremely difficult to'distinguish from an em·,
piricalviewpoint. The extreme value model predicts that the
.choiceprobabilities will satisfy the equation
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(32)

(31)

(30)

F[u(a) - u(b)] .
(29)

8ea = 0 ,

8aa = 0 ,

8ab = u(a) - u(b) •

for all stimuli a, b, and c. In particular,

with

The proof of this fact, based on a result due to Iverson (1979),
will not be given here.

4.9. Remark on Statistical Testing

Notice that Eq. (31) implies-in fact, is equivalent to-the con
dition

The models discu.ssed in this section can be tested empirically
by standard statistical techniques. A likelihood ratIo method
is sketched below for the logistic model, the principle of which
is easily extended to other cases.

According to the logistic model defined by Eqs. (26) and
(27), the choice probabilities must satisfy the equation

For large A(a}r, A(b}r,the random variables Na , Nb are nearly
normal (Cramer, 1963, p. 250), yielding approximately

This model, which, as far as we know, was proposed originally
by Strackee and van der Gon (1962; see also Luce & Green,
1972, 1974a; McGill & Goldberg, 1968), is incompatible with
Eq. (18); there are no (continuous, monotonic) functions IJ., u,
and F satisfying the equation

ofthe two stimuli a, b. Thus Na, Nb are two independent Poisson
random variables, with expectations lJ.(a) = A(a}r, lJ.(b) = A(b}r,
respectively. (We recall the variance ofa Poisson random variable
is equal to its expectation.) Assume further that

(28)

Pa,b = F[u(a) - u(b)]

whereF is the distribution function ofa standard logistic random
variable, while in Thurstone case V, the same equation is ob
tained, except that F is replaced by cI>, the distribution function
of a standard normal random variable. It turns out that F and
<I> are close approximations to each other (see J ohnson & Kotz,
1970b, for details on this matter), so close, in fact, that choosing
one model over the other by some empirical test is practically
hopeless.

The reason for this paradox-drastically different as
sumptions but indistinguishable predictio~s-is that these
models consist of very elaborate constructions concerning
unobservable choice mechanisms for a rell'l-tively scarce data
base. There are simply not enough data to support the edifice.
This is especially true for the extreme value model.

It is certainly tempting to model the unobservable details
of the choice mechanisms, and it mayeven be useful to do so,
since this may provide insightful interpretations of the data
and suggest useful experiments. The lesson is, however, that
such detailed assumptions should probably not be taken too
seI:iously, except in cases in which the data base is much richer,
relative to the theoretical construction, than was assumed here.

Assuming that such a theoretical device is warranted and that
the particular form of(the distribution function of) these random
variables is taken seriously, it may seem sensible to assign a
fundamental role to a central location index of these random
variables. This would suggest adoptingE(Ue)-the expectation
of the random variable Ue-as a measure of the magnitude of
the sensation evoked by the stimulus c. Notice, however, that
E(Ue) does not necessarily coincide with u(c) in Eq. (18). Such
coincidence is obtained in Eqs. (20) and (21) but not in (22) and
(23) (where we have u(c) == In E(Ue» and not, as we shall see,
in our next model.

Thus even though Eq. (18) may play a fundamental role,
the theoretical status of the scale u entering in this equation
is not necessarily clear.

It is natural to ask, Are there reasonable models incom
patible with Eq. (18)? The example in Section 4.8 provides an
answer.

There is another lesson to be derived from these examples.
Comparing the extreme value.modeIEq. (24) with the law of
comparative judgment, case V, Eq. (20), it must be concluded
thatthemechanisms postulated are verydifferent. Nevertheless,
these models are extremely difficult to distinguish from an em
piricalviewpoint. The extreme value model predicts that the
.choice probabilities will satisfy the equation

There is a good reason for this reparameterization ofthe model.
The new parameters 8ab have to be estimated from the data,
subject to the linear constraint, Eq. (32). This is a standard
situation in statistics, which leads naturally to a likelihood
ratio procedure. Let nab be the number of choices of stimulus
a observed in the course of nab + nba trials. Let e be the vector
of all the parameters 8ab' Under the usual conditions concerning
the independence of trials, the likelihood of the data is the
product

4.8. A Neural Poisson Counting Model

Now let us consider a neural Poisson counting model incom
patible with the equation Pa,b == F[u(a) - u(b)]. As in the
psychoacoustic example in Section 4.6, suppose that a tone of
level c generates a homogeneous Poissonprocess of spike events
Lt(c), of mean A(C). Suppose now, however, that intensity dis
crimination, rather than being based on the average spike in
tervals as in Section 4.5, relies on a count of the number of
spikes during a fixed interval T. Let Na , Nb be two random
variables representing the number of spikes counted for each

lee) TI (l + e- 9ab)-nab(1 + e-9ba)-nba .
(a,b)

(33)
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The unconstrained maximum likelihood estimates of the pa
rameters.9ab are given by

(34)

(This corresponds to estimating the probabilities Pa,b by their
relative frequencies.) Let 11 be the value ofthe likelihood function
1 in Eq. (33), when the parameters 9ab are replaced by their
unconstrained maximum likelihood estimates. Let 12 be the
value of the likelihood function 1, when the parameters Bab are
replaced by their maximum likelihood estimates, obtained under
the linear constraint, Eq. (32). A classical result is th~t the
ratio

Timing and Counting llfodels. Luce and Green (1972,
1974a); Strackee and van der Gon (1962); McGi11 and Gold
berg (1968).

The complete literature on probabilistic choice theory is huge,
and the above list should not be taken as exhaustive. Only
references of general·interest, or having a potential relevance
to psychophysics, were included.

Finally, a generally useful· source for facts regarding the
distribution function ofcommonly encountered random variables
is Johnson and Kotz (1969, 1970a, 1970b).

5. PSYCHOMETRIC FUNCTIONS

in wh~ch the function F is specified exactly. This function being
strictly increasing, its inverseF-1 exists,andEq. (35)gives
immediately ,

1.·.::.~.

INTENSITY, aOn physical units)

"Figure 1.5. Idealized graph of a psychometric function.

(36)

(35)

o ,

Pa,b = F[u(a) - u(b)] ,

I

is asymptotically (Le., for a large number of trials) distributed
as a chi-square random variable with·a degree offreedom equal
to the .number of independent parameters reIIl~ining in 12 (cf.
Wilks, 1962, or any·standard statistical text}.,

This procedure can be applied in principle to any model for
binary choices, consistentwith ~heFechnerianequation

Some papers of general interest· are Luce and Suppes (1965)
and Luce (1977a, 1977b). Even thotigh centered'on applications

; in economics, the review paper by McFadden (1976) is a useful
I reference, in which special attentionis paid to statistical matters~
; The book by Bock and Jones (1968) contains a very thorough
! discussion of Thurstone's discrimination models. Gumbel(1958)
i and'Galambos(1978) are introductory texts on extreme value
I distributions. Other useful titles are listed below, organized by
I topics.

GeneralRandom Utility Models. Marschak (1960};Block
and Marschak (1960); McFadden arid Richter (1970, 1971),
Manski (1977); Falmagne (1978).
ThurstoneLaw of _Comparative Judgment.T~urstone

(1927a, 1927b); Brafdaand Durlach·(197.2);Durlach and
Braida (1969); Jesteadtand Bilger (1974); .Jesteadt and
8ims (1975); Lim; Rabinowitz, ,Braida, and Durlach (1977);
llynn, Braida, and Durlach (1972).

, ,

Extreme Value Model.· .Fisher and Tippett (1928); Frechet
(1927); Gnedenko(1943); Thompson andSingh (1967); von
Mises·(1939);Wandell and Luce (1978).
Logistic Model; BTLSystems.Bradley (1954a, 1954b,
1955); Bradleyand Terry (1952); Luce(1959a);Suppesand
Zinnes(1963); Yellott(1977).(As indicated by its title, thi&
paper of Yellott. could· also be placed in either of the two
above categories.)

I 4.10. Key References

, generalizing Eq.(32).
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b
0.0-+-=------'----------'

~
~·0.5

1.0

Consider, for a fixed stimulus b, the probabilityPb(a) that stim
ulus a is judged as exceeding b. (Both b and a are in some real
interval representing the physical scale.) A somewhat idealized
graph ofaf~ctionPb, which is consistent in its main features
with manydata, is displayed in Figure 1.5. .

Cl~8l'ly,regarqed liS a function of two varilibles, (a,b) >-+
Pb(a) is (except for a change of notations) exactly the choice
probabilityfunctioll(a,b) >-+ Pab analyzed in Sections 3 and 4.
As we shall see, however, the ~hangeof notation is indicative
ofa change ofviewpoint, which in turn leads to new theoretical
insights.

Suchafunctionpb is traditionally referred to as apsycho
metric function. This term is also. used in a different situation,
when Pb(a) denotes the problibilityof detecting a stimulus a
embedded in some "noisY"backgro~d b.lnother words, a and
b may be different kinds of physical variables. Occasionally,
we encounter the tenninaIlevt,mbroadercontext, when the
empirical measure.under investiglition is not a probability of
discrimination or detection but ofsome other variable, such as
a reaction time or a C01.1nt ofa neural spike firing. Our discussion
will cover all these cases.

A central topic of this section will be whether the data
support; the assumpti(ln that two or more psychometric functions
are "parallel:'thatis,canbemade to coincide by rigid shifts
along the horizontal/lxis. The rationale for this question is that
parallelism is a criterionlfor art important class of model rep
resented by the equation

(36)

(35)

o ,

Pa,b = F[u(a) - u(b)) ,

GeneralRandom Utility Models. Marschak (1960); Block
and Marschak (1960); McFaddEm arid Richter (1970, 1971),
Manski (1977); Falmagne (1978).
ThurstoneLaw of Comparative Judgment. Thurstone
(1927a, 1927b); Brai.da and Durlach (1972); Durlach and
Braida (1969); Jesteadt and Bilger(1974); Jesteadt and
Sims (1975); Lim, Rabinowitz, Braida, and Durlach (1977);
Pynn,Braida, andDurlach (1972).
Extreme Value Model. Fisher andTippett (1928); Frechet
(1927); Gnedenko (1943); Thompson and Singh (1967); 'Ion
Mises (1939); Wandelland Luce (1978).
Logistic Model; ETL Systems. Bradley (1954a, 1954b,
1955); Bradley and Terry (1952); Luce(l959a);Suppes and
Zinnes (1963); Yellott(1~77). (As indicated by its title, this
paper of Yellott could also be placed in either of the two
above categories.)

generalizing Eq. (32).

is asymptotically (Le., for a large number of trials) distributed
as a chi-square random variable with a degree offreedom equal
to the number of independent parameters remaining in l2 (cf.
Wilks, 1962, or any standard statistical text),.

This procedure can be applied in principle to anymodel for
binary choices, consistent with the Fechnerianequation

! Some papers of general interest are, Luce and Suppes (1965)
I and Luce (1977a, 1977b). Even thotigh centeredon applications
! in economics, the review paper by McFadden (1976) is a useful
i reference, in which special attention is paid to statistical matters.
! The book by Bock and Jones (1968) contains a very thorough
i discussion of Thurstone's discrimination models. Gumbel (1958)
i and Galambos (1978) are introductory texts on extreme value
i distributions. Other useful titles are listed below, organized by
I topics.
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figure 1.7. .. Response versus .log intensity (quantum basis) functions from
a single fiber in the lateral eye of the horseshoe crab,.Lima/us. Stimuli· were
monochromatic lights; the wavelength is indicated next to each curve. The
response measure is frequency ofspike firing in the initial portion of the
response immediately following light onset The five fitted curves are identical
except for a shift along the abscissa. (From L. Sirovich & L Abramov, Pho
topigments and pseudo-pigments, Vision Research, 17. Copyright 1977 by
Pergamon. Reprinted with permission.)

LENGTH (mHlimeters)

figu'l'e 1.6. ··.Proportion oil/longer" judgment as.afunctionof line length
optained'Niththemethod ofconstant stimuli. (From!. Engen, psychophysics:
Discrimination and detection, in J. W. Kling & L. A. Riggs (Eds.), Experimental
psychologyfJrded.).Copyright1938, 1954, 1971 by Holt, Rinehart &Winston,
Inc.,"CBSCon~gePublishing.Reprintedwith· permission.)

(lgn).Thewavelengtnofthe monochromatic light (innm) is
the parameter. It is'clear· that the .five.•..curves. underlying. the
datain Figure 1.7conta.inessentiallythesame.inf~rmationas
tr~ditionalpsychometricfuIlctions.Notice..·.adifference, however,
which concerns the ranges of the frequency offiring functions.
As suggested by·the data, •. these are real intervals bounded by,
say,O and80~Thisis easily taken care of. Anyofa number of
transformations would yield ranges bounded by O·and 1. For
example, with 'l'b(a) denoting the frequency ofspike firing, for

(38)

(37)

Pb(a) = ··F[u(a)- g(b)].

PSYCHOPHYSICAL MEASUREMENT AND THEORY

Pb(a) =F[a -- g(b)l ,

Pa,b =

In .this case, the psychometric functions are not (necessarily)
parallel but maybe rendered so by ~ome appropriatetrans~or
mation U of the physical scale.ObVlously,Eq. (38) generalIzes
the Fechnerian equation

in which· the· functions F and g depend on the particular model
considered. In other words, any model satisfying this equation
must. predict parallel· psychometric functions. The exact cor
respondence.between Eq. (37) and parallelism will be·described.
A more general situation will also be investigated,corresponding
to the equation

5.1. Empirical Examples

discussed at length in Sections aand4~ Theimport~nceofthe

issue ofparallelism in psychophysicalthaorymustbe understood.
Parallelpsychometric functions indicate thatthe,discrimination
(or detection) acuity is.uniform on. the entire. stimulus .scale,a
fact.whicl,l·may lead toadoptingthissca.le.as"ameasur~Qf

sensation magnitude.
Othertopics are to\1ched uponin this se.ction.Forinstance,

in. the so-called two-alternative forced-choice (2ArC) design,
the. probability Pq,bis oftenestim.atedbyaveragin.gthefre~
quencies ofthe responsesin the two alternatives. The theoretical
consequences ofthis practice willbeanalyzed.ltwillbe shown,
forexatnple, .. that.itmayhf.ive· the unfortunate consequence .of
forcing· nonparallelism.

We begin by cOIlsidering a few empirical examples, leading
to· a basicdefinitian.

5.1.1. ExaOlple.. In an experiment reported by Engen
(Kling & Riggs, 1.971,p. 24), a subject was requiredto compare,
by. inspection, the length of two lines projected successively on
a scre.en..•.. In the course of the experiment, five lines· of lengths
61, 62,63, 64, and 65 mm were to be compared toa fixed line
of length 63 mm. Thus in the above notations, b = 63 mm and
atakes 011 five values. The pairs (a,b) ofstimuli were presented
r~ndomly,with100 trials perp'air.On halfofthe.trials, b was
presented first. The subject was ·asked·wtlether the perceived
length of the first line exceededthat ofthesecond. No feedback
was given."Denote by fb(a) the relative frequency·ofthe judgment
that the perceived length ofa exceeds that of b.The values of
fb(a) are displayed in Figure l.6.Such data are consistent with
Figure 1.5 and suggest thatpb is a smooth function, strictly
increasing on an interval bracketing b'and such that Pb(b) =
.5. The method employed in this experiment is usually referred
to as· the method of constant stimuli,. and theflxed stimulusb
is called the' standard stimulus.

5.1.2. Example. In an unpublishedexperimentofGraham
and Hartline (1933; reported in Sirovich& Abramov, 1977),
the frequency· of spike firip.g of a single fiber in the ·lateraleye
of the horseshoe crab, Limulus, was recorded. as a function of
the· intensity of a visual sti:rrtulus for various monochromatic
lights. The data. (frequency ofspike firing in the. ihitial.portion
ofthe response immediately following the stimulus) are plotted
in Figure 1.7; which is reproducedfrom Sirovichand Abramov

5.1. Empirical Examples

In this case, the psychometric functionS are not (necessarily)
parallel but may be rendered so by some appropriate transfor
mation u of the physical scale. Obviously, Eq. (38) generalizes
the Fechnerian equation
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Figu're 1.6. Proportion of "longer" judgment as a function of line length
obtained with the method ofconstant stimuli. (from T. Engen, Psychophysics:
Discrimination and detection, in J. W. Kling & L. A. Riggs (Eds.), Experimental
psychology (3rd ed.). Copyright 1938,1954,1971 by Holt, Rinehart & Winston,
Inc., CBSCollege Publishing. Reprinted with permission,)

(1977). The wavelength of the monochromatic light (in nm) is
the parameter. It is clear that the five curves underlying the
data in Figure 1.7 contain essentially the same informatiQn as
traditional psychometric functions. Notice a difference, however,
which concerns the ranges of the frequenCY' of firing fUnctions.
As suggested by the data, these are real intervals bounded by,
say, 0 and 80. This is easily taken care of. Anyof a number of
transformations would yield ranges bounded by 0 and 1. For
example, with 'l'b(a) denoting the frequency of spike firing, for

(39)

(38)

(37)

Pa,b = F[u(a) - u(b)]

Pb(a) = F[u(a) - g(b)) .

PSYCHOPHYSICAL MEASUREMENT AND THEORY

Pb(a) = F[a - g(b)) ,

discussedat length in Sections 3 and 4, The impOI1;an<:e of the
issue ofparallelism in psychophysical theory must be understood.
Parallel psychometric functions indicate that the discrimination
(or detection) acuity is uniform on the entire stimulus scale, a
fact which may lead to adopting this scale asa measw:eof
sensation magnitude.

Other topics are touched upon in this section. Forinstance,
in. the so-called two-alternative forced-choice (2AFG) design,
the probability Pa,b is often estimated by averaging the fre
quencies ofthe responses in the two alternatives. The theoretical
consequences of this practice will beanalyzed. It will be shown,
for example, that it. may have the unfortunate consequence of
forcing nonparallelism.

We begin by considering a few empirical examples, leading
to a basicdefiniti<m..

in which the functions F and g depend on the particular model
considered. In other words, any model satisfying this equation
must predict parallel psychometric functions. The exact cor
respondence between Eq. (37) and parallelism will be described.
A more general situation will also be investigated, corresponding
to the equation
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LOG RELATIVE INTENSITY
Figure 1.7. Response versus log intensity (quantum basis) functions from
a single fiber in the lateral eye of the horseshoe crab, Limalus. Stimuli were
monochromatic lights; the wavelength is indicated next to each curve. The
response measure is frequency of spike firing in the initial portion of the
response immediately follOWing light onset. The five fitted curves are identical
except for a shift along the abscissa. (from L. Sirovich & I. Abramov, Pho
topigments and pseudo-pigments, Vision Research, 17. Copyright 1977 by
Pergamon. Reprinted with permission.)
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5.1.1. Example. In an experiment reported by Engen
(Kling & Riggs, 1971, p. 24), a subject was required to compare,
by inspection, the length of two lines projected successively on
a screen. In the course of the experiment, five lines of lengths
61, 62, 63, 64, and 65 mm were to be compared to a fixed line
of length 63 mm. Thus in the above notations, b = 63 mm and
a takes on five values. The pairs (a,b) ofstimuli were presented
randomly, with 100 trials per pair. On half of the trials, b was
presented first. The subject was asked wllether the perceived
length ofthe first line exceeded that of the second. No feedback
was given. Denote by (b(a) the relative frequency ofthe judgment
that the perceived length of a exceeds that of b. The values of
(b(a) are displayed in Figure 1.6. Such data are consistent with
Figure 1.5 and suggest that Pb is a smooth function, strictly
increasing on an interval bracketing b and such that Pb(b) =
.5. The method employed in this experiment is usually referred
to as the method of constant stimuli, and the fixed stimulus b
is called the' standard stimulus.

5.1.2. Example. In an unpublished experiment of Graham
and Hartline (1933; reported in Sirovich & Abramov, 1977),
the frequency of spike firing of a single fiber in the lateral eye
of the horseshoe crab, Limulus, was recorded as a function of
the intensity of a visual stixhulus for various monochromatic
lights. The data (frequency of spike firing in the ihitial portion
ofthe response immediately following the stimulus) are plotted
in Figure 1.7; which is reproduced from Sirovich and Abramov
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4. For all a, bE I there exists a finite sequenceal = a,a2, ...,
an =. b, such.~hat

Psychometric Families-Definition

A well-linked set of psychometric functions is called a psy
chometric family. Some comments on these conditions can be
found in. Section 5.3.

LOG RELATIVE INTENSITY
Figure 1.8. Response versus log intensity (quantum basis) functions from

·a·single:\fiber,in thedateraleye of the horseshoe crab, Limulus.Stimuli were
monochromatic lights; the wavelength is indicated next to each curve. This
s~t of-records is identical to that of Figure 1.7, except that the response
.measure 'is the latency 'of the response from light onset to first' spike. The
five fitted curves are identical except for a shiftalong the abscissa". (From L.
Sirovich & I. Abramov, Photopigments and pseudo-pigments, Vision Research,
17.,Cbpyright1977 by Pergamon. Reprinted with permission.)

(40)

where k >.0' is an' appropriately chosen constant.
These examples pave the way to a general definition of a

family of psychometric functioIl$, in which the background (or
index) is assumed to vary in some abstract set!, which mayor
may.not be a real interval.

where k is a positive constant. Such transformations would not
affect an important property suggested by the data of Figure
1.7: the frequency of firing functions':appear to be parallel, when
plotted as functions of the logarithm of intensity. In fact, this
parallelism would not be altered by any transformation

or

where g is any continuous, strictly increasing function mapping'
the ranges of the functio?s'ltb illto. (0,1)., Forg90d r~as0Il:~"

much is made 'of this':parallelism' by Sirovich and· Abramov,
who point out that itsuppoIt$\(actually, is essentially equivalent
to)' the. representation .

a stimulus b of intensity a, either of the two transformations
below would be adequate:
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LOG RELATIVE INTENSITY
Figure 1.8. Response versus log intensity (quantum basis) functions from
asingle::fiberin the lateral eye of the horseshoe crab, Limu/us. Stimuli were
monochromatic lights; the wavelength is indicated next to each curve. This
set.ofrecords is idertical to that of Figure 1.7, except thatthe response
measure is the latency of the response from light onset to first spike. The
five fitted curves are identical except for a shift along the abscissa. (From L.
Sirovich & I. Abramov, Photopigments and pseudo-pigments, Vision Research,
17.topyright 1977 by Pergamon. Reprinted with permission.)

(40)

(41)

where g is any continuous, strictly increasing function mapping
the ranges of the functions'lJ'b iI1-to (0,1). For good r~asons,

much is made of this parallelism by Sirovich and Abramov,
who point out that it support~(actually,is essentially equivalent
to) the representation

a stimulus b of intensity a, either of the two transformations
below would be adequate:

where k is a positive constant. Such transformations would not
affect. an important property suggested by the data of Figure
1.7: the frequency of firing functions appear to be parallel, when
plotted as functions of the logarithm of intensity. In fact, this
parallelism would not be altered by any transformation

where /L, R are real-valued functions, with R strictly increasing.
The product a/L(b) is regarded asmeasuring the number oflight
q~ntaabsorbed by the photoreceptor (cf. Naka& Rushton,
1966a, 1966b, 1966c).Noticethat, withpb(a) as in Eq.(4:0)and
F(s) = R(ff)/[R(eS

) + k, Eq. (41)~ be rewritten as

a special case of Eq. (38).
In this example, a complete description· of the. stimulus

involves a pair (b,a), where bdenotes the wavelength. and atpe
intensity. Thus the role ofthe ~tandardin the example in Section
5.1.1 is played here by one coordinate of the stimulus. In the
sequel, however, background will often be used as a generic
term denoting the· index of a psychometric function. For tlJ.e
sake of consistency, we shall also occasionally speak about the
masking effect of the background even though such language
refers only to particular applications.

5.1.3. Example. In the experiment described, Graham and
Hartline also recorded the latency from light onset to first spike
(see Figure 1.8). Most of the comments made concerning the
example in Section 5.1.2 remain applicable here. To force the

. (a.verage) latency Ib(a) (where a,b are as in Section 5.1.2) int.o
our theoretical framework, we can, to take an example among
many, adopt the transformation

5~2. Psychometric Families-Definition

Unless one is interested in m.odeling their exact mathematical
shape, psychometric functions are of little interest considered
in isolation. Typically, the psychophysicist wishes to investigate
how the shape of a psychometric function is affected by variation
ofthe standard or the background. Accordingly, the definition
in Section 5.2.1 is concerned with a family of psychometric
functions. Notice the switch in notation, from Pb(a) to Pb(X), to
emphasize that b, x may belong to different physical domains.

5.2.1. Definition. Letlbe a set ofbackgrounds. For each
backgroundb in 1, let Cb be a subset of the reals, and letpb be
a real-valu.ed function defined on Cb. Suppose that, for some
b E1, the following axioms are satisfied:

1. Cb is an open interval.'
2.. 0 <Pb < 1.
3. The function x - Pb(X) is strictly increasing and continuous

inthevariable x. cf

Then. Pb is called a psychometric function. The index b of a
psychometric function Pbwill be referred to as the standard or
the background. A set {Pbl b E I} of psychometric functions is
callM UJelllinked iff

4. For all a, b E1 there exists a finite sequence al = a,a2, ... ,
an = b, such that

where k > °is an appropriately chosen constant.
Th.ese examples pave the way to a general definition of a

family of psychometric functions, in which the background (at
index) is assumed to vary in some abstract set 1, which mayor
may not be a real interval.

Ca; n Cai +1 ;I: 0, for 1 OS; i ,,;;;:; n .

A well-linked set of psychometric functions is called a psy·
chometric family. Some comments. on these conditions can be
found in Section 5.3.



Suppose also that 8 ~O. This implies that 1T =< 1T'<1T".Since
the range OfPb is an interval, Pb- 1(1T'}is defined, yielding suc
cessively

which, since S is parallel, leads easily to8=8'.
Conve.rsely, suppose that Eq~ (43) holds wheneverits terms

are .. defined, hut

We include the proofof this result, which is very simple.

This implies

Pa

1.0,-----------......0---__

0"'-'----------""'------'-------'

function of a·one-to-one .function f;Re denotes the set··of.real
numbers.) .

The simple result in Section 5.4.2 will help the reader to
see the correspondence between this definition and Figure 1.9.

.5.4..2. Theorem. A psychometricfamilyE is parallel ifi'
forallpa' PbE E,.

Pa*, (IT')t Pb-'( TT')t
Pa.,( TT ) Pb -, (11 )

Figure 1.9. Two psychometricfunctionsina parallel psychometricfamily.
The figure illustrates the notion of truncation, and the concepts of the definition
in Section 5.4.1 andthetheorem in Section 5.4.2.·Notice thatg(b) is positive,
and 8 negative.

(42)

forall1T E (0,1) and 8 E Re such that both,cmembersofthe
equation are defined. (We recall thatwe write {-Ifor the inverse

Two empiricalexamples.of"parallel" psychometric families were
providedin Sections 5.1.2 and 5.1.3 .• Intuitively, a psychometric
family.··. isparalleljf· any. two. psychometric functions .can ·be
made to coincide by a horizontal "rigid"shiftofone toward the
otiler.·T1?-is,.su.ggeststhat.given()ne.psych9metric,function,.s~y,

pcuany other psychometric function Pb is completely charac
terizedby thevalue.··of oneparameterdepeIl~ingon b,which
we denote byg(b), expressing the length. and direction. of the
rigid shift (g(b) maybe negative). This intuition is basically
sound,butslightlymisleading in its details. Forinstance, one
or'.hoth.•ofthe •.psychometric.functionsPa,.Pb·.mayhe·''truncated,"
and ifboth are, their truncation may be ofa different kind, so
that the.coincidence.after shift may ~othe·complete·(see Figure
1.9). The definition belowtakes care of this situation and is in
factconsistentwitha case in which fortwoparticular psycho
metric functionsPa,pb,no shift would·achieve coincidence be
cause the. rangesofpa,Pb do not overlap.

The concept of parallelism isof importance since it offers
an easily testable criteri.on ofthe fact that the effects of the
stimulus and the background co~bine "subtractively"(or"ad
ditively" as the·casemaybe).

5.4.1. Definition. ApsychometricfamilyS is called par
allel ifffor·any two psychometric functions Pa,Pb.,·E ... S,

Notice that, as ·defined in Section 5.2, a psychometric function
resembles a distribution function (in the sense of statistics),
but. does not necessarily satisfy all the properties of this concept.
Specifically,·we do not require in general.that a psychometric
function take all the values between 0 and 1. Such property is
not essential in most of our developments. More important, it
would be a source of difficulty with various kinds of data.

The conditions defining a psychometric family should appear
quite acceptable in many empirical situations. Axioms. 1 and
2 are straightforward. Axiom 3 states that a psychometricfunc
tion is strictly increasing and continuous. (This presupposes
that the possibly constant upper and lower portions have been
deleted.) This seems reasonable. (See, however, Falmagne, .1982.)
The··roleofaxiom4 should be appreciated. This axiom states
that any two psychometric functions can. be linked by·afinite
sequence ofpsychometric functions, such that any two successive
psych()metric functions in the sequence have overlapping do
mains. This requirement is very natural from an empirical and
especially a theoretical.standpoint~A particular psychometric '
function provides precise but highly local information regarding
thedetectability (ordiscriminability) ofthe stimulus in a
neighborhood.ofthe stimulus scale. Axiom 4 ensures that these
local informations can be pieced together to provide an overall
picturebfthe subjectsensitivity, for example, in theform'uf a
psychophysicalscale. .

Examplesofpsychometricfa.miliesare not difficult to man
ufacture, for example, by generalizing the.modelsofdiscrimi~

nation discussed in Section.4.
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5.3. Remarks

.5.4. Para.UeIPsych()metricFamilies.
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function of a one-to-one function f;Re denotes the set of real
numbers.)

The simple result in Section 5.4.2 will help the reader to
see the correspondence between this definition and Figure 1.9.

5.4.2. Theorem. A psychometric family ~ is parallel iff
for all Pa, Pb E E,

O'--------....L.--........._..,j._~--'
P.-'{TT') t Pb"{TT') t

p.-'{ TT) Db -1 (TT)

Figure 1.9. Two psychometric functions in a parallel psychometric family.
The figure illustrates the notion of truncation, and the concepts of the definition
in Section 5.4.1 and the theorem in Section 5.4.2. Notice that g(b) is positive,
and I) negative.

Notice that, as defined in Section 5.2, a psychometric function
resembles a distribution function (in the sense of statistics),
but does not necessarily satisfy all the properties of this concept.
Specifically, we do not require in general that a psychometric
function take all the values between 0 and 1. Such property is
not essential in most of our developments. More important, it
would be a source of difficulty with various kinds of data.

The conditions defining a psychometric family should appear
quite acceptable in many empirical situations. Axioms 1 and
2 are straightforward. Axiom 3 states that a psychometricfunc
tion is strictly increasing and continuous. (This presupposes
that the possibly constant upper and lower portions have been
deleted.) This seems reasonable. (See, however, Falmagne, 1982.)
The role of axiom 4 should be appreciated. This axiom states
that any two psychometric functions can be linked by a finite
sequence ofpsychometric functions, such that any two successive
psychometric functions in the sequence have overlapping do
mains. This requirement is very natural from an empirical and
especially a theoretical standpoint. A particular psychometric·
function provides precise but highly local information regarding
the detectability (or discriminability) of the stimulus in a
neighborhood ofthe stimulus scale. Axiom 4 ensures that these
local informations can be pieced together to provide an overall
picture of the subject sensitivity, for example, in the formuf a
psychophysical scale.

Examples ofpsychometric families are not difficult to man
ufacture, for example, by generalizing the. models of discrimic

nation discussed in Section 4.
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5.3. Remarks

.. 5.4. Ptlrall~1 Psychometric Families

Two empiricalexamples of ''parallel'' psychometric families were
providedin Sections 5.1.2 and 5.1.3. Intuitively, a psychometric
family is· parallel if any two psychometric functions can be
madeto coincide by a horizontal "rigid" shift of one toward the
other. This suggests that given one psychometric function, say,
Pa, any other psychometric function Pb i~ completely charac
terized by the value of one parameter depending on b, which
we denote by g(b), expressing the length and direction of the
rigid shift (g(b) may be negative). This intuition is basically
sound, but slightly misleading in its details. For instance, one
or both ofthe psychometric functions Pa, Pb may be "truncated,"
and jf both are, their truncation may be of a different kind, so
that the coincidence after shift may not be complete (see Figure
1.9). The definition below takes care of this situation and is in
fact consistent with a case in which for two particular psycho
metric function:;; Pa, Pb, no shift would achieve coincidence be
cause the ranges ofPa, Pb do not overlap.

The concept of parallelism is of importance since it offers
an easily testable criterion ofthe fact that the effects of the
stimulus and the background combine "subtractively" (or "ad
ditively" as the case may be).

5.4.1. Definition. A psychometric family E is called par
allel ifffor any two psychometric functions Pa, Pb E E,

whenever all four terms are. defined.
This means in particular that if Pa, Pb are distribution

functions, they must have the same interquartile range:

We include the proof of this result, which is very simple.

Proof. Suppose that E is parallel, with

This implies

which, since E is parallel, leads easily to I) = I)'.

Conversely, suppose that Eq. (43) holds whenever its terms
are defined, but

Suppose also that I) ;;;. O. This implies that 1T = < 1T' <1T". Since
the range ofPb is an interval, p,;l(1T') is defined, yielding suc
cessively

(42)

for all1T E (0,1) and I) E Re such that both members of the
equation are defined. (We recall that we write r- 1 for the inverse
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= a ,

a contradiction.
The argument is similar in the case 8 < O. •

THEORY AND,METHODS

(Thus u = v -1.) This suggests reversing the process. In Section
5.9.1 we ask, Under which conditions on a psychometric family
does there exist a transformation of the stimulus scale which
renders the psychometricfunctions parallel? Orinother terms,
When does a psychometric familyS* = {P:} have a subtractive
representatiQn of the form Eq. (44)?

(45)

G[u(a) -u(b)l.

G{u(a)

Pa(b} =Pb,a ·

Pa(X) = F[u(x) --g(a)]

Pb(a) = F[u(a)- gb)]

Thisindicates that our usage ofthe term Fechnerianis consistent
with that in Section 3. (Notice that the above argument. only
uses the fact that Pa(a) == .5.)

A discrimination family ,a .={PaJaE "I} ·,can, be subtractive
withollt b~ing Fechnerian.• (SaY,Eq.(45) is satisfied but u is
uotlinearlyrelatedt()g.,Anexample is. provided in Section
5.§)~.If",however,Sisa",balanced,discrimination,family,' then
it is subtractive only'ifitis Fechnerian. Indeed, for alIa, EJ,

Thus whenSis a discriminationfamily,thefunctionsg and u
inEq. (45) have the same domain. In the special case where
g = u, S will Be called Fechnerian, ora Fechnerfamily, and
(u,F) will Be labeled a FechnerianrepresentationofS.

5.5. Subtractive Families

5.5.1. Definition. 'Apsychometric family S = {Pal a EI}
is subtractive or a subtractive family iff there are three real
valued functions g,u, ,and F, 'the'latter two being continuous
and strictly increasing, such that

(44)

Pa(X) == F[x - g(a)] ,

As mentionedearlier,'the definition of a parallel psycho
metric family does not preclude the possibility that the ranges
of some psychometric functions would not overlap. In a special
case where such a situation does not arise, a useful representation
ofa psychometric family is available: the psychometric functions
satisfy the equation

for llome functionllF, g, where F ill lltrictly increalling and con- for all a E I and x E Ca' In lluch acalle, we llhall occallionally
tinuous. This case is analyzed in the definition and theorem in say that (g,u,F) is a subtractive representation orS.
Sections 5.4.3 and '. 5.4.4, respectively. A special case ofthis "representation has of course 'been

5.il.3. Def!nition. .A pllychometric family E = {PalaE 1}"eIlc~.~~ter~db~f~re,.~n the framework.o.f a ~echne~an psycho
is called anchored i;ffthere exists a number ~ E (0,1) such that: phySIcal dIscnmmatIonsystem (de.fimtlOn m S~ctIon 3.?1). It

makes sense to adopt here a termInology conslstent wIththe
(i) For all a -El there is an xsatisfyingpa(x) = ~. earlier one. Suppose, thus, that the psychometric family S has

(ii) For all x EUaelCa, there is ana El such that Pa(x) = ~. infact been obtainedfrom a psychophysical discriminationsys-

(We recall that Ca denotes the d()main ofthepsychometric func- tem (/,C,P), through the equation
tioI} Pa.)Jnwords,conditions (i) and (ii) mean that for every
Background a there is a stimulus x and for every stimulus x
there is a backgrounda,suchthatPa(x)=~.A numBer~E (0,1)
s~tisfying these conditions will be called an anchor of E. .In thissituation,E will 00 referred to as a discrimination family,

These conditions are notveryderilanding. Suppose, for ex- which. will be called balanced iff (J,C,P) is balanced, that is, iff

ample, that 'the psychometric ,functions' are defined from,' the
choiceprobaBilitiesPa,b of a. balanced discrimination system .
(see Section 3.5.1) bythe equationpa(b)= Pab. It follows easily
then that.5 is an anchor.Indeed,p;lC5}::ais the identity
function on 1. -

5.4.4. Theorem. ,An anchored psychometric familyS =
{Pala El} is parallel iffit has a representation

Pa(x) =F[x -- g(a)].

whereF is a continuous, strlctlyincreasing function.
Fora proof of this result,see Falrilagne (1982). It must be

realizedthat the.property ofparallelisIDofa psychometricfam~y
depends critically on the ,scale used to measure the stimulus
and 'would not be preserved undernonlinear transformation of
that scale. Consider, for example, ananchored,parallel psy
choIl.1etric familyE ,= {PaJaE l} admitting a representation
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= l),

a contradiction.
The argument is similar in the case l) < O. •

(Thus u = v· 1.) This suggests reversing the process. In Section
5.9.1 we ask, Under which conditions on a psychometric family
does there exist a transformation of the stimulus scale which
renders the psychometric functions parallel? Or in other terms,
When does a psychometric family E* = {P:} have a subtractive
representatiQn of the form Eq. (44)?

As mentioned earlier, the definition of a parallel psycho
metric family does not preclude the possibility that the ranges
of some psychometric functions would not overlap. In a special
case where such a situation does not arise, a useful representation
ofa psychometric family is available: the psychometric functions
satisfy the equation

5.5. Subtractive Families

5.5.1. Definition. A psychometric family E = {Pa Ia EI}
is subtractive or a subtractive family ift'there are three real
valued functions g, u, and F, the latter two being continuous
and strictly increasing, such that

Pa(x) = F[x - g(a)] , Pa(x) = F[u(x) - g(a)] (45)

[g(b) + a]}

u(b)] .G[u(a)

G{u(a)

Pa(b) = Pb,a

Pa(b) + Pb(a) = 1 .

Pb(a) F[u(a) - gb)]

u(a) = g(a) + a

This indicates that our usage ofthe term Fechnerian is consistent
with that in Section 3. (Notice that the above argument only
uses the fact that Pa(a) = .5.)

Defining G(8) = F(8 + et), we obtain

Pa(a) = F[u(a) - g(a)] = .5.,

yielding, with a = F -1(.5),

5.6. Remarks

A discrimination family $ "" {PalaE l} can be subtractive
without being Fechnerian. (Say, Eq. (45) is satisfied but u is
not linearly relatedt() g. An example is provided in Section
5.8), If, however, E. is ablilanced discrimination family, then
it is subtractive only if it is Fechnerian. Indeed, for all a E I,

Thus when E. is a discrimination family, the functions g and u
in Eq. (45) have thesafile domain. In the special case where
g = u, E will be called Fechneriall,or a Fechner family, and
(u,F) will be labeled a Fechnerian representation orE.

.In this situation,E will be referred to as a discrimination family,
which will be called balanced ift' (I,C,P) is balanced, that is, ift'

(44)p:(t) =F[u(t) - g(a)J .

for some functions F, g, where F is strictly increasing and con- for all a E I and x E Ca' In such a case, we shall occasionally
tinuous. This case is analyzed in the definition and theorem in say that (g,u,F) is a subtractive representation ofE.
Sections 5.4.3 and 5.4.4, respectively. A special case of this representation has of course been

5.4.3. Definition. A psychometric family E = {Pala E I} encountered before, in the framework of a Fechnerian psycho
is called anchored iffthere exists a number ~ E (0,1) such that: . 'physiCal discriInination system (definition ill Section 3.5.1). It

makes sense to adopt here a terminology consistent with the
(i) For all a E I there is an x satisfying Pa(x) = ~. earli~r one. Suppose, thus, that the psychometric family E has

(H) For all x E UaElCa, there is an a EI such that Pa(x) = ~. infact been obtained from a psychophysical discrimination sys-

(We recall that Ca denotes the domain ofthe psychometric func- tem (l,C,P ), through the equation
tion Pa') In words, conditions (i) and (H) mean that for every
background a'there is a stimulus x and for every stimulus x
there is a background a, such that Pa(x) = ~. A number ~ E(0,1)
satisfying these conditions will be called an anchor of E.

These conditions are not very demanding. Suppose, for ex
ample, that the psychometric functions are defined from the
choice probabilities Pa,b of a balanced discrimination system
(see Section 3.5.1) by the equationpa(b) = Pa,b. It follows easily
then that .5 is an anchor. Indeed, p;I(.5) =.a is the identity
function on 1. . .

5.4.4. Theorem. An anchored psychometric familyE =

{Pala E I} is parallel iffit has a representation

Pa(x) = F[x - g(a)]

Pa(x) = F[x ~ g(a)l ,

in the sense of the theorem in Section 5.4.4. Let v be a real
valued, strictly Increasing, and continuous function defined on
the interval of variation of x. Notice that, with t = v(x), the
equationp:(t) = Pa(x) defines a new anchored, psychometric
family E* = {p:la El}. ButE* need not be paralleL In fact, it
is easy to show that.E*is parallel if and only if v is a function
of the form v(x) = !J.X + 9, where !J. > 0 and 9 is a constant. In
general--that is, when v is not necessarily linear-the trans
formation of the stimulus scale generates a new psychometric
family E* satisfying a subtractive representation

where F is a continuous, strictly increasing function.
For a proofof this result, see Falmagne (1982). It must be

realized that the property ofparallelism ofa psychometricfafilily
depends critically on the scale used to measure the stimulus
and would not be preserved under nonlinear transformation of
that scale. Qonsider, for example, an anchored, parallel psy
choI1;letric familyE = {Pala El} a.dmitting a representation



(48}. 'ConsiderthefamilyoffunctionsS == {Pb!b

The standard normalization is

{ [
Pb(a)]}

<I> log Pa(b) .,pi,*(a)

that is

PiJ(a)·····::::: ··'e-(bll/aJA.)

and

1
<P(1og s) + <P(log -) = 1 ,

s

Pb(a) = ·exp[-e-(Pologa -7110g b)]' .

o <<P (logs) < 1

foreacha,>O,where11,f..L > 0 are .constants. This expression
is closelyrelated to a model frequently encountered in the vision
literature (Green & Luce, 1975; Nachmias, 1981; Quick, 1974;
seeWatson,C~apter· 6, apd OlzakandThomas, Chapter 7,
thishandbo()k).Itiseasilychecked thatEsatisfies all the con
ditionsofanunbalanceddiscrimination family, which is sub
tractive, since

it follows that the function (p,pD~ <P[log (pip')] is a balancing
function. This yields the balanced family· E** = {pi,*lb > O},
defined by

Let us balance E. Since for every positive real number s, we
have (denoting as usual by <P the distribution function ofa
standard, normal random variable)

1·21

5.8. Examples· of Subtractive Discrimination
Families

to in the mathematical literature as a functional equation, a
term suggesting that the unknowns in the equation are not
numbers, as in elementary algebra, but functions (here F, u,
g, K, and h). The point is that this, equation severely restricts
the relation between the functions u, g,. and the form of the
functionF. In general, the normalizationis ill-advised since a
subtractive model will not survive it. In cases in which F is
approximately linear, this 'normalization may not create diffi
cuIties, however.

5.7.1. Definition. Inthe sequel, any function (p,p') ~
'1'(p~p')definedon the unit square(O,l) x (0,1), real valued,
continuous, .strictly increasing in the first variable, strictly de
creasing in the second variable, and satisfying Eqs. (46) and
(47) will be called a balancing function.

(49)

(47)

(46)

1

o <'!' < 1 ,

'1'(S,t) +'1'( t,s)

Pb(a) = n[a,(a,b)]IN(a, b) .

{n[a,(a,b)] + n[a,(b,a)]}I[N(a,b) + N(b,a)]

which indeed defines a balanced discrimination family E**=
{pi,*}, if E = {Pb} isa discriminationfamily. Ifwe assume that
both Sand E**are subtractive, then (by the remark in Section
5.6) S**isFechnerian, and we musthave for some continuous,
strictly increasing functions u, g,F, h,andH,

pi,*(a) = Pb{a)I[Pb(a} + Pa(b)].

achieves a similar normalization. The reader can check that
the familyE**= {pi,*} defined fromthe familyE by the equation

is indeed a balanced discrimination family. However, asdem
onstratedby the model in Section 5.8, it is not generally the
case that ifE is subtractive, then then()rmalized family E** is
subtractive. What is true, and ···easy .to show, is .that .if E ·is
Fechnerian, thenE** is also Fechnerian.

Insome experimental situatitl,Ils, t~e order ofpresell.tation
of the stimuli has an effect on the (probability of the) response.
Such an effect is often of little interest, and the "'carefulexper
imenter" sometimes adopts a normalizationprocedurethat suf
fersfrom the drawback just mentioned; na.mely, it does not
necessarily preserve the subtractive character ofapsychometric
family. Let us demonstrate this. DeIl0tebyn[a,(a,b)lthen'9-II1ber
of times stimulus a is chosen in the set{a,b} when this set is
presented in the order (a,b). Let N(a,b)bethe number of times
{a,b} is presented in the order (a,bJ.To simplify the argument,
we identify probabilities and relative·frequencies,·in the sense
that

Notice that if a discrimination family E = .. {Pb} is unbalanced,
it can always be rendered balanced by a normalization such as

More generally, any real-valued continuous function'!' of
two real variables, strictly increasing in the first variable· and
strictly decreasing in the second,. satisfying
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which, togetherwithEq. (49J, yields an equation of the form

F[u(a) - g(b)] .... F[u(b) -g(a)] = K[h(a) - h(b)]
(50)

(where the constants1/2 and 1 of Eq. (49)'have been absorbed
in the functionK).An equation such as (50) is often referred

Pb*(a) = <f>[(ab)-J.l.(a'Tl+J.l. - b71 +J.l.)] •

Since E**· is balanced, ··the assumption that· it is subtractive
would lead (using the remark in Section 5.6), to the equation

in which u, Garestrictly increasing, continuous functions. It
is not difficult to prove that considered as a functional equation
with unknown functionsu, G, Eq.(52) has no solution (see

F[u(a) - g(b)] ,

H[h(a) - h(b)] ,

Pb(a)

pi,*(a)

r

Notice that if a discrimination family E = {Pb} is unbalanced,
it can always be rendered balanced by a normalization such as
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5.7. A Remark on the Balancing Condition
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to in the mathematical literature as a functional equation, a
term suggesting that the unknowns in the equation are not
numbers, as in elementary algebra, but functions (here F, u,
g, K, and h). The point is that this equation severely restricts
the relation between the functions u, g, and the form of the
function F. In general, the normalization is ill-advised since a
subtractive model will not survive it. In cases in which F is
approximately linear, thisnonnalization may not create diffi
culties, however.

5.7.1. Definition. In the sequel, any function (p,p') _
'I'(p;p') defined on the unit square (0,1) x (0,1), real valued,
continuous, strictly increasing in the first variable, strictly de·
creasing in the second variable, and satisfying Eqs. (46) and
(47) will be called a balancing function.(47)

(46)

1

0<'1'<1

'I'(S,t) + '1'( t,s)

More generally, any real-valued continuous function 'I' of
two real variables, strictly increasing in the first variable and
strictly decreasing in the second, satisfying

achieves a similar normalization. The reader can check that
the family 5** = {Ph*} defined from the family E by the equation

5.8. Examples of Subtractive Discrimination
Families

(48). -Consider the family of functions E = {Phi b > O}, defined by

is indeed a balanced discrimination family. However, as dem
onstratedby the model in Section 5.8, it is not generally the
case that if E is subtractive, then the normalized family E** is
subtractive. What is true, and easy to show, is that if 5 is
Fechnerian, then E** is also Fechnerian.

In some experimental situations, the order ofpresentation
of the stimuli has an effect onthe (probability of the) response.
Such an effect is often of little interest, and the "careful exper
imenter" sometimes adopts a normalization procedure that suf
fers from the drawback just mentioned; namely, it does not
necessarily preserve the subtractive character of a psychometric
family. Let us demonstrate this. Denote by n[a,(a,b)] the number
of times stimulus a is chosen in the set {a,b} when this set is
presented in the order (a,b). Let N(a,b) be the number of times
{a,b} is presented in the order (a,b). To simplify the argument,
we identify probabilities and relative frequencies, in the sense
that

for each a. > 0, where TJ,"'" > 0 are constants. This expression
is closely related to a model frequently encountered in the vision
literature (Green & Luce, 1975; Nachmias, 1981; Quick, 1974;
seeWatson, Chapter 6, and Olzak and Thomas, Chapter 7, in
this handbook). It is easily checked that E satisfies all the con
ditions of an unbalanced discrimination family, which is sub·
tractive,since

Pb(a) = exp[ - e-(Jl.log a - "'11og b)] . (51)

Let us balance E. Since for every positive real number s, we
have (denoting as usual by et> the distribution function of a
standard, normal random variable)

o < et> (log s) < 1

Pb(a) = n[a,(a,b)]IN(a,b) and

which indeed defines a balanced discrimination family E** =
{Ph*}, if E = {Pb} is a discrimination family. Ifwe assume that
both E and E** are subtractive, then (by the remark in Section
5.6) 5** is Fechnerian, and we must have for some continuous,
strictly increasing functions u, g, F, h, and H,

1
et>(log s) + et>(log -) = 1 ,

S

it follows that the function (p,p:) - et>[log (pIp')] is a balancing
function. This yields the balanced family E** = {Ph*lb > O},
defined by

The standard normalization is

{n[a,(a,b)] + n[a,(b,a)]}/[N(a,b) + N(b,a)]

(V2)[Pb(a) + 1 - Pa(b)] , (49)

that is

pi/Ca) { fpb(a)]}
et> lOgLPa(b) ,

F[u(a) - g(b)] ,

H[h(a) - h(b)] ,

which, together with Eq. (49), yields an equation of the form
Since E** is balanced, the assumption that it is subtractive
would lead (using the remark in Section 5.6), to the equation

F[u(a) - g(b)] ~ F[u(b) - g(a)] = K[h(a) - h(b)]
(50)

(where the constants V2 and 1 of Eq. (49) have been absorbed
in the function K). An equation such as (50) is often referred

in which u, Gare strictly increasing, continuous functions. It
is not difficult to prove that considered as a functional equation
with unknown functions u, G, Eq. (52) has no solution (see

r
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5.9. Representation of SubtractivePsychometric
families

In this .case, parallel psychometric functions are obtained
after a suitable transformation-here logarithmic-of· the
physical variable measuring the intensity of the stimulation.
A generalization of this idea is considered in Section 5.9.

Falmagne, 1982). This shows that balancing a subtractive dis
crimination family does. not necessarily yield a Fechnerian
family.

5.8.1. Ideal Observer Model. Suppose that'the background
is a sample of so-called Gaussian noise, with power'density b,
presented for T units of time,and that the stimulus itselfis
also a sample of Gaussian noise ofthe same duration, ofpower
density x = b+"f, with "f ~ 0, a constant. Each of the stimuli
and· the background. is then. astochastic .process which, to a
good approximation (see howeverLevitt, 1972) admits a Fourier
series representation

with

and g{b) = - log Jj.(b) .

u(x) -g(aY~u(x') -g(a')

(56)

(53)

(54)

(55)

Pq,(;) .....~ .. Pa, (~')

u(X) - g(b} ".~ u(x') - g(b').,

are'sim:ultaneously. satisfied. Since the function F in the sub
tractive, representation ofE is strictly increasing, this' yields

5.9.2 ... Definition•.. ApsychometricfamilyS= {Pblb El}
satisfies triple cancellationiffEqs. (53), (54), and (55) together
imply (56) for all a, a', b,b' E land x, yE Ca n Cb and x', y.' E
Ca,.·nCb',. . .

, .Thiscondition is well knownin the measurement literature
(cf.Krantz.et·al.,1971).Theabove argument shows, thus, that
a psychometric familyhasasubtractive representation only if
it satisfies triple cancellation. Aset of necessary and sufficient
conditions, based on triple cancellation as a centralaxiom, was
obtained,,byFalmagne(1982).·A··rel~ted result can' be found in
Narensand Luce(1976).

The scales u andgare usually specified uP. toa linear
transformation.' For example, the following uniqueness result
follows. frama slight. strengthening ofthe conditions defining
an anchored psychometric family: if(u,g,F) and (u*,g*,F*) are
twosubtractive representationsofthe same psychometric family,
then

,5.9.1. Problem. Under which conditions does a psycho
metric family E = {Para EI} have a subtractive representation?
This problem generalizes Fechner's problem, discussed in Section
3.3. Necessary conditions are not difficult to find; for example,
suppose that Eis subtractive, with a representation (g,u,F),
and that

Pb (a) =., R [aJ,L(b)]

WT
Llakcos(21TktIT) + 'Pksin(21TktlT)]

k=l

2 .'. . ..... 2/
Pb(X) =Prob{WxX(2WT)~WbX(2WT)} ·

with

Thus {Pbl isasubtra.ctive family.
We recall briefly here the examplesin Sections 5.1.2 and

5.1~3concerningthefrequency and.latency ofspike firing of a
single fiberin the lateral. eye of the'· horseshoecrah, Limulus
(Graham & Hartline, 1933; see Sirovich& Abramov, 1977).
With the logarithm ofintensity in the.abscissa, parallel psy
cn()mletrlc functions were observed, which gave support to the
ass~unlpt:lonofa representation

2,,' . ····.2'
WXX(2WT), WbX(~WT) •..

where X72WT) and X~~WT) are .two independentchi-square random
variables. with·2WT degrees" of freedom. Let us suppose' that.
so~e (ideal) .subject bases the decision on a comparison ofthe
energies in the stimulus and the background. More precisely,
we assume that

forthesepsycbometric functions(R,JJ.> 0 are real-valued func
tionsl.Clearly, such representation is equivalentto a subtractive
one, since it can be. rewritten

where W is the bandwidth,and Otk,Pk are independent, normal
random variables with mean 0, and variance O"~ depending on
the .si~al presented. It .. ,can be sho,wn,.(e.g~,Green. & Swets,
1974) that in such a case the energy in the stimulus and the
backgro.undare respectively distributed as'

F[log .a- .g Cb)]
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5.9. Representation of Subtractive Psychometric
Families

In this case, parallel psychometric functions are obtained
after a suitable transformation-here logarithmic-of the
physical variable measuring the intensity of the stimulation.
A generalization of this idea is considered in Section 5.9.

Falmagne, 1982). This shows that balancing a subtractive dis
crimination family does not necessarily yield a Fechnerian
family.

5.8.1. Ideal Observer Model. Suppose that the background
is a sample of so-called Gaussian noise, with power density b,
presented for T units of time, and' that the stimulus itself is
also a sample of Gaussian noise of the same duration, of power
density x = b + "I, with "I ~ 0, a constant. Each ofthe stimuli
and the background is then a stochastic process which, to a
good approximation (see however Levitt, 1972) admits a Fourier
series representation

with

and g(b) = - log J.L(b) .

u(x) - g(a) :s;: u(x') -g(a')

are simultaneously satisfied. Since the function F in the sub
tractive representation of E is strictly increasing, this yields

5.9.1. Problem. Under which conditions does a psycho
metric family E = {Pala EI} have a subtractive representation?
This problem generalizes Fechner's problem, discussed in Section
3.3. Necessary conditions are not difficult to find; for example,
suppose that E is subtractive, with a representation (g,u,F),
and that

(55)

(53)

(54)

Pa (x) :s;: Pa' (x')

Pa'(Y') ~ Pa(Y)2 ••. 2'
WXX(2WT), WbX(2WT)

where X~2WT) and X~WT) are two independent chi-square random
variables with 2WT degrees of freedom. Let us suppose that
some (ideal) subject bases the decision on a comparison of the
energies in the stimulus and the background. More precisely,
we assume that

where W is the bandwidth,and Otk, Ilk are independent, normal
random variables with mean 0, and variance &~ depending on
the signal presented. It can be shown (e.g;, Green & Swets,
1974) that in such a case the energy in the stimulus and the
background are respectively distributed as

WT
2: [Otkcos(21TktlT) + '(Jksin(21TktlT)]
k=l

2 2'Pb(X) = Prob{WxX(2WT) ~ WbX(2WT)} .

If 2WT is large, each of the two chi-square random variables
is apRroximately normally distributed. Since E(X~n) = n and
var(X~n) = 2n, weobtain after simplification

u(Y' ) - g(a') :s;: u(Y) - g(a)

u(y) - g(b) :s;: u(y') - g(b')

Adding these inequalities, we obtain

u(x) - g(b):s;: u(x' ) - g(b' ) ,

or equivalently, assuming that x E Cb> x' E Cb"

G (logx - log b) , (56)

with

Thus {Pb} is asubtractive family.
We recall briefly here the examples in Sections 5.1.2 and

5.1.3 concerning the frequency and latency of spike firing of a
'single fiber in the lateral eye of the horseshoe crab, Limulus
(Graham & Hartline, 1933; see Sirovich & Abramov, 1977).
With the logarithm of intensity in the abscissa, parallel psy
chometric functions were observed, which gave support to the
assumption of a representation

for these psychometric functions (R, J.L> 0 are real-valued func
tions). Clearly, such representation is equivalent to a subtractive
one, since it can be rewritten

5.9.2 Definition. A psychometric family E = {Pblb EI}
satisfieS triple cancellation i;lf Eqs. (53), (54), and (55) together
imply (56) for all a, a'., b, b' Eland x, y E Ca n Cb and X', y' E

Ca' n Cb" . '. '
This condition is well known in the measurement literature

(cf. Krantz etal.,1971). The above argument shows, thus, that
a psychometric family has a.s'Ubtractive representation only if
it satisfies triple cancellation. A set of necessary and sufficient
conditions, based on triple cancellation as a central axiom, was
obtained by Falmagne (1982). A related result can be found in
Narensand Luce (1976).

The scales u andg are usually specified up to a linear
transformation. For example, the following 'Uniqueness result
follows from a slight strengthening ofthe qonditions defining
an anchored psychometric family: if(u,g,F) and (u*,g*,F*) are
two subtractive representations ofthe same psychometric family,
then

R {e(log a-g(b)]} get) =~og*(t) + ~1 ,

F[log a -g(b)] u(t) = ~ou*<t) + h + 132 ,



Figure 1.10. The function ~ ina discrimination family E = {Pa}satisfying
Para) = .5. Wehave~1T(a)=p-l(1T) and~1T(a) = ~1r(a) - a.

In thissitu:ation.,thevaluep; 1(.50) is sometimes referre~
to as the point of subjective equality..ThefunctionL\· contains,
thus, exactly the sameinforlllationas the familyE ofpsycho
metric functions ... The ...emphasis··on this function here· is justified,
however... ln·particular,psychophysicists·havefound···.. out·.that
experimental plots ofthe functions .6.1r provided very· revealing
summaries of their data, and· they.·use· such plots ..TQutinely.
Correspondingly, this function is of great theoretical· interest.,
as we shallseein.Section.7.Anequ~11y important place in our
developments will be taken by the function

with 1T, 0<1T < 1, representing the value of the criterion. Thus
in the particular case discussed above, a + .6..75(a) is judged as
exceeding a on 75% of the trials. Notice that .6.1T(a) may be
negative for some values of 1T: it is natural, for example, to
expect that a + .6..2S(a)<a,at least in some experimental
situations.

There is an obvious relation between the function of one
variable 1T~ .. .6.1r(a) and the psychometric funct.ion Pa,analyzed
in Section 5. For instance, suppose that Pa is a psychometric
function in a discrimination family E .(definition in Section
5.2.1), such that Pa(a) = .5. As illustrated in Figure 1.10, we
have in such a case

(see Figure 1.10). Actually, it can be argued that ~ is a more
central conceptthan~: ~ can always be defined from the psy
chometric functions, while.6. is only defined if the .subtraction

.p;l(1T) -amakes sense,wllich it does not ifais an object of
a different nature thanp~l(11').For instance, d would not be
defined in a detection ··situationinwhichp~l(1T) =x wduld
specify the intensity x ofa stimulus detected with a probability
11', over a background of noise a, where a denotes a waveform
or a spectral density function (i.e., a possibly infinite dimensional

An introduction to functional equations can be found in Aczel
(1966).

6. WEBER FUNCTIONS-PSYCHOPHYSICAL
METHODS

for some constants ~o >O,~l,and 132.

The material in this· section· is based largely on a paper by
Falmagne(1982),which contains a number of additional results.
As far as. we know, the· term psychometric function is due· to
Urban(1907),even thoughthe notion was in use sinceF~chner

and Wundt. Despite its importance in psychophysicalresearch,
this notion has prompted exceptionally few theoretical· inves
tigations. Three papers by Levine (1971, 1972, 1975) deserve
to be mentioned. His general approach to the analysisofa
family ofpsychometric functionS is similar to that ofthis section.
Rather than focusing on particular models or processes,. general
conditions aresoughtthat guarantee the existence and unique
ness properties ofsome abstract (e.g.,subtractive) representation.
His side conditionsare somewhat different fromours,however.
In his 1972 pa.per,Levine analyzesaproblemthafwas not
considered here, involving a· generalization of the. notion ... of a
subtractive representation. In the notation ofthis section, this"
representation is· symbolized by the equation

Pa(x) =:,F [k(a)u{x)-g(a)] •

PSYCHOPHYSICAL MEASUREMENT AND THEORY

F(t) = F* (t ~O 132) ,

5.10. Key References

What is the smallest increment of a stimulus, ona physical
continuum, which .is detectable by a subject? In other terms,
given a stimulus value equal to a, whatisthesmallestincreIl1eIlt
.~(a) such that a + .6.(a) "just noticeably" exceeds a? This was~

one of the earliest questions. raised -by psychophysicists... This
minimal increment .6.(a) isoften referred to asthe just-noticeable
difference (jnd), or the difference limen. A variant-or rather,
a special case-ofthis question is, What is the minimum value
of a stimulus .which is 'Just detectable" by a .subject? .Thisis
called the absolute threshold.

Various ·experimental methods for. thedeterniination of
~(a) have been designed and are described in this section. Such
questions.are. by no means straightforward, however, sincethey
are ambiguous. For example, what is meantby 'just noticeably"?
Suppose,for example, that a + ~(a) is judged as exceeding a
on 65% ofthe trials. Does that mean thata + ~(a) just noticeably
exceeds a? .An empirical criterion is. clearly involved·· here. In
the method of constant stimuli (cf. Section 6.2..2) L\(aJis often
taken as a correct determination if a.+ .6.(a) ·is judged as ex~

ceeding a on 75% of the trials. (We are ignoring statistical
issues for the moment.) The arbitrariness ofthis choice is trou
bling. This arbitrariness is less .apparent, .but just as critical,
in the method "oflimits" or in the method "ofadjustments" (see
Sections 6.1.1 and 6.1.2). Certainly, one would not want the
general pattern of experimental· results to depend critically on
the choice of the criterion. In fact, as pointed out by Luce and
Edwards (1958),· there are theoreticaldifIiculties involved· in
adopting a unique, fixed criterion. Accordingly, there is a trend
in contemporary psychophysical research toward varying the

'Tr - _

(57)

(see Figure 1.10). Actually, it can be argued that ~ is a more
central concept than ~: ~ can always be defined from the psy
chometric functions, while ~ is only defined if the subtraction
p;;1(1T) - a makes sense, which it does not if et is an object of
a different nature than p;;1(1T). For instance, ~ would not be
defined in a detection situation in which p;;1(1T) = x would
specify the intensity x ofa stimulus detected with a probability
1T, over a background of noise a, where et denotes a waveform
or a spectral density function (Le., a possibly infinite dimensional

.5

~" (a)

Figure 1.10. The function A in a discrimination family a = {Pal satisfying
Para) = .5. We have s'lT(a) = p-l(1T) and A'lT(a) = S'lT(a) - a.

(a,rr) - ~'lT(a)

a
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In this situation, the value p;;1(.50) is sometimes referred
to as the point of subjective equality. The function~ contains,
thus, exactly the same information as the family El of psycho
metric functions. The emphasis on this function here is justified,
however. In particular,psychophysicists have found out that
experimental plots of the functions~'lTprovided very revealing
summaries of their data, and they use such plots rqutinely.
Correspondingly, this function is of great theoretical interest,
as we shall see inSection 7. An equally important place in our
developments will be taken by the function

with 1T, 0 < 1T < 1, representing the value of the criterion. Thus
in the particular case discussed above, a + ~.75(a)isjudged as
exceeding a on 75% of the trials. Notice that ~'lT(a) may be
negative for some values of 1T: it is natural, for example, to
expect that a + ~.25(a) < a, at least in some experimental
situations.

There is an obvious relation between the function of one
variable 1T - ~'1r<a) and the psychometric function Pa, analyzed
in Section 5. For instance, suppose that Pa is a psychometric
function in a discrimination family El (definition in Section
5.2.1), such that Pa(a) = .5. As illustrated in Figure 1.10, we
have in such a case

value of the criterion across experimental conditions. We shall
go back to this point later on.

A basic notion of this section is a function ~ oftwo variables,

6. WEBER FUNCTIONS-PSYCHOPHYSICAL
METHODS

PSYCHOPHYSICAL MEASUREMENT AND THEORY

F(t) = F*(t ~/2) ,

5.10. Key References

Pa(x) =F[k(a)u(x) - g(a)]

What is the smallest increment of a stimulus, on a physical
continuum, which is detectable by a subject? In other terms,
given a stimulus value equal to a, what is the smallest increment
Ma) such that a + ~(et) "just noticeably" exceeds a? This was
one of the earliest questions raised by psychophysicists. This
minimal increment Ma) is often referred to as the just-noticeable
difference (jnd), or the difference limen. A variant-or rather,
a special case-ofthis question is, What is the minimum value
of a stimulus which is ''just detectable" by a subject? This is
called the absolute threshold.

Various experimental methods for the determination of
Ma) have been designed and are described in this section. Such
questions are. by no means straightforward, however, since they
are ambiguous. For example, what is meantby ''just noticeably"?
Suppose, for example, that a + ~(a) is judged as exceeding et
on 65% of the trials. Does that mean that a +. ~(a) just noticeably
exceeds a? An empirical criterion is clearly involved here. In
the method of constant stimuli (cf. Section 6.2.2) ~(a) is often
taken as a correct determination if a + ~(a) is judged as ex
ceeding a on 75% of the trials. (We are ignoring statistical
issues for the moment.) The arbitrariness ofthis choice is trou
bling. This arbitrariness is less apparent, but just as critical,
in the method "oflimits" or in the method "ofadjustments" (see
Sections 6.1.1 and 6.1.2). Certainly, one would not want the
general pattern of experimental results to depend critically on
the choice of the criterion. In fact, as pointed out by Luce and
Edwards (1958), there are theoretical difficulties involved in
adopting a unique, fixed criterion. Accordingly, there is a trend
in contemporary psychophysical research toward varying the

An introduction to functional equations can be found in ,Aczel
(1966).

The material in this section is based largely on a paper by
Falmagne (1982), which contains a number ofadditional results.
As far as we know, the term psychometric function is due to
Urban (1907), even though the notion was in use since Fechner
and Wundt. Despite its importance in psychophysical research,
this notion has prompted exceptionally few theoretical inves
tigations. Three papers by Levine (1971, 1972, 1975) deserve
to be mentioned. His general approach to the analysis of a
family ofpsychometric functions is similar to that ofthis section.
Rather than focusing on particular models or processes, general
conditions are sought that guarantee the existence and unique
ness properties ofsome abstract (e.g., subtractive) representation.
His side conditions are somewhat different from ours, however.
In his 1972 paper, Levine analyzes a problem that was not
considered here, involving a generalization of the notion of a
subtractive representation. In the notation of this section, this
representation is symbolized by the equation

for some constants 130 > 0, 131, and 132.



In the methods described below, the'successionof stimuli is
governed by an.equation of the· form

Thu~ 0,1 are the values ofa random variable, which we denote'
byZn.We.have by definition
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6.2. Adaptive Methods

In general, each of these three methods suffers from. one
or more of the following defects:

1. Absence of control on the criterion (Sections 6.1.1 and 6.1.2).
2. No theoretical justification for important aspects ofthe pro

cedure (Se~tions 6.1.1 and 6.1.2).
3. The estima'tes may be biased (Sections 6.1.1 and 6.1.2).
4. Costs; a large amount of data is often. wasted (all three

methods).

In computerized laboratories, sophisticated versions of the
method in Section 6.1.3 are used routinely, which we now de
scribe.These methods are applicable when the exact mathe
matical form ofthe psychometric functions is unknown.

in which 9 is a Junction that may vary with .. the .probability .11'

assigned to the target value~11'{a),thetrialnumbern,thesub..
ject'sresponse onthat trial, and possibly some stimulus-response
pairs on·earlier trials.

6.2.1. StochasticApproximation. Fix1r,O <11' < land
choose apoirit Xl arbitrarilY,somewhere in theneighborhood

Consider the problem of finding a point ~ ··in the domain of a
psychoIlletricfunctionpa,.such.thatPa(~) = ...1r,where.1T is chosen
arbitrarily in therangeofPa.Notice that the location of~ depends
on"bot~>q ~:l1:d7r;~Jsth.1.l~afunctiQngfth~ two v~riablesa.and
'1r. Actually, ~" is the sensitivity function introduced earlier,
w~th ~11'(a)=p;l(1r)(Figurel.l0).Inthe rest of this section,
we assumethat thebackgrouIlda is fixed. We thus'occasionally
simplify our notation and write;1r. == p-l{1T).

It must be realized that the problem ofestimating~11'with
anacce:ptabledegree'ofaccutacy Jrom the "data is not trivial,
since the exactmathematicalformofthe psychometric function
may beunknow.Il.A.number·ofpracticalmethods are described
below. They differ from the methods decribed in Section 6.1 in
that the'"course of.theexperiIllent ... depends critically.on the
data: thestimuluspresentedontrialn depends on the subject's
responses 'on. one.. or Iriore()fthe'precedingtrials~·Atpresent,
none.ofthesemethod~takenbyitselfiscompletelyfreeofdefects.
As indicated in Section 6.3, however, a suitable combination of
methods provides .• an·estimation procedure which··seems to .be
reasonable·.for .e:mpirical·applications.

Fromatheoreticalstandpoint, the sequence ofstimulu&
:r,espop,$epairswillbe,fegarded asa stochastic process (Par;en,
1962)~.ForthetiIt1ebeing,weassume that the process is sta
tionary.TheJollowingnotationswill be used. The stimulus
presented.at trial nwilI be denoted byXn,a random variable~

rrhesu~ject'sresponses will be coded: '

The· main objection .to this procedure is· that.· it is implicitly
based ·on .an assumption of symmetry··between·negative···and
positive differences,. which is closely related to theba.lancing
condition discussed in Section ·5. The difficulties· with· such as
sumptions have been analyzedinSection5.7.

If no specific mathematicalmodel is assumed but thepsy
chometricfunctiotlappears to be approximately linear, say;
between the values .20···a.nd .80, then <a straight line can be
fitted to the experimental points inthat interval,.replacing the
mathematical form used· above.

6.1. Traditional Psychophysical Methods

Since the interest of the method.oflimits and ofthe method of
adjustments.is mostly historical, only. a brief description will
be given. For more details, the reader is .referred, for example,
to Engen (1971)or Fechner(1860/1966). Each method involves
a subject making, successive compari~ons of-a stimulus with a
standard· or background.. (We use. the· terminology of the pre
ceding section.) In the determination ofthe absolute threshold,
the, value of the background is considered negligible.

6.1.1. The Method of limits. The experimenter varies the
value oft1?e .stilllulus i~sIIlall asce~dingordesc~IldiIlg.steps.
At each step the subject reports whether the stimulus appears
smaller ~han, equ~l to,()f larger~hantheba.ckground. The ~
experimenter records the values of the stimulus at which the
subject's response shifts from one category to another. This
method is llsed in applied situations, such as audiology, to provide
a quick estimate of the point of subjectiveequality,p;l(.50).
As pointed out by Levitt (1970),this method h~s serious defects
from the viewpoint ofefficiency (the observationsmay be poorly
placed) and validity {the estimates may be substantiailybiased)
(see Anderson, McCarthy,& Tukey,1946; Brown & Cane, 1959).

;06.1.2. The Method of Adjustments. The method of ad
justments is similarto the method oflimits. The subject adjusts
the value of the stimulus, which can be varied continuously
(e.g., by turning adial), and sets it to apparent equality with
the standard. Repeated applications of this procedure yield an
empirical distribution ofstimulus values, the variability ofwhich
is used to compute or estimate the jnd.

6.1.3. The Method of Constant Stimuli. The method of
constant stimuli, which has been encountered earlier (Section
5.1.1),·.purports to estimate experimentally a number·ofsUitably
located points ofsome psychometric functionpa.Jfa particular
mathematical e~p~essionis assumedfor the psychometric func
tions(derived, for instance, from a mathematicalmodel),then
this expression is fitted ,to the experimental points.(Typi~ally,
the mathematicalexpressionofpa is only specified up to-the
values of someparamete'rs, .which· have to· be. estimated from
the data.) Finally, an estimate ofthejnd is provided, for example,
byEq. (57). .

In the past, a different estimate ofthejndhasfrequently
~een·used,which corresponds to the equation

vector). The functions ~·and·~ will be called, respectively, the
Weber function and the sensitivity function.

Empirical determinations·offunction ~or a can be achieved
by a number of methods,. a discussion of which is the topic of
this section.

1-241-24

vector). The functions A and ~ will be called, respectively, the
Weber function and the sensitivity function.

Empirical determinations offunction ~ or Acan be achieved
by a number of methods, a discussion of which is the topic of
this section.

6.1. Traditional Psychophysical Methods

Since the interest of the method of limits and of the method of
adjustments is mostly historical, only a brief description will
be given. For more details, the reader is referred, for example,
to Engen (1971) or Fechner (1860/1966). Each method involves
a subject making successive compar,isons oh stimulus with a
standard or background. (We use the terminology of the pre
ceding section.) In the determination of the absolute threshold,
the value of the background is considered negligible.

6.1.1. The Method of Limits. The experimenter varies the
value ofthe stimulus in. small ascendiIlg or descending steps.
At each step the subject reports whether the stimulus appears
sIllaller .. than, equal to, .ot larger than the backgroun<:l.. The ..
experimenter records the values of the stimulus at which the
subject's response shifts from one category to another. This
method is1lsed in applied situations, su<:h as audiology, to provide
a quick estimate of the point of subjective equality, p;I(.50).
As pointed out by Levitt (1970), this method has serious defects
from the viewpoint ofefficiency (the observations may be poorly
placed) and validityCthe estimates may be substantially biased)
(see Anderson,McCarthy, 8l: Tukey, 1946; Brown & Cane, 1959).

_6.1.2. The Method of Adjustments. The method of ad
justments is similar to the method oflimits. The subject adjusts
the value of the stimulus,. which can be varied continuously
(e.g., by turning adial), and sets it to apparent equality with
the standard. Repeated applications of this procedure yield an
empirical distribution ofstimulus values, the variability ofwhich
is used to compute or estimate the jnd.

6.1.3. The Method of Constant Stimuli. The method of
constant stimuli, which has been encountered earlier (Section
5.1.1), purports to estimate experimentally a number of sUitably
located points of some psychometric function Pa. Ifa particular
mathematical expression is assumed for the psychometric func
tions (derived, for instance, from a mathematical model), then
this expression is fitted·to the experimental points. (TyPically,
the mathematical expression of Pa is only specified up to-the
values of some parameters, which have to be estimated from
the data.) Finally, an estimate ofthe jnd is provided, for example,
by Eq. (57). .

In the past, a different estimate of the jnd has frequently
been used, which corresponds to the equation
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In general, each of these three methods suffers from one
or more of the following defects:

1. Absence ofcontrol on the criterion (Sections 6.1.1 and 6.1.2).
2. No theoretical justification for important aspects ofthe pro

cedure (Sections 6.1.1 and 6.1.2).
3. The estimates may be biased (Sections 6.1.1 and 6.1.2).
4. Costs; a large amount of data is often wasted (all three

methods).

In computerized laboratories, sophisticated versions of the
method in Section 6.1.3 are used routinely, which we now de
scribe. These methods are applicable when the exact mathe
matical form of the psychometric functions is unknown.

6.2. Adaptive Methods

Consider the problem of finding a point ~ in the domain of a
psychometric functionpa> such that pa(fJ ='ll", where'll" is chosen
arbitrarily in the range ofPa. Notice that the location of~ depends
onbot~ q 8,11d'll";. ~ is th:usa functhm of the two variables a and
71". Actually, ~. is the sensitivity function introduced earlier,
with ~1T(a) =p;l('ll") (Figure 1.10). In the rest of this section,
we assumethat the background a is fixed. We thusoccasionally
simplify our notation and write ~1T = p-l('ll").

It must be realized that the problem of estimating ~1T with
an acceptable degree of accuracy from the data is not trivial,
since the exact mathematical formofthe psychometric function
may be unknown. A number ofpraetical methods are described
below. They differ from the methods decribed in Section 6.1 in
that the·course.of the. experiment depends critically on the
data: the stimulus presented on trial n depends on the subject's
responses on one. or more of the preceding trials: At present,
none ofthese methodstllken by itselfis completely free ofdefects.
As indicated. in Section 6.3, however, a suitable combination of
methods provides an estimation procedure which Seems to be
reasonable for empirical applications.

From a theoretical standpoint, the sequence.of stimulus
response pairs ,will be regarded as a stochastic process (Parzen,
1962). For the time being, we assume that the process is sta
tionary. The following notations will be used. The stimulus
presented.at trial n will be denoted by Xn, a random variable;
The subject's responses will be coded: .

1 Ifa is not judged as exceeding Xl
o Otherwise

Thus 0,1 are the values ofa random variable, which we denote
byZn. We have by definition

The main objection to this procedure is that it is implicitly
based on an assumption of symmetry between negative· and
positive differences, which is closely related to the balancing
condition discussed in Section 5. The difficulties with such as
sumptions have been analyzed in Section 5.7.

Ifno specific mathematical model is assumed but the psy
chometric function appears to be approximately linear, say,
between the values .20 and .80, then a straight line can be
fitted to the experimental points in that interval, replacing the
mathematical form used above.

jnd(a) == (1/2)[A.75(a) - A.25(a)J (58)
In the methods described below, the succession of stimuli is
governed by an equation of the form

in which e is a function that may vary with the probability 'll"
assigned to the target value ~1T(a), the trial number n,the sub
ject's response on that trial, and possibly some stimulus-response
pairs on earlier trials.

6.2.1. Stochastic Approximation. Fix 'll",0 < 71" < 1 and
choose a point Xl arbitrarily, somewhere in the neighborhood
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TRIAL NUMBER
Figure 1.11. Exemplary data for. the simple up-down method. The initial
value is arbitrarily set at O. The step size is equal to 1. There are eight runs,
corresponding to trials 1";'2, 2-5, 5-7, and so on.
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Inwords,8is.the stepsize,and. the' stimulus is.incre~sedby8
in the case ofa negative response' (Zn .= 0)and decreased by 8
in..thecaseQfapositiveone(Zn..·='l). In·Figure.l.ll, the.succes~
sion of responsesis"no,yes, yes, yes, no, ... "and so on. The
choice ofthe step size is obviously important and will be
mentedon in a moment. Since

it is apparentthatEq.(61)definesa discrete parameterMarkov
chain {Xnl with ,state space {Xl !l81 n = 1,2, ... }. The states
are recurrent,with a finite meanrecurrent time, whichimplies
(see, e.g.,Parzen,l962, p. 252) that the distribution ofXn.con..
vergesasn~oo.Inparticular, taking expectations and limits
in Eq. (61) and denotingthe expectations by E, we obtain after
rearranging,

use as an early component ofan adaptive estimation procedure
(see Section 6.3).

6.2.2. Up-Down, or Staircase, Method. This method is
probably the most popular. one. The essential difference with
the stochastic"approximation method is·that on each trial the
value of the stimulus is changed by a constant amount, either
positively or negatively. In other terms, in Eq.. (59),

is constant for alltrials n, the direction ofthe change·depending
on the probability 11", on"the subject's responses, and so on. The
increments bywhich the stimulus is eitherincreasedor decreased
are referred to as steps. A sequence of steps in one direction, in
a realization of this process, is called a run. This is illustrated
in Figure 1.11, in which the value of the stimulus presented at
the first trialis set arbitrarily equal to 0 and the step size is
equalto 1. There are eight runs, corresponding to.trialsl-2,
,2-5,5-7, and soon. Three variants of the method willbe de
scribed.

6.2:2.'1.' /SlrnpleUj:i-DowIJMethoo.·· .... In the simpleup..dowt1.
method, the problem is to estimate ~.5.As in Section 6.2.1, an

,educatedguess is made for the initial value Xl of the stimulus.
The' successive remaining.values are then obtained by the rule

o

1if Zl
{

c
Xl+ 211"

X2 =
•• Xl - £. (1 - 'IT)

2
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where c > 0 is some constant, the choice of which is ofimpor
tance, as we shall see. Thus X2 is a value ofthe random variable
X2.WehaveXl = Xl by convention. The above rule can be
rewritten compactly as

.Next, we determine successivelyxa,x4, •...,xn, usingthe
rule·'" .. ",o.i' : . . ·i,

in the .notation .of Eq..(59). The .sequence ofrandom .variables
{Xn} is' known' as a Robbins-Monro process. It can be shown
that as ngets.large, Xn tends to a normal random 'variable,
withexpectation .equal to ~1T' and '. a vanishing· variance. This
result holds under generaldifferentiability assumptions re
garding the psychometric function p (which seem quite reason
able in the present context) flndprovided thatthe constant c
is chosen' appropriately. ForJdetails the .reader is'referred-te
RobbinsandMonro.(1951) orWasan (1969).. In practice, an
estimate of .~'n' is provided by a· sample value of Xnfor some
large ·n.·.·This method is. a substantial.improvement over the
preceding ones. Itis not very economical, however, since a large
number oftrials are needed, only the lastone ofwhich is actually
.used.Moreover, ifthe numberoftrials is not large, the estimate
of~1T is biased, the size and direction of the. bias depending on
the curvature of the psychometric function· at the point. to be
estimated..One difficulty is that the convergence of ctn is slow,
from the viewpoint of the scale ofapsychophysical experiment.
As suggested by Kesten (1958) andPavel (Note l),the conver..
gence.ofthe estimation process.can be speeded up'significantly
by modifying the constant. c in Eq. (60) as.afunction of the
subject's responses on·trialspreceding trialn. For example, the
value .. of c/n in Eq. (60) could fail' to. decrease. in the' case of a
.succession of identical responses. (We refer to this modification
of the method as accelerateds toehastic approximation.) Finally,
itmust be rememberedthat there are often practical limitations
to the resolution of the apparatus used to generate the stimuli.
In psychoacoustics, for instance, the minimum difference between
distinct stimuli is often of the order of 0.25 dB or more. Even
assuming that an accelerated stochastic approximation method
is used,these limitations may suffice to render the estimate
unacceptable.Stochastic .approximation has nevertheless its

of ~1T(a),thepoint to be estimated. (Since~1T(a) is unknown, an
educated guess ·has. to be made. The accuracy ofthis guess is
not crucial.) Present the pair (XI, a) .to the subject. Determine
a second pointx2 by the following rule:
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Next, we determine successivelyx3,x4, ..., xn, ... usingthe
rule ..•......•.
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use as an early component ofan adaptive estimation procedure
(see Section 6.3).

6.2.2. Up-Down, or Staircase, Method. This method is
probably the most popular one. The essential difference with
the stochasticapproximation method is that on each trial the
value of the stimulus is changed by a constant amount, either
positively or negatively. In other terms, in Eq. (59),

is constant for all trials n, the direction ofthe change depending
on the probability 1T, on the subject's responses, and so on. The
increments by which the stimulus is either increased or decreased
are referred to as steps. A sequence of steps in one direction, in
a realization of this process, is called a run. This is illustrated
in Figure 1.11, in which the value of the stimulus presented at
the first trial is set arbitrarily equal to 0 and the step size is
equal to 1. There are eight runs, corresponding to trials 1-2,
2-5,5-7, and so on. Three variants of the method will be de
scribed.

6.2:2.7.· SImple Up.-DOwn Method. In the simple up-down
method, the problem is to estimate ~.5. As in Section 6.2.1, an

.educatedguessis made for the initial value Xl ofthe stimulus.
The successive remaining values are then obtained by the rule

(60)

1

oif Zr

if Zl

X n+l

{

C
Xl + 21T

X2 =
Xl - :. (1 - 1T)

2

where c > 0 is some constant, the choice of which is of impor
tance, as we shall see. Thus X2 is a value ofthe random variable
X2• We have Xl = Xl by convention. The above rule can be
rewritten compactly as

of ~'lI'(a), the point to be estimated. (Since ~'lI'(a) is unknown, an
educated guess has to be made. The accuracy of this guess is
not crucial.) Present the pair (xt>a) to the subject. Determine
a second point X2 by the following rule:

This yields (61)
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it is apparent that Eq. (61) defines a discrete parameter Markov
chl;l.in {Xn} withstate space {Xl ± n81n = 1,2, ... }. The states
are recurrent, with a finite mean recurrent time, which implies
(see, e.g., Patzen, 1962, p. 252) that the distribution ofXncon
verges as n ~oo. In particular, taking expectations and limits
in Eq. (61) and denoting the expectations by E, we obtain after
rearranging,

TRIAL NUMBER
Figure 1.11. Exemplary data for the simple up-down method. The initial
value is arbitrarily set at O. The step size is equal to 1. There are eight runs,
corresponding to trials 1-2,2-5,5-7, and so on.

In words,S is the step size, and the stimulus is increl;l.sed by 8
in the case ora negative response (Zn = 0) and decreased by 8
in the case ofa positive one (Zn = 1). In Figure 1.11, the succes~

sion of responses is "no, yes, yes, yes, no, ... " and so on. The
choice of the step size is obviously important and will be com
mentedon in a moment. Since

in the notation of Eq. (59). The sequence of random variables
{Xn} is known as a Robbins-Monro process. It can be shown
that· as n gets large, Xn tends to a normal random variable,
with expectation equal to ~'lI' and· a vanishing variance. This
result holds under general differentiability assumptions re
garding the psychometric function p (which seem quite reason
able in the present context) fUld provided that the constant c
is chosen appropriately. For Idetails the· reader is referredte
Robbins. and Monro (1951) or Wasan (l969). In practice, an
estimate of ~'lI' is provided by a sample value of Xn for some
large n. This method is. a substantial improvement over the
preceding ones. It is not very economical, however, since a large
number oftrials are needed, only the last one ofwhich is actually
used. Moreover, ifthe number oftrials is not large, the estimate
of ~'lI' is biased, the size and direction of the bias depending on
the curvature of the psychometric function at the point to be
estimated. One difficulty is that the convergence of cJn is slow,
from the viewpoint of the scale ofa psychophysical experiment.
As suggested by Kesten (1958) and Pavel (Note 1), the conver
gence of the estimation process can be speeded up significantly
by modifying the constant c in Eq. (60) as a function of the
subject's responses on trials preceding trialn. For example, the
value of cJn in Eq. (60) could fail to decrease in the case of a
.succession of identical responses. (We refer to this modification
ofthe method as accelerated stochastic approximation.) Finally,
it must be remembered that there are often practical limitations
to the resolution of the apparatus used to generate the stimuli.
Inpsychoacoustics, for instance, the minimum difference between
distinct stimuli is often of the order of 0.25 dB or more. Even
assuming that an accelerated stochastic approximation method
is used, these limitations may suffice to render the estimate
unacceptable. Stochastic approximation has nevertheless its



Another source ofdifficulty is that the subject may become
aware of the systematic character of the stimulus changes. In
turn, this may induce a strategy ofanticipation of these changes
that may be responsible for a bias in the responses. This is
easily taken. care of by "interleaving" two or more staircase
processes. (involving different estimates) .within each experi
mental session. This remark also applies, obviously, to the sto
chastic. approximation procedure.

It is clear.that, as·described·here, the staircase procedure
is ·only· of limited use, since it ·only permits the estimation of
the point ~.5.

6.2.2.2. Estimate of ~.Following Derman (1957), the
simple. up-down procedure .can be· adapted to provide, at least
in principle, an estimate of ~11' for any choice of 1T. The idea is
simple enough. From a given psychometric function Pa, let· us
define a new.psychometric functionp~ by
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where;o.i~.~IIlu.ltiplica~iye consta.Ilt,.5.~a~ .1,' the role of
which' will' be made clear in·a moment. An application·ofthe
simpl~up-d()wn method to p;will· yield a. stimulus value ~
satisfying'·:··· .

.Thus

1 k......

-k'.LXn+i,
i=l

limE[Prob{ZnIXn}] = limE[Pa(X n)]
n-OO n-OO

.5= limE(Zn) = limProb{Zn I}
n-oo n-oo

in which the· approximation holds if we assume either that.the
psychometric functionpa is approximately linear in the region
of concentration of the mass of Xoo or,'that the· distribution of
Xoo is approximately symmetric. (Indeed, in this last·. case, the
expectation ofL is confounded with its median M(Xoo),and for
any strictly increasingfunctiont: we have M[ f(L)] = ((M(Xoo)].)
In principle, the value g.5 :=;E(Xoo) can be estimated by. the
statistic

Using the fact that Pa isa bounded, continuous function, this
gives successively, with obvious notation,
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forn sufficiently.la:rge.·Aspointed out byWetherill(1963),a
practical estimate Of~.5 is provided by averaging the peaksand
the valleysin allthe runs. As an illustration, thedat,aof.Figure
1.11 would yield forthis estimate the value .

1
8(0 +1 - 2 +0 - 1+3-1+2+ 1)= 3/8.

I Itis easy to verify that this m~thodaIllPunts to considering the
midpoint ofevery.second run as ·an estimate of ~.5· and then to
compute the average of these midpoints. Thus in Figure 1.11

and for anY1T,.5·.~.1T< 1,anappropriate choice ofawill yield
anestimate'of~lI'. In the styleofEqs. (59) and (61) this amounts
to setting

14(-.5 - .5+ 1+ 1.5)= 3/8 ·

These estimates are sometimes referred to as themidrunes-
I timates.An even Il.umberofrutls should be used, to reduce a

bias in the esti:ma~ion.Thebiasisthen small, provided that to
a reasonable approximation.the.psychometric function or·the
distributionofXnsatisfiesthe.coI?-«:litionsindica.tedabove. This
procedure basedon·the midrun estimates is known to he fairly
efficient. In fact for a small number oftrials(n < 30),it is more
efficient thana maximum likelihood •estimate .(Wetherill~ .Chen,
&Vasudeva, 1966). There are various problems with this pro-

\ cedure, only some ofwhich will be mentioned here (see Levitt,,
I 1970.)
t One. problem concerns the choice ofthe step size 8, the
I value ofwhi~h should be smallcompared to the "spread" ofthe

psychometric function. As·a.rule·ofthumb,a.good.choice·is .. to
I set 8equalto the slope ofthe psychometric function atthepoint

to be estimated. (Ifwe assume that the psychometric function
is approximatelylinearinsomeneighborhood of the target
value, then this value of8 can be shown to minimize the variaIl~e

of the ..·asyrnptoticdistribution afthe •stimuli presented. Se.e
Wetherill, 1963.)Since both locations and spread are typically
unknown at the. early ... stage ...• of experimentation,·· .this.recom
mendation is only.oflieuristic.use. A frequently employed, rea
sonable procedureis tostart the first few {say, 10) trialsofeach
experimental session with a large··stepsize,which·isthen de
creased for the useful part ofthe data.

where Y11' isa random variable taking value 1 with.probability
V21Tana. valueOwithptobability1- ·¥21r,and independent of
the random variablesXn's:Wehave thus, clearly,

Asimilar methodis used inthe case ofthe determination of a
point ~lI'withO<·1T<.5. For example, we define a psychometric
function

Again, applying the siIPpleup~downprocedureto p~yieldsthe

required estimate of ~1T.An objection to Derman'smethod is
tha.t the slope ofP; is smaller thanthe slope ofPa,a fact which
may.·reduce·the efficiency·.ofthe procedure.

6.2.23. TransformedUp-Down·Method.·.·· Theimpact ofthis
objection is less critical··in·theso~calledtransformed up-down
method, where the functionp~is defined differently, for example,
by one of the following expressions:
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Using the fact that Pa is a bounded, continuous function, this
gives successively, with obvious notation,

.5 = limE(Z,,) = limProb{Z" = I}
n-oo n.-oo

limE[Prob{Z,,!X,,}] = limE[Pa(X,,)]
n-OO n-OO

in which the approximation holds ifwe assume either that the
psychometric function Pa is approximately linear in the region
of concentration of the mass of Xoo or,that the distribution of
L is approximately symmetric. (Indeed, in this last case, the
expectation ofL is confounded with its median M(Xoo), and for
any strictly increasing function t: we haveM[f(L)] = f[M(L)].)
In principle, the value ~.5 = E(L) can be estimated by the
statistic

Another source ofdifficulty is that the subject may become
aware of the systematic character of the stimulus changes. In
turn, this may induce a strategy of anticipation of these changes
that may be responsible for a bias in the responses. This is
easily taken care of by "interleaving" two or more staircase
processes (involving different estimates) within each experi
mental session. This remark also applies, obviously, to the sto
chastic approximation procedure.

It is clear that, as described here, the staircase procedure
is only of limited use, since it only permits the estimation of
the point ~.5.

6.2.2.2. Estimate of~. Following Derman (1957), the
simple up~down procedure can be adapted to provide, at least
in principle, an estimate of ~1T for any choice of 'TT. The idea is
simple enough. From a given psychometric function Pa, let us
define a new psychometric function P~ by

1 k.

-k' LX"+i ,
i=l

for n sufficiently large. As pointed out by Wetherill(1963), a
practical estimate of t5 is provided by averaging the peaks and
the v~lleysin allthe runs. As an illustration, the data ofFigure
1.11 would yield for this estimate the value

wher~,cd~amultiplicativeconstant, .5.:S;; a:S;; 1, the role of
which Will be made clear in a moment. An application of the
simple up"down method to P~ will yield a stimulus value ~
satisfying' .'.

Thus

18(0 + 1 - 2 + 0 - 1 + 3 - 1 + 2 + 1) = 3/8 Pa(~) = 1I2a,

IUs easy to verify that this method aIIlOunts to considering the
inidpoint of every second run as an estimate of ~.5 and then to
compute the average of these midpoints. Thus in Figure 1.11

and for any 'TT, .5 ,.;;; 'TT < 1, an appropriate choice of a will yield
an estimateof~1T.Inthe style ofEqs. (59) and (61) this amounts
to setting

X"+l == X" + 8 (1 - 2Z"Y 1T) ,

A similar method is used in the case of the determination of a
point ~1T with 0 < 'TT < .5. For example, we define a psychometric
function

where Y1T is a random variable taking value 1 with probability
1f2'TTand value 0 with probability 1 - 1f2'TT, and independent of
the random variables X,,'s; We have thus, clearly,

.:.::.5:.............-::.'TT < .5 .
1 'TT

o < a

with

Again, applying the slIllple up-down procedure to P~ yields the
required estimate of ~1T' An objection to Derman's method is
that the slope ofP~ is smaller than the slope ofPa, a fact which
may reduce the efficiency of the procedure.

6.2.2.3. Transformed Up-Down Method. The impact ofthis
objection is less critical in the so-called transformed up-down
method, where the function P~ is defined differently, for example,
by one of the following expressions:

1:4 (-.5 - .5 + 1 + 1.5) = 3/8 .

These estimates are sometimes referred to as the midrun es
timates. An even number ofruns should be used, to reduce a
bias in the estimation. The bias is then small, provided that to
a reasonable approximation the psychometric function or the
distribution ofX" satisfies the collditions indicated above. This
procedure based on the midrun estimates is known to be fairly
efficient. In fact for a small number of trials (n < 30), it is more
efficient than a maximum likelihood estimate (Wetherill, Chen,
& Vasudeva, 1966). There are various problems with this pro
cedure, only some ofwhich will be mentioned here (see Levitt,
1970.)

One problem concerns the choice of the step size 8, the
value ofwhich should be small compared to the "spread" of the
psychometric function. As a rule of thumb, a good choice is to
set 8 equal to the slope ofthe psychometric function atthe point
to be estimated. (If we assume that the psychometric function
is approximately linear in sOme neighborhood of the target
value, then this value of8 can be shown to minimize the variance
of the .asymptotic distribution of the stimuli presented.• See
Wetherill, 1963.) Since both locations and spread are typically
unknown at the early. stage of experimentation, this recom
mendation is only ofheuristic use. A frequently employed, rea
sonable procedure is to start the first few {say, 10) trials ofeach
experimental session with a large step size, which is then de
creased for the useful part of the data.



In practice, it is advisable to adopt a combination of the methods
described in Section'6.2.Werecommend the following procedure.
To estimate a point ~1T satisfying Pa(~1T) .'.=;:11':

Step 1. Choose Xl = Xl, the first stimulus to be presented,
in a (conjectured) neighborhood of ~1T.

Step 2. Determine the values ofthe following stimuli by
accelerated·.·stochastic approximation; for· example, ... apply
Eq. (60),modified by havingc/nremainlng constant in the
course of a succession ofidentical responses. ·Pursue this
procedure up tothe limitofresolution ofthestimulus con
tinuum (e.g, 0.25 dB in psychoacoustic)~

Step 3. Suppose that this limit is reached at trialn.On
thattrial,switchto a suitable:up-down procedure, such as
in Sections 6.2.2.2 or 6.2.2.3~ Usethemidrun estimates on
the dat~ from trial n onwardto compute an estimateof~1T.

An'.example of application of this procedure is given in
Figure 1.13 andTable1.1 for some simulated data. This combined
procedure avoids most ofthe criticisms elicited by other methods
discussed in this section. We must point out, however, that it
hasnotheeninvestigatedsystematically,either fromamath
ematical ora practicalstan.4point.The last wordis by no means
said on the question ofdesigning an optimal adaptive procedure,
as indicatedhy recent activity in thisfield (Pavel,Note 1; Vor
berg,·Note2).

6.4. Key References
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6.3. A. Recomrnended. Adaptive 'Procedure

A basic paper by Levitt{1970} contains a discussion ofadaptive
procedures gearedtowardpsychophysical applications. A fairly
complete mathematical treatment is available in the monograph
by Wasan (1969).

can be estimated by the midrun procedure. A slight adaptation
of our definition of a run must be introduced however. For the
data ofFigure 1.12(a)a strict application ofthis definition leads
to a count of four runs between trials 1 and 10, while we mean
to have only two runs: 1-5, 5-10, with respective midpoints
-1 and O. The clearest .approach is to begin by recoding the
data, so as to eliminate the repetitions ofastimulus on con
secutive trials. The function ofthis recoding is made transparent
by a comparison of Figures 1.12(a) and 1.12(b). The exactdef
inition given below is somewhat involved however. Let {xnl be
a realization ofthe process {Xnl. Consider the largest subsequence
{xnJ of{xnl, such'that xnirf Xni+l fori = 1, 2, .... Definex7 =
Xni' for i= 1,2, .... The sequence {xi} will be called the recod
ingof{xnl.'An illustration of such recoding is given in.Figure
1.12(b), startingfrom the data ofFigure 1.12(a).Byeliminating
the repetitions, the number of trials has been reduced to 19.
There are six runs: 1-3, 3-7, 11-15~andso on, with respective
midpoints -1,0,0, and so on.

6'~2.3. ··Remark. .The assumptioIlthat thestochaStic'process
(Xn,~n)is ... stationa11'is critical. fortheprocedllres ..discussed in
this section to be:applicable.ln some situation's, the eXperimenter
may have reasons to believe that this assumption is not war
ranted.• An examination of the data generated by the up-down
procedureinay then reveal a systematic drift over time. If this
happens,· not only'. is. the adaptive procedure useless for the
estimation'of~1T,butthevery'notionofpsychometric function
is' of dubiousvalue.

(64)

n = 2,3,4, ... (62)

n= 2,3,4, ... (63)

ifZ n 0;

ifZ n Zn-l = 1

andXn=Xn- 1 ;

in all other cases .

P:(X) = 1- [1 -Pa(x)]n;

'P:(X)= [1 - Pa(x)]Pa(x). +Pa(x).

Pa(~) = VS = .707·.
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that is,

15
Cb)

TR IALNUM8ER

Figure 1.12. {a)Exemplarydataforthetransformedup-downmethods,Eq.
(62). The conventions regardinginitialvalueandstepsize...areasinFigure
1.11: Xl= °and 8 = .. 1. (b) Recoding of the dataof (a); eliminating consecutive
repetitions of identical stimulus values. Six runs areobtained,corresponding
to trials 1-3, 3-7,7-10, and so on.

in which the Junction eis defined by.

Such transformations have been usedhy a number of authors
(see Levitt, ·1970,·for·somereferences).As an.illustration, we
discuss the case n =2 in Eq. (62). We consider the psychometric
functionp:(x) = Pa(x)2.Asin the simple up-down procedure,
we search for an estimate of a point ~ satisfying

The case n=2inEq.(62) isthus useful whenthisparticular
point ofthe psychometric function is of interest. The relevant
stochC:l.stic prqcessis .. definedas.follows.Pick Xl·as usuaL Set
X2 =Xl ifZI = 1andx2 = XI- 8' ifZTl. = o. For n = 3, '4, ...
we use the rule

An example ofrealization ofsuch a process is pictured in Figure
1.12(a). The point ~.5 ofp~,which is also the point ~v:5. of Pa,
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A basic paper by Levitt (1970) contains a discussion ofadaptive
procedures geared toward psychophysical applications. A fairly
complete mathematical treatment is available in the monograph
by Wasan (1969).

6.4. Key References

6.3. A Recommended Adaptive Procedure

In practice, it is advisable to adopt a combination of the methods
described in Section 6.2. We recommend the following procedure.
To estimate a point ~1T satisfying Pa(~1T) "7 1T:

Step 1. Choose Xl = Xl, the first stimulus to be presented,
in a (conjectured) neighborhood of ~1T'

Step 2. Determine the values ofthe following stimuli by
acceleratedstochastic approximation; for example, apply
Eq. (60), modified by having cln remaining constant in the
course of a succession of.identical responses. Pursue this
procedure up to the limitof resolution of the stimulus con
tinuum (e.g, 0.25 dB in psychoacoustic).
Step 3. Suppose that this limit is reached at trial n. On
that trial, switch to a suitable up-down procedure, such as
in Sections 6.2.2.2 or 6.2.2.3. Use the midrun estimates on
the data from trial n onward to compute an estimate of ~1T'

An example of application ofthisprocedure is given in
Figure 1.13 and Table 1.1 for some simulateddata. This combined
procedure avoids IIlOSt ofthe criticisms elicited by other methods
discussed in this section. We must point out, however, that it
has not been investigated systematically, either from a math
ematicalor a practical stan9-point. The last word is by no means
said on the question ofdesigning an optimal adaptive procedure,
as indicated by recent activity in this field (Pavel, Note 1; Vor
berg, Note 2).

can be estimated by the midrun procedure. A slight adaptation
of our definition of a run must be introduced however. For the
data ofFigure 1.12(a) a strict application ofthis definition leads
to a count offour runs between trials 1 and 10, while we mean
to have only two runs: 1-5, 5-10, with respective midpoints
-1 and O. The clearest approach is to begin by recoding the
data, so as to eliminate the repetitions of a stimulus on con
secutive trials. The function ofthis recoding is made transparent
by a comparison of Figures 1.12(a) and 1.12(b). The exact def
inition given below is somewhat involved however. Let {xll} be
a realization ofthe process {X1l}' Consider the largest subsequence
{xllJ of {xll}, such that Xlli "" Xlli+l for i = 1,2, .... Define x7 =
Xlli, for i = 1,2, .... The sequence {x7} will be called the recod
ing of {xll}. An illustration of such recoding is given in Figure
1.12(b), starting from the data ofFigure 1.12(a). By eliminating
the repetitions, the number of trials has been reduced to 19.
There are six runs: 1-3,3-7,11-15, and so on, with respective
midpoints -1,0,0, and so on.

6;2.3. .Remark. The asSumption that the stochastic process
(XmZll) isstationary is critical for the procedures discussed in
this section to be appliCable. hi some situations, the experimenter
may have reasons to believe that this assumption is not war
ranted. An examination of the data generated by the up-down
procedure may then reveal a systematic drift over time. If this
happens, not only is the adaptive procedure useless for the
estimation of ~1T' but the·very notion of psychometric function·
is of dubious value.

(64)

+++

n = 2, 3, 4, ... (62)

n = 2, 3, 4, ... (63)

- ++-

if Z" 0;

if Zll Zll-l = 1

and X ll = X ll - l ;

in all other cases .
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Figure 1.12. (a) Exemplary data for the transformed up-down methods, Eq.
(62). The conventions regarding initial value and step size,are as in Figure
1.11 : Xl = 0 and 8 = 1. (b) Recoding of the data of (a), eliminating consecutive
repetitions of identical stimulus values. Six runs are obtained, corresponding
to trials 1-3, 3-7,7-10, and so on.
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Such transformations have been used by a number of authors
(see Levitt, 1970, for some references). As an illustration, we
discuss the case n = 2 in E;q. (62). We consider thepsychometric
function p;(x) = Pa(x)2. As in the simple up-down procedure,
we search for an estimate of a point ~ satisfying

in which the function eis defined by

An example ofrealization ofsuch a process is pictured in Figure
1.12(a). The point ~.5 of p;, which is also the point ~Y.5 of Pa,

The case n = 2 in Eq. (62) is thususeful when this particular
point of the psychometric function is of interest. The relevant
stochastic prqcess is .defined as follows. Pick Xl as usual.. Set
X2 = Xl ifZl = 1 andx2 = Xl- 8ifZll = O. For n = 3,4, ...
we use the rule
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- ··~.5(a).

1'hiswas '. illustrated in Figure 1.10, .in •the particular case in
whichp., denotes a real number (say,a physical intensity) and
~.5(a) = a.'
····It is.·.importantto·distinguishin our notation the. concept

of Afrom that of~1T.TheJatteris a function ofone variable,
naip.ely,. the background, or standard. "'In ..other·word~,.··.in the
notation A.75,the>probability.75is implicitly assumed to be
fixed. Occ·asionally,it will nevertheless be convenient, by abuse
of language,.~o refer tothe functions· A1r astheWeberfunctions
ofE. A similar convention will apply to the functions S'Tl" which
will be called the sensitivity. functions of3.Psychophysicists
often analyze their data in. terms ofone or more functions

a '1-4 ···/l'Tl'(a)1a ". ,

in a situation in which division by a is legitimate. Such a function
will be called the 71'-Weber fraction of E,or, more simply, when

7.1-. BasicNotions

and several practical procedures were discusse~ for the empirical
determination of~, for given 71' anda. In general, the value of
~ will depend on both 71' and a; in other terms, ~ is a function of
the two variables a and 71'. Mathematically, the function Econ
tains exactly the same information as the psychometric functions
of Section 5·. The long-standing interest of psychophysicists in
this function is· well grounded, howeyer. As we shall see, the
knOWledge of ~ gives a more ready access to the underlying
sensory scale, a primary focus of interest for the psychophysicist.
This is true at least for the most popular class of models for
psychometric function data.

We consider here a number of models or properties for the
function ~and its close relative, the Weber function ~, the most
celebrated of which is the so-called Weber's law.

We begin with a definition .recasting these two functions
in the general framework ofthis ·chapter.

(As'usual, we write f -1 f~rthe inverse ofa one-to-one function
f.} In words, ~1r(a) IS the intensity of the stimulus yielding.
a response probability 71', for the background a; that is,
pcire1f(a)}= 7'f.Werecall that the index 'a in the notation Pa of'
a psychometric function ne~dnotalways represent a real num
ber.Anexampleis thatofadetection paradigm in which the
index may denote a background noise, which in some situations
may be represented by a spectraldensity function, that'is, an
infinite dimensional vector. (Thus Pa(x) is the probability that
th~>stimulusofintensityx is detected over the background a.)
Let us assume that E is anchored at .S (cf. Section 5.4.3; thus
.5 is a possible value for all the psychometric functions in the
family). Then .the Weber function of E is a function Aof two
variables a and1r, defined by

."<-?1~J!: ..Qefiniti()n•. ;Let E = {PalaE I}be.a psychometric
fa.nllly (i.e., afamily ofpsychometric functions satisfying certain
hypotheses; see the definition in SectionS.2). The sensitivity

. fUnction of'S is a function ~., defined for' all backgrounds' (or
standards) a and all probabilities 71' in the range ofa psychometric
function Pa, by the equation

2015

Computation of Xn+ 1

0.··-8(0··... ;- •.75)= 6
6 ~ 8(0__.75)= 12
12 - 8(0-.75)= .. 18
18 - (8/4)(1- .75)= 17.5
17.5 - (8/4)(1-.75) = 17
17- (8/4)(1 ·~.75)=:.16.5

16.5' -" (8/4)(1 - .:75)-~-16

16- (8/8)(0 - .75) <= 16.75
16.75- (8/8)(0 - .75)'= 17.5
17.5 ~ '(8/10)(1- .75) =:17.3

1'1.25+ .25(1 - ...• 2) 17
17 + .25(1-2) = 16.75
16.75 +.25(1 - 0) = 17'
17+.25(1 -0) = 17.25
17.25+•.25(1 - 0)= 17.5
17.5 +~25(1-2r::17.25

17.25+ .25(1- 0)= 17.5
17.5+ .25(1 - 0)=17.75
17.75-+ ..25(1-2):: 17.5
17.5 +.25(1-2)=17.25

10

o
1
1
1
o
o
1
1

Y.75

5

o.
o
o
1
1
1
1
o
o
1

1
1
1
o
o
1
1
1
1.
1

Response
(Zn)

·Stim·
ulus

Value

o
6

12
18
17.5
17
16.5
16
16.75
17.5

17.25
17
16.75
17
17.25
17.5
17.25
·17.5
17.75
17.50
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Figure 1.13. Simulated application of the adaptive procedure to estimate
~.75. The vertical dotted Ifne.separatesthetwomodes of the procedure. See
the Table 1.1 for details.
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7. WEBER'S LAW, GENERALIZATIONS AND
ALTERNATIVES

From.tria/l to JO, accelerated stochastic approximation isused, with Xl = 0
and. c..·=... B.·(The successive·values .. of.thestimulusareobtained· from Eq.
(60),exceptthatcln does notvary inthe course of repetitions oia respon~e.)

Fromtrialllon, method6.2.2~2 is used, witha' =.51.75~ The values of
V.7s .. are ·o!-?tained by.random·samplingwith .Prob.. {Y.7S =1}··=··a..The
midrunestlmate off7s·wouldbeobtained by averaging 17, 16.75,17.5;
and so on.

The' central. concept of Section ·'S .concerned. a . probability
Pa,(~)= 71' for which a stimulus ofintensity~is detected over a
background denoted bya. In Section·a,.the intensity~, rather
thaIl the probability 71',wastakenas the independent varIable,

Table 1.1 •. ' Simulation of the Adaptive Procedure Recommended in
Section'6.3, to Estimate' ~.7S.
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and several practical procedures were discussed for the empirical
determination of ~, for given 'IT and a. In general, the value of
~ will depend on both 'IT and a; in other terms, ~ is a function of
the two variables a and 'IT. Mathematically, the function ~ con
tains exactly the same information as the psychometric functions
of Section 5. The long-standing interest of psychophysicists in
this function is well grounded, however. As we shall see, the
knowledge of ~ gives a more ready access to the underlying
sensory scale, a primary focus of interest for the psychophysicist.
This is true at least for the most popular class of models for
psychometric function data.

We consider here a number of models or properties for the
function ~ and its close relative, the Weber function ~, the most
celebrated of which is the so-called Weber's law.

We begin with a definition recasting these two functions
in the general framework of this chapter.

TR IAL NUMBER

Figure 1.13. Simulated application of the adaptive procedure to estimate
bs. The vertical dotted line separates the two modes of the procedure. See
the Table 1.1 for details.

7. WEBER'S LAW, GENERALIZATIONS AND
ALTERNATIVES

7.1. Basic Notions

-7.1.1, Definiti(ln. ,Let E = {Pala El} bea psychometric
family (i.e., a family ofpsychometric functions satisfying certain
hypotheses; see the definition in Section 5.2). The sensitivity
{Unction of E is a function ~. defined· for all backgrounds (or
standards) a and all probabilities 'IT in the range ofa psychometric
function Pa, by the equation

Table 1.1. Simulation of the Adaptive Procedure Recommended in
Section 6.3, to Estimate g.75.

The central concept .of Section 5 concerned a probability
Pa(~) = 'IT for which a stimulus of intensity ~ is detected over a
background denoted by a. In Section 6, the intensity ~, rather
than the probability 'IT, was taken as the independent variable,

in a situation in which division by a is legitimate. Such a function
will be called the 'IT-Weber fraction of E, or, more simply, .when

This was illustrated in Figure 1.10, in the particular case in
which a denotes ~ real number (say, a physical intensity) and
~.5(a) = a.

It is important to distinguish in our notation the. concept
of ~ froDl that of A1T• The latter is a function of one variable,
namely, the background, or standard. In other words, in the
notation ~.75, the probability .75 is implicitly assumed to be
fixed. Occasionally, it will nevertheless be convenient, by abuse
oflanguage, to refer to the functions ~1T as the Weber functions
ofE. A simila.r convention will apply to the functions ~1T' which
will be called the sensitivity functions of E. Psychophysicists
often analyze their data in terms of one or more functions

(As usual, we write f -1 for the inverse ofa one-to-one function
f.) In words, ~1T(a) is the intensity of the stimulus yielding
a response probability 'IT, for the background a; that is,
Pa[~1T(a)J = 11'. We recall that the index a in the notationPa of
a psychometric function need not always represent a real num
ber. An example is that ofadetection paradigm in which the
index may denote a background noise, which in some situations
may be represented by a spectral density function, that is, an
infinite dimensional vector. (Thus Pa(x) is the probability that
the.. stiDlulus of intensity x is detected over the background a.)
Let us assume that E is anchored at .5 (cf. Section 5.4.3; thus
.5 is a possible value for all the psychometric functions in the
family). Then the Weber function of E is a function ~ of two
variables a and 11', defined by

Computation of Xn+1

o - 8(0 .....75)= 6
6 ~ 8(0 - .75) = 12
12 - 8(0- .75) = 18
18 - (8/4)(1 - .75) = 17.5
17.5 - (8/4)(1 - .75) = 17
17 - (8/4)(1 - .75). =.16.5
16.5 - (8/4)(1 - :75)~ 16
16 - (8/8)(0 - .75) = 16.75
16.75 - (8/8)(0 - .75)= 17.5
17.5 - (8/10)(1 - .75) = 17.3

1'Z.25 + .25(1 - 2) = 17
17 + .25(1 - 2) = 16.75
16.75 + .25(1 - 0) = 17
17 + .25(1 - 0) = 17.25
17.25 + .25(1 - 0) = 17.5
17.5 + .25(1 .... 2) = 17.25
17.25 + .25(1 - 0) = 17.5
17.5 + .25(1 - 0) = 17.75
17.75- + .25(1 -2) = 17.5
17.5 + .25(1 -2) = 17.25
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1
1
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Response
(Zn)

1. 0
2 6
3 12
4 18
5 17.5
6 17
7 16.5
8 16
.9 16.75

10 17.5

11 17.25
12 17
13 16.75
14 17
15 17.25
16 17.5
17 17.25
18 17.5
19 17.75
20 17.50

From trial 1 to 10, accelerated stochastic approximation is used, with Xl = 0
and c = 8. (The successive values of the stimulus are obtained from Eq.
(60), except that cln does not vary in the course of repetitions of a response.)
From trial 11 on, method 6.2.2.2 is used, with a = .51.75. The values of
Y.7Sare obtained by random sampling with Prob {Y.7S = I}= a. The
midrun es·timate of bs would be obtained by averaging 17, 16.75, 17.5;
and so on.

Stim-
Trial ulus
Number Value



PSYCHOPHYSICAL MEASUREMENT AND THEORY

no ambiguity can arise, a Weber fraction. Notice that since, in
a case where Para) = .5 for all intensities a, we have by definition

whenever the left member of this equation is defined.
These few results should suffice, to familiarize the reader

with the notions ofthe definition in Section 7..1.1. Further results
along, these lines can ,be found ,in Falmagne(1982}.

on the, sensitivity function of a' discrimination family.
7.1.6. Theorem. A discrimination family E '=, {PblbE I}

is balanced iffits sensitivity function ~,satisfies

~'lr(a) ,=·,'g(a)' '+,h(1T)

So' far, no,assumptions were made regarding the. structure of
the set 1 ofbackgrounds, of a psychometric 'family {Pala El}.
Suchproperties as parallelism or subtractivitycouldbe discussed
while assumingthat the elements aE lwerejust labels for the
psychometric functions Pa in the family. Ofparticularimportance
in this, section is the situation in which 1 is actually a (subset
of a), vector space' over the real numbers. For example, a E I
may denote a spectral,density function 'or, in the,case of a dis
crimination family (see Section 5.5.1), a real number repre-

7.2,. linear Psychometric Families-Weber's law

by this theorem, all the results obtained in Section 5 regarding
psychometric functions could be translated in terms ofsensitivity
functions or, when they are defined, in terms ofWeber functions.
Following are a fewadditiona!examples, which may be skipped
at first reading without muchloss of continuity. (We omit the
proofs of these results, which are easy to obtain.)

7.1.4. Theorem. Let S = {PalaE I} bea psychometric
family, with sensitivity function ~.Then the following two con..
ditionsare equivalent:

1. Eis a parallel family in the sense of the definition in Section
5.5.1.

2. ~1T(a) -~1T'(a) = ~'lr(b} - E1T,(b), for all1T,1T',and a,b such
that both members are, defined.

This result follows readily from the definitions, as well as from
the theorem,in Section 5.4.2.

7.1.5. Theorem. If S = {PalaEI}isan anchored psy
ch~metric family (in the sense of the definition in Secti?n 5.4.3)
with a sensitivity function ~, then E is parallel iff there exist
tWQfunctiqns,g~",.h"with"", strictly iIlcreas~ng and '"continuous,
suchthat the' equation '

(66)

(65)Pa(x) =Flu(x)-g(a)]

Ll1T(a) = E1T(a)_ 1
a a '

in whichuandF are continuousandstrictlyincreasing functions.
The psychophysicist using such a model typically interprets
the functions u, g as "representing arescaling of the physical
variables by the sensory mechanisms. Assuch, these functions'
are far moreimportant thanthe functionF, which, it is feared,
may be <plagued",by nuisance· variables "ofthe'"cognitive''','tyPe
(responsebias"motivation, etc.}.

Let us transform Eq.,(65)in terms ofthe sensitivity function
~.Settingpa(x}==1TandF~l = h,we obtain ~1T{a) =x,which
together with Eq.,(65}yields

Indeed,'we have shown that,Eq.'(65) implies Eq.(66), and
itisclear that the reverse implication also holds. As suggested

1·- ~

Consequently, ifthevariable1T inEq. (66) iskept constant,
theresulting"equationinonevariableonlyinvolves,thefunctions
u,g,whichfor reasonS given are the interesting ones.

Suchisthe strategy ofthe psychophysicist. It reliesheavily
ona fewass;u.mptiop-s.Oneis, that the sensitivity fun~tions~1T

can be determ.in~dempirically with enough accuracy. A number
of methods designed for this purpose have been discussed, in
the preceding,section. Another, more critical assumption is that
the rescaling functions u,gin Eqs. (65) and (66) are unaffected
bYIluisance{i.e~, nonsensory) variables. As far as we know,
there is .1ittle experimental' evidence suggesting that this as
sumption maybe invalid.

A~a by-product of our discussion, we have, in an:y-event,
the following theorem.

7.1.3. ,Theorem. 'Let~' be' the sensitivity"'function of a
psychometric familyE== {PblbE I}. Then S is subtractive
(that is,Eq. (65) holds) iffthere exist three functions h, u, and
g,withuand h strictly increasing and continuous, such that

any propertyofa Weber fraction will be almost exactly reflected
in the corresponding function',~1T(a)la.

7.1.2. ,Remark. ,The change of notation, 'fromp; l(1T) 'to
E1l'(a),symbolizes an important shift of focus in our analysis.
The quantitY'1T, 'the probability of the, response, cea,ses to be
the variable of interest and becomes the parameter. Typically,
at most a couple ofvalues of 1T are considered in experimental
plots of Weber functions or sensitivity functions. By contrast,
the effect on Ll1T(a) or ~1T(a) of the variable a is investigated in
minute detail. This is in line with a long tradition in psycho..
physical research in which the sensory scales uncovered by the
analysis of the data are deemed ,?fcentral importance. This
point is critical and should be discussed in some 'detail. -

, ,SuJ?P()~e,forexample" thatsomeps:ych0J:Il~tric family A,~., ,
{Pal issubtractive, in the sense ofthe definition in SectIon 5.5.1."
This means that the following representation holds for the re
sponseprobabilities:

.....

(65) holds whenever ~1r(a) is defined. In particular, g is defined on
I.

1-29

(67) .~1r(a)= g(a) + h('iT)

This implies that in the situation described in the theorem,
the Weber functions a - 1l1r(a) do not vary with a since

for all background a. As suggested by a comparison ofSections ...
7.1.4 and 7.1.5, the functionsg, h do not necessarily exist if the
assumption of anchoring is removed.

We consider next the effect ofthe balancing condition (from
the definition in Section 5.5.1)

by this theorem, all the results obtained in Section 5 regarding
psychometric functions could be translated in terms ofsensitivity
functions or, when they are defined, in terms ofWeber functions.
Following are a few additional examples, which may be skipped
at first reading without much loss of continuity. (We omit the
proofs of these results, which are easy to obtain.)

7.1.4. Theorem. Let E = {Po.la E I} be a psychometric
family, with sensitivity function ~. Then the following two con
ditions are equivalent:

1. E is a parallel family in the sense of the definition in Section
5.5.1.

2. ~1r(a) - ~1r'(a) = ~1r(b) - ~1r,(b), for all '11', 'iT', and a, b such
that both members are defined.

This result follows readily from the definitions, as well as from
the theorem in Section 5.4.2.

7.1.5. Theorem. If E = {Po.la E I} is an anchored psy
chometric family (in the sense of the definition in Section 5.4.3)
with a sensitivity function ~, then E is parallel iff there exist
two functionsg,.h with h. strictly incl'easing and continuous,
such that the equation .

Pa(X) = F[u(x) - g(a)] ,

in which u andF are continuous and strictly increasing functions.
The psychophysicist using such a model typically interprets
the functions u, g as representing a rescaling of the physical
variables by the sensory mechanisms. As such, these functions
are far more important than the function F, which, it is feared,
may be. plagued by nuisance variables of the "cognitive" tyPe
(response bias, motivation, etc.).

Let us transform Eq. (65) in terms ofthe sensitivity function
~.Settingpo.(x)='iTand F -1 = h, we obtain ~1r(a) = x, which
together withEq. .(65) yields

A1r(a) = ~1r(a) _ 1
a a '

no ambiguity can arise, a Weber fraction. Notice that since, in
a case where Po.(a) = .5 for all intensities a, we have by definition

any property ofa Weber fraction will be almost exactly reflected
in the corresponding function ~1r(a)/a.

7.1.2. Remark. The change of notation, from Po.~ l(rr) to
~1r(a), symbolizes an important shift of focus in our analysis.
The quantity 'iT, the probability of the response, ceases to be
the variable of interest and becomes the parameter. Typically,
at most a couple of values of 'iT are considered in experimental
plots of Weber functions or sensitivity functions. By contrast,
the effect on A1r(a) or ~1r(a) of the variable a is investigated in
minute detail. This is in line with a long tradition in psycho
physical research in which the sensory scales uncovered by the
analysis of the data are deemed of central importance. This
point is critical and should be discussed in some detail.

Suppos(!,for example, that some psych0tnetric fatnily 8 =
{Pa} is subtractive, in the sense ofthe definition in Section 5.5.1.
This means that the following representationholds for the re
sponse probabilities:
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(66) Po.(b) + Pb(a} = 1,

Consequently, ifthe variable '11' in Eq. (66) is kept constant,
the resulting equation in one variable only involves the functions
u, g, which for reasons given are the interesting ones.

Such isthe strategy ofthe psychophysicist. It relies heavily
on a few assumptions. One is that the sensitivity functions ~1r

.can be detenninlild empirically with enough accuracy. A number
of methods designed for this purpose have been discussed in
the precedingsection. Another, more critical assumption is that
the rescaling functions u, g in Eqs. (65) and (66) are unaffected
by nuisance (i.e., nonsensory) variables. As far as we know,
there is little experimental evidence suggesting that this as
sumption may be invalid.

As a by-product of our discussion, we have, in an)" event,
the following theorem.

7.1.3. Theorem. Let ~ be the sensitivity function of a
psychometric family E = {Pbl bEl}. Then E is subtractive
(that is, Eq. (65) holds) iffthere exist three functions h, u, and
g, with u and h strictly increasing and continuous, such that

. ~1r(a) = u- 1[g(a) + h('11')] .

Indeed, we have shown that Eq. (65) implies Eq. (66), and
it is clear that the reverse implication also holds. As suggested

on the sensitivity function of a discrimination family.
7.1.6. Theorem. A discrimination family E = {Pblb El}

is balanced iff its sensitivity function ~ satisfies

whenever the left member of this equation is defined.
These few results should suffice to familiarize the reader

with the notions ofthe. definition in Section 7.1.1. Further results
along these lines can be found in Falmagne(1982).

7.2. Linear Psychometric Families-Weber's law

So far, no assumptions were made regarding the. structure of
the set I of backgrounds of a psychometric family {Po.la El}.
Such properties as parallelism or subtractivity could be discussed
while assuming that the elements a EI were just labels for the
psychometric functions Po. in the family. Ofparticular importance
in this section is the situation in which I is actually a (subset
of a) vector space over the real numbers. For example, a E I
may denote a spectral density function or, in the case of a dis
crimination family (see Section 5.5.1), a real number repre-

-
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$Csenting a physical intensity. What,is critical here is,that the
multiplication

Aa

of a real vector a by a positive real number A makes sense.
From an empirical standpoint, the multiplication Aa means
that the intensity of the background has been multiplied by
the factor A. (In the case ofa spectral density function, a denotes
a real-valued function and Aa symbolizes the fact that all the
intensities ofthe background have been multiplied by the same
constant A.) When such a situation arises, properties can be
investigated in the data, which are both strong and of central
interest for psychophysical'research.'"

7.2.1. Defi'ilition., A psychometric family S = {Pbl'b E I}
is called ,linear iff the index set I is a (subset of a) vector space
over the real numbers.

A special case of a linear psychometric family arises when
the indices of the psychometric function denote physical inten
sities. This case was referred to ,in Section 5.5.1 as a discrimi~

nation family.
We recall that in a psychometric'family E = {Pblb El},

the notation Cb', for any b EI,<refers to the domain of the psy
chometric function Pb, which 'is an open interval (see Section
5.2.1). The psychometric family E will be called positive iffeach
'interval Cb is· positive. (This is a typical case for physical in
tensi.ties~)Most results, in the remainder ofthis sectionwill.be
obtained in the' framework of linear", positive psychometric
families.

The definition, in Section 7.2.2 will also be useful in con~

nection with Weber's law and more general forms of this law.
7.2.2. Definition." Let'V be a 'vector space over the real

numbers. Let T be a subset ofV. Let f be a real-valued function
on T. Then f is said to be homogeneous ofdegree (3 (on T) iff for
any real number A =;': O,whenever a, Aa E T, then

7~2.3. Definition. A linear, positive psychometric family
S = {Pblb El} satisfies Weber's law iff
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adopting Eq. (68) as the defining condition ofWeber's law, rather
than the more customary form

One is that Eq. (.68) is more general; this equation makes sense
in situations in which the Weber functions are not always defined.
(The Weber function ~1T w~s defined in Section 7.1.1 from the
sensitivity function ~.5. There may be cases in which ~.5 is not
obtainable.) Another is to stress the fact that in ,view of the
binomial variability of the relative frequencies providing the
basic data for Eq. (68),it is more readily amenable to statistical
testing. In practice, however, evaluations of Weber's law are
mostly based on investigating the empirical behavior of the
Weber functions.

Some strengthening ofour conditions will be useful for this
and later results.

7.2.5. Definition. A linear psychometric family E =
{Pb Ib'E '/}is called solvable ifffor all a E I arid all xE Ca, the

. eq~a~~~n,

PAa(Jl.X) = Pa(x)

is solvable in Jl. for every A and is solvable in A for every Jl.. We
say that E has a Weberian domain iff for any A > 0, PAa('Ax) is
defined whenever Pa(X) is defined.

Thesestrengthenings ofour assumptions will occasionally
be convenient but are hardly innocuous. The reader is invited
to reflect· on the empirical impact of these two conditions. Both
ofthem',practically entail that neither'ofthe· two' physical do
mains spanned by the function P is bounded" obviollsly not a
realistic" assumption. 'Neither ofthese conditions .' is ess'ential,
but they certainly rend~r,our developments much easier., In
any event, they will be used sparingly in the sequel.

In the theorem in Section 7.2.6, a central result of this
section, we consider an important generalization of Weber's
law, symbolized by the equation

whenever both members of this equation are defined, with°<A <co.
3. There 'exists a function F and a ,constant (3 > 0 such tha.t

Pa(X) = F(a/xl/~) .
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"senting a physical intensity. What is critical here is that the
multiplication

adopting Eq. (68) as the defining condition ofWeber's law, rather
than the more customary form

Aa

((}-..a) = Ar.{(a) .

7.2.3. Definition. A linear, positive psychometric family
S = {Pbl b E I} satisfies Weber's law iff

is solvable in IJ. for every Aand is solvable in A for every IJ.. We
say that S has a Weberian domain iff for any A > 0, P'Aa(Ax) is
defined whenever Pa(x) is defined.

These strengthenings ofour assumptions will occasionally
be convenient but are hardly inno<;uous. The reader is invited
to reflect on the empirical impact of these two conditions. Both
of.them practically entail that neither of the two physical do
mains spanned by the function P is bounded, obviously not a
realistic assumption. ,Neither of these conditions 'is essential,
but they certainly rendl;lr. our developments much easier. In
any event, they will be used sparingly in the sequel.

In the theorem in Section 7.2.6, a central result of this
section, we consider an important.· generalization of Weber's
law, symbolized by the equation

2. There isa constant 13 > °such that

p'Aa (Ar.x) = Pa (x) ,

whenever both members of this equation are defined, with°< 1..< co.
3. There exists a function F and a constant 13 > °such that

and we establish the. equivalence between this equation and
some constraints On sensitivity function and Weber function
data. We show that our de,finition ofWe,ber's law is equivalent _
to the traditional one. The interpretation of the exponent 13 is
discussed in Section 7.3.1.

7.2'~',Theorem.LetS= {Pbl bE I} be a linear, positive,
solvl'lblepsy<;hometricfamilY,with sensitivity function ~.Then

the following three cOliditions are equivalent:

Ev~rysensiti'vity function ~1f is, homogeneous of. degree
13>0:

P'Aa(IJ.X) = Pa(X)

One is that Eq. (68) is more general; this equation makes sense
in situations in which the Weber functions are not always defined.
(The Weber function ..:l1f w~s defined in Section 7.1.1 from the
sensitivity function ~.5. There may be cases in which ~.5 is not
obtainable.) Another is to stress the fact that in view of the
binomial variability of the relative frequencies providing the
basic data for Eq. (68), it is more readily amenable to statistical
testing. In practice, however, evaluations of Weber's law are
mostly based on investigating the empirical behavior of the
Weber functions.

Some strengthening ofour conditions will be useful for this
and later results.

7.2.5. Definition. A linear psychometric family S =
{pblbEl} is called solvable ifffor all a EI arid all x E Ca, the
equation

-
(68)Pa(X) = P'Aa(Ax)

whenever both members of Eq. (68) are defined, with°< k<
co. In other words, S satisfies Weber's law iffthe functionp,
(a,x) ~Pa(x) is homogeneous ofdegree 0. Occasionally, Eq. (68)
will be referred to as Weber's law.

7.2.4. Remark. In two respects, this definition ofWeber's
law departs from tradition. Weber's law is usu~llY stated in the
special case in which the backgrounds are real numbers. For
example, in the context of auditory detection of a stimulus

noise, Weber's law would imply that the probability
ofa correct detection would not vary when both the stimulus
and the noise are increased in intensity by the same number
of decibels. We believe, however, that this prediction would
apply for a fairly large.setofspectral density functions specifying
the noise. Such an assumption is made explicit in Section 7.2.3.
Another difference is that Weber's law is most often expressed
in terms of the Weber functions ..:l1f' The equivalence is made
clear in the theorem in Section 7.2.6. We have two reasons for

of a real vector a by a positive real number A makes sense.
From an empirical standpoint, the multiplication Aa means
that the intensity of the background has been multiplied by
the factor A. (In the case ofa spectral density function, a denotes
a real-valued function and Aa symbolizes the fact that all the
intensities ofthe background have been multiplied by the same
constant A.) When such a situation arises, properties can be
investigated in the data, which are both strong and of central
interest for psychophysical research. '

7.2.1. Definition, A psychometric family S = {Pbfb E I}
is called linear iff the index set I is a (subset of a) vector space
over the real numbers.

A special case of a linear psychometric family arises when
the indices of the psychometric function denote physical inten
sities. This case was referred to in Section 5.5.1 as a discrimi
nation family.

We recall that in a psychometric family S = {Pblb E I},
the notation Cb, for any b EI,refers to the domain of the psy
chometric function Pb, which is an open interval (see Section
5.2.1). The psychometric family S will be called positive iffeach
interval Cb is positive. (This is a typical case for physical in
tens~ties.) Most results in the remainder of this section will ,be
obtained in the framework of linear, positive psychometric
families.

The definition in Section .7.2.2 will also be useful in con~

nection with Weber's law and more general forms of this law.
7.2.2. Definition. Let V be a vector space over the real

numbers. Let T be a subset ofV. Let{be a real-valued function
on T. Then { is said to be homogeneous ofdegree f3 (on T) iff for
any real number A =F 0, whenever a, Aa E T, then



F[e-(1og x- log a)] ,F(a!x)

Pa(b)+Pb(a) = 1 ,

Pa(X) =G(log x- log a} ,

Pa(X)

Examination of the Data

As an empirical prediction, Weber's law holds reasonably well
for sensory continua such as loudness discrimination ofGaussian
noises, loudness discrimination of pure tones, lifted weights,
and visualbrightness. As mentioned· in'Section 7.3, the analysis
ofthe data is sometimes based on the just-noticeable-difference

7.4.

withG(s) = F(e- S
), a strictly increasing,continuous function.

Equation (71) has sometimes been given the interpretation that
"the sensation growsjas the logarithm of the excitation," a
statement which has beennamed~';Fechner'slaw. Such inter
pretation has been at the centerofalong contrqversy and should,
not be di~missedor accepted casually. It relies' in part on som~
e!Upiric~levidence, Weber's law. (How well Weber's lawis sup~

ported by· the data is. considered in .' Section' 7.4.) It also relies
on the somewhat arbitrary choice ofa particular mathematical
representation ofsuch data, namely Eq. (71). Finally, it involves
using a philosophically charged labelsuch as "sensation." Each
ofthese factors has contributedits sharetothe polemicalaspects
of~he debate, a brief account of which can be found in a later
section ofthis chapter (see Section lO.9).

which implies it, results from a symmetry of the experimental
paradigIn which·is not necessarily ofa sensory nature. We'shall
go back to this point later in this section.

A.specialcase ofthe th'eorem inSection 7.2.6·is ofhistorical
interest. If Weber's law holds, then ~ = 1 inEq. (70) and by
virtue ofCondition (3) in Section 7"2.6, the choice probabilities
take the form

which together withEq. (70l implies

A~~'n'(a) = A~[i1'Tr(a}+ a] - Aa ,

Since a > 0, we mustconcludethat·J3·= 1. Thus in the' case of
a discrimination family satisfying Pa(a) .= .5, the assumption
that the Weber functions are homogeneous of degree ~ implies
in fact Weber's law.

ThecI'UXof thearguIne~thereis.that the condition

(70)

(69)

Pa{X). ,

Remarks

We shall see that the homogeneity equation

Ifthe' Weber function is·defined, ·it follows by substitution· that
the sensitivity functions are homogeneous of degree ~ >0 iir yielding
the Weberfunctions ·•. li'n'i also satisfy this condition. Finally, the
equivalencebetween>W:eber'slawand Eq. (69) is obtainedfrom
the case (3 = 1 ofthe equivalence between (1) and (2). •

7.3.

."'" ,." "._,' '.

with the functionFdefined byF(sY =PKll~s(K). In fact, (2}and
(3) are equivalent since obviotlsly

F(alxl/~)=FIAa/(A~x)Y~l.

since S is solvable, and 'TT =".' follows by the strlctmonotonicity
of ~'1T(Aa) in the variable1T.
(2) implies (3) Setting1\~x = K, a constant, we obtain 1\==
(Klx)l/~, yielding

Pa(x) =PAa(1\J'X) = P(Klx)l/~a(K):=F(alxl/~),

that is, the Weber functions ~1i are homogeneous ofdegree 1.

Proof (1) implies (2). Suppose that Pa(x) =.'Tr, PXa(A~X) =
'TT'. Then~'n'(a)= .X,' and successively
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Moreover, ifE is anchored at.5, then each condition 1-3 is But we have also
equivalent to the assumptions that any Weber function ~'Tr js
homogeneous of degree .~. > O. In particular, Weber's law holds ~'n'(Aa) ~'n'(Aa) -~.5(Na)· =A~t_(a) - Aa
iff ~n

plays an important role in the analysis ofdata, as asubstitute
to Weber's law. (This equation is often referred to as the near
miss to Weber's Law, cf. McGill & Goldberg, 1968.) The inter
pretation ofthe exponent f3 in this equationID.ustbeconsidered
carefully. There.seems.to be a tendency inthe psychophysical
community to take this exponent as representing a critical aspect
ofthe neural coding ofphysical intensity. For a number ofrea
sons, this position is open to challenge. One difficulty is indicated
below. Suppose that Eis a discrimination family satisfyingthis
condition, together with~.5(al = a,. forallintensities. a.This
implies that the Weber functions are also homogeneous ofdegree
(3:

.(3). implies (1). .InviewofJheequivalencebetween(2J·and(3),
this is clearsince,.with

-------------------_ .-...---------- -------------~--~-~. --~.- _ ,_ , _--_._.~--------------------....
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that is, the Weber functions Ll1T are homogeneous of degree 1.

Proof (1) implies (2). Suppose that Pa(x) =. 'll', PXa(A13X) =
'll','. Then ~1T(a) = x, and successively

a ,

Ll1T(Aa) = ~1T(Xa) - ~,5(Na) = AI3~1T(a) - Aa

A13[Ll1T(a) + a] -

Pa(b) + Pb(a) = 1 ,

Pa(a) = .5

Since a > 0, we must conclude that 13 = 1. Thus in the case of
a discrimination family satisfying Pa(a) = .5, the assumption
that the Weber functions are homogeneous of degree 13 implies
in fact Weber's law.

ThElcrux of the argUIIlenthereis that the condition

or the more general balance condition

a(A13 - A) = 0 .

1-31

that is,

But we have also

which together with Eq. (70) implies

A13Ll1T(a) = A13[Ll1T(a) + a] - Aa ,

(69)~(Aa) = A Ll1T(a) ;

with the function F defined by F(s) = PKlIl3s(K). In fact, (2) and
(3) are equivalent since obviously

F(a!xl/~) '=F[AaI(Al3x)lf~r.

since S is solvable, and 'll' = 'll" follows by the strict monotonicity
of ~1t(Aa) in the variable 'll'.

(2) implies (3) Setting A13X = K, a constant, we obtain 11.=
(K!x)l/~, yielding

Pa(x) = PXa{A13X) = p(Klx)ll~a(K) =F(a!xl/~) ,

Moreover, if S is anchored at .5, then each condition 1-3 is
equivalent to the assumptions that any Weber function Ll1T ,Is
homogeneous of degree 13 > O. In particular, Weber's law holds
iff

we have

(71)Pa(X) == G(log x - log a) ,

yielding

Pa(X) = F(a!x) = F[e-(log x - log a)] ,

As an empirical prediction, Weber's law holds reasonably well
for sensory continua such as loudness discrimination ofGaussian
noises, loudness discrimination of pure tones, lifted weights,
and visual brightness. As mentioned in Section 7.3, the analysis
of the data is sometimes based on the just-noticeable-difference

7.4. Examination of the Data

which implies it, results from a symmetry of the experimental
paradigm which is not necessarily ofa sensory nature. We shall
go back to this point later in this section.

A special case ofthe theoremin Section 7.2.6 is ofhistorical
interest. If Weber's law holds, then 13 = 1 in Eq. (70) and by
virtue of Condition (3) in Section 7.2.6, the choice probabilities
take the form

with G(s) = F(e- S
), a strictly increasing, continuous function.

Equation (71) has sometimes been given the interpretation that
"the sensation grows ,as the logarithm of the excitation," a
statement which has been named;Pechner's law. Such inter
pretation has been at the center of a long contrQversy and should
not be dismissedor accepted casually. It relies in part on som~
empirical evidence, Weber's law. (How well Weber's law is sup
ported by the data is considered in Section 7.4.) It also relies
on the somewhat arbitrary choice ofa particular mathematical
representation of such data, namely Eq. (71). Finally, it involves
using a philosophically charged label such as "sensation." Each
of these factors has contributed its share to the polemical aspects
of the debate, a brief account of which can be found in a later
section of this chapter (see Section 10.9).

(70)

Pa(X) ,

(3) implies (1). In view ofthe equivalence between (2) and (3),
this is clear since,.with

If the Weber function is defined, it follows by substitution that
the sensitivity functions are homogeneous of degree 13 > 0 iff
the Weber functions ~ialso satisfy this condition. Finally, the
equivalence between W:eber's law and Eq. (69) is obtained from
the case 13 == 1 of the equivalence between (1) and (2). •

We shall see that the homogeneity equation

7.3. Remarks

plays an important role in the analysis ofdata, as a substitute
to Weber's law. (This equation is often referred to as the near
miss to Weber's Law, cf. McGill & Goldberg, 1968.) The inter
pretation ofthe exponent 13 in this equation must be considered
carefully. There seems to be a tendency in the psychophysical
community to take this exponent as representing a critical aspect
of the neural coding ofphysical intensity. For a number of rea
sons, this position is open to challenge. One difficulty is indicated
below. Suppose that S is a discrimination family satisfying this
condition, together with ~.5(a) = a, for all intensities a.This
implies that the Weber functions are also homogeneous ofdegree
13:
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In fact, for audition and smell, it never increases. Finally, a
conjecture. which is validated by the data for all five continua
in Figure 1.14 is that the Weber fraction is "convex" (i.e., it
never "curves downward"). A precise definition ofthe convexity
ofa function is given in the definition in Section 7.4.1. The
reader should,· remember these 'aspects of the· data, which will
lead to a theoretic;;!l analysis in Section 7.5.

The initial' decrease 'of the Weber' fraction is sometimes
attributed to an absolute threshold ofperception, while the late
rise of the fraction in some cases is attributed to the sensory
mechanisms reaching the limit of their operational range.
However legitimate such interpretations might be, they do not
necessarily justify an analysis ofan empirical Weber fraction
into fragments, each requiring a separate model. In this section,
only models attempting a comprehensive description of the data
are considered.

7.4.1. Definition. Letfbe a real-valuedfunction defined
()n a ~~~.1interYa.l(s,t).Thenlis called convex iff

whenever-s-<x< t, s <y;<t; and 0< A< 1. The function {is
strictly convex iffthe above inequality is strict. If-fis convex
(respectively, strictly convex), thenfissaid to be concave (re..
spectively, strictly concave).

Any linear functionis both convex and concave. Examples
. of strictly convex functions are x ~ eX, x ~ x2 , for -00 <x<

00. The:following results are easy consequences ofthe definition:
any convex function is continuous; ifgis an increasing, convex
function and (is convex,.' then the.composition s Ho g[ f(s)] is
conveJf{in particular,ef is convex, in fact, strictly convex); if
the second derivative {"of{exists, then (is convex ifff" ~ o.
A geometrical interpretation.ofconvexityis that any segment
of a straight ·.line joining two points ofthe graph of a· convex
function flies above or on the graph of f(see Figure 1.15).

It is clear that the Weber fractions depicted in Figure 1.14
arecQnve~in~1+~ sense ofthe.den.nition in Sect~on7.3.1. A case,
can be made th,at thesefunctionsare,.actually strictly convex.

(72)jnd(a)/a

(dec ibel s)

Figure 1.14. '. Weberfractiondata",forvarious sensory continua. The abscissa is in decibels, sensation
leveLTheWeber fractions haveheennorm~Hzedso as to be unity atthreshold.(FromR~ D.luce,R.R.
Bush, &E.Gatanter (Eds.),J-Iandbook ofmathematical psychology. Copyright 1963 byJohnWiley&
Sons,lnc. Reprinted with permission.)

remainsconstant, while a varies on a chos~n subset ofthephys
ical scale. (Thus a takes values in the positive reals.) We have
elected to base our developments on the sensitivity function,
rather than on the jnd function.' For,yarious reasons, which the
reader will discover gradually, the sensitivity function is the
appropriate notion to use as·the cornerstone ofthe theorY. Notice
in this connection that Eq. (72).is·constantifthe functions

are~onstant.More generally,theJ9-d funcFion is~om()geneous .
of degree ~ if the sensitivity functions ~11' are homogeneous of
degree (3•. It is clear thatthe%reverse implication does notnec
essarilyhold.Any one ofthe psychophysical methods discussed
in Section 6 can be employed for the empirical determination
of the sensitivity .function. Even though these methods differ
drastically from an experimentalviewpoint,many believe that
th~ overallpattern ofempiricalresults is not seriously affected
by which method has been used. This opinionis not universal,
however, and we shall be cautious in this respect. (Luceand
Green,1974a, for example, analyze the data of six stud~esof

the Weber fraction'~(a)la for tone .intensities, with considerable
discrepancy in· the'. results.)

The .experimental····.evidence ···favoring Weber's law' is'ex
em.plified in Figure 1.14. For some sensory continua, the Weber
fraction A1T(a)la, with a ERe+(theset ofpositive real numbers),
remains indeed constant overa substantial portion ofthe domain
(2-31og units, for audition and vision), thus supporting Weber's
law. lA more comprehensiv~des~riptionofthedatawoulde~

phasizethe fact' that the Weber fr~ction is initially decreasing.

a .H>~1T(a)la

(jnd) function, '. which can be computed from the' sensitivity'
functions by the equation

The experimenter checks whether the ratio

jnd(a) = [E.75(a) = ~.25{a)]/2 .
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a >-+ ~lI'(a)la

jnd(a) = [b5(a) = b5(a)]/2

(jnd) function, which can be computed from the sensitivity
functions by the equation

remains constant, while a varies on a chosen subset ofthe phys
ical scale. (Thus a takes values in the positive reals.) We have
elected to base our developments on the sensitivity function,
rather than on the jnd function. For various reasons, which the
reader will discover gradually, the sensitivity function is the
appropriate notion to use as the cornerstone ofthe theory. Notice
in this connection that Eq. (72) is constant if the functions

In fact, for audition and smell, it never increases. Finally, a
conjecture which is validated by the data for all five continua
in Figure 1.14 is that the Weber fraction is "convex" (i.e., it
never "curves downward"). A precise definition ofthe convexity
of a function is given in the definition in Section 7.4.1. The
reader should remember these·aspects of the data, which will
lead to a theoretic~l analysis in Section 7.5.

The initial decrease of the Weber fraction is sometimes
attributed to an absolute threshold ofperception, while the late
rise of the fraction in some cases is attributed to the sensory
mechanisms reaching the limit of their operational range.
However legitimate such interpretations might be, they do not
necessarily justify an analysis of an empirical Weber fraction
into fragments, each requiring a separate model. In this section,
only models attempting a comprehensive description of the data
are considered.

7.4.1. Definition. Letfbe a real-valued function defined
on a real interval (s,t). Then {is called convex iff

(72)jnd(a)la

The experimenter checks whether the ratio

are constant. More generally, thejnd. function is homogeneous
of degree ~ if the sensitivity functions ~11' are homogeneous of
degree ~. It is clear that the,reverse implication does not nec
essarily hold. Anyone ofthe psychophysical methods discussed
in Section 6 can be employed for the empirical determination
of the sensitivity function. Even though these methods differ
drastically from an experimental viewpoint, many believe that
the overall pattern ofempirical results is not seriously affected
by which method has been used. This opinion is not universal,
however, and we. shall be cautious in this respect. (Luce and
Green, 1974a, for example, analyze the data of six studies of
the Weber fractionA-rr(a)la for tone intensities, with considerable
discrepancy in the results.)

The experimental evidence favoring Weber's law is· ex
emplified in Figure 1.14. For some sensory continua, the Weber
fraction A-rr(a)/a, with a ERe+ (the set ofpositive real numbers),
remains indeed constant over a substantial portion ofthe domain
(2-3 log units, for audition and vision), thus supporting Weber's
law..A more comprehensive des(:ription of the data would em
phasize the fact that the Weber fraction is initially decreasing.

flXx + (1 -,-A.)y] .".; Xf(x) + (1- X)f(y)

whenevers <x < t, 8 < Y <t, and 0 < X< 1. The function {is
strictly convex iffthe above inequality is strict. If -{is convex
(respectively, strictly convex), then fis said to be concave (re
spectively, strictly concave).

Any linear function is both convex and concave. Examples
of strictly convex functions are x _ eX, x - :x?-, for -00 < x <
00. Thefollowing results ate easy consequences ofthe definition:
any convex function is continuous; ifg is an increasing, convex
function and {is convex, then the composition s ~ g[ {Cs)] is
convex (in particular, er is convex, in fact, strictly convex); if
the second derivative l" of fexists, then fis convex iff l" ;;,: O.
A geometrical interpretation,of convexity is that any segment
of a straight line joining two points of the graph of a convex
function {lies above or on the graph of{(see Figure 1.15).

It is clear that the Weber fractions depicted in FigUre 1.14
are convex in t}fesense ofthe definition in Sect~on7.3.1. A case
can be made that these functions are actually strictly convex.
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Figure 1.14. Weber fraction data, for various sensory continua. The abscissa is in decibels,sensation
level. The Weber fractions have been normalized so as to be unity at threshold. (From R. D. luce, R. R.
Bush i & E. Galanter (Eds.), Handbook of mathematical psychology. Copyright 1963 by John Wiley &
Sons, Inc. Reprinted with permission.)
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must be .decreasing. It cannot be assumed, .however, that
near-miss to Weber's law holds generallY,across experimental
paradigms and sensory continua. For one thing, this law would
failto explain most ofthe data displayed in Figure 1.13. For
another, it was pointed out earlier (see Section 7.3) thatinthe,
case .·where{3· '#:. 1, .Eqs. (73) and (74) necessarily imply the
existenceofsomeasynunetry in the'paradigm: the psychometric, '
functions cannot satisfy the condition,Pa(a) = .5. This condition,
however,. is sometimes inherent to the experimental paradigIll
(e.g., in a situation in visual psychophysics, where the stimuli
to be compared are two spots of light symmetrically positioned

This prediction, which is often referred to as the near-miss·to
Weber's law (McGill & Goldberg, 1968), has' been supported
experimentally in some situations (Jesteadt, Wier, & Green,
1977; see Figure 1.16). Notice that the data in Figure 1.16
require the'. exponent {3'in Eq. (74) to be .. smaller·than 1; the
Weber fraction

for 0 < ~< 00 and with{3 > 0, a constant independent of 1T.

When the Weber·function.is defined, this is equivalent to
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Figure1.16. .Values of the logarithm of the Weber fraction, averaged across subjects and replications,
for various intensities and frequencies of pure tones. The abscissa is indecibels, sensation leveL The
vertical bars indicate :!: 3standarderrors. Abarisomitted when its size is exceeded by that of the symbol.
The same linear function has been fitted to the eight sets ofdata. (FromW. Jesteadt,C.C. Wier, & D. M.
Green, Intensity discrimination as afunction of frequency, Journal of the Acoustical Society ofAmerica,
1977,61. Reprinted with permission.)

7.5. AlterhativestoWeber's •. law

PSYCHOPHYSICALMEASUREMENTAND.THEORY

One generalization'ofWeber's law has been encountered earlier
which, .in terms of the sensitivity function,is·. symbolized by
the equation

x ~x + (1- ~)y Y

Figure 1.15. Geometrical interpretation of the convexity of a real valued
function f: [AX+(1 ..... A)Y] ~ Af(x) + (l -A)f(y).

The failures ofWebe~'slaw'illustratedin Figure 1.14 prompted
psychophysicists to'·propose various alternatives.
The failures ofWeber's law illustrated in Figure 1.14 prompted
psychophysicists to propose various alternatives.

(74)Jl.rr(}.,a) = }.,l'l6.1T(a) .
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must be decreasing. It cannot be assumed, however, that the
near-miss to Weber's law holds generally, across experimental
paradigms and sensory continua. For one thing, this law would
fail to explain most of the data displayed in Figure 1.13. For
another, it was pointed out earlier {see Section 7.3) that in the
case where 13 =F 1, Eqs. (73) and (74) necessarily imply the
existence ofsome asynunetry in the paradigm: the psychometric,
functions cannot satisfy the condition, Pa(a) = .5. This condition,
however, is sometimes inherent to the experimentalparadigm
(e.g., in a situation in visual psychophysics, where the stimuli
to be compared are two spots of light symmetrically positioned

This prediction, which is often referred to as the near-miss to
Weber's law (McGill & Goldberg, 1968), has been supported
experimentally in some situations (Jesteadt, Wier, & Green,
1977; see Figure 1.16). Notice that the data in Figure 1.16
require the exponent 13 in Eq. (74) to be smaller than 1; the
Weber fraction

for 0 < }., < 00 and with 13 > 0, a constant independent of'lT.
When the Weber function is defined, this is equivalent to
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PSYCHOPHYSICAL MEASUREMENT AND THEORY

One generalizationotWeber's law has been encountered earlier
which, in. terms of the sensitivity function, is symbolized by
the equation

7.5. Alternatives to Weber's Law

x >.x + (1 - >.)y y

Figure 1.15. Geometrical interpretation of the convexity of a real valued
function f: [Ax + (1~ A)Y] :0;; A f(x) + (1 - A)f(y).
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Figure 1.16. Values of the logarithm of the Weber fraction, averaged across subjects and replications,
for various intensities and frequencies of pure tones. The abscissa is in decibels, sensation level. The
vertical bars indicate ± 3 standard errors. A bar is omitted when its size is exceeded by that of the symbol.
The same linear function has been fitted to the eight sets of data. (From W. jesteadt, c.c. Wier, & D. M.
Green, Intensity discrimination as a function of frequency, Journal of the Acoustical Society of Amer;ca,
1977, 61. Reprinted with permission.)



1-34 THEORY AND METHODS

(81)

(80)

K',((a) =a~'

"

withF(ln s)'=G(s). Thus

u(x) = In[x~/(xb +K)] < 0 .

Weber fraction data are compiled, for example, in Boring,
Langfeld,and Weld (1948, p.268) and Holway and Pratt(1936,
p. 337} forvar~oussensory continua. Luce and Green (1974a;
see also ,Green, 1978, p.257) review a number ofexperimental
studiesofthe discrimination ofthe difference in the amplitudes
of a sinusoidal tone. The data are plotted interms ofthe Weber
fraction. See also the Chapters in Sections 11 and III of this
handbook. In a recent monograph, Laming (1983) gave a the
oreticalanalysis ofWeber functions,basedon a large collection
of data. (Unfortunately, this workca.me to our attention in the

'7.~~K~y References

or~quivalently, asa difference model,

Again, such a model iscapable ofaccommodating typical Weber
fraction data (cf. Alpern, Rushton, & Tori, 1970a, 1970b, 1970c).

Other models have been proposed, which differ only'in details
[roIIlgl1eortheother ,of tllosediscusse4 in this section. They
are not reviewed here. ()ur purpose inthis subsection is not to
single ,out one particular mathematical expression as the ap
propriate model for the sensitivity function.' In fact, it is quite
conceivable that ,the choice ofa suitable model (that would
proy~~eagoodfittothe data, from a statisticalviewpointlmay
de~ellclnotonly,on the sensory continuum envisaged but also
on rather ',specinc details of the experimental' paradigm. Ac
cordingly,an effort has 'been made~'by som.epsychophysicists
to focus ,the ,theoretical developments on aspects 'of the data
tha:tmay perhaps be robust to minor changes ofthe experimental
prQcedure (cf. Falmagne,'1977;Iverson, 1983). The results are
too,spec~alizedto be included'here.

and 13, 13/, K, K'> 0, constants. Using simple algebra, we obtain
forth~:response'probabilities. the form

with F = h -1, for the choice probabilities. This model has been
discussed by several authors ,(see, for example, Parker &
Schneider, 1980). It is not consistent with Weber's law. However, "
for, appropriately chosen values of the parameters, it would
predict the main features (monotonicity, convexity) of data such
as that pictured in Figure 1.14.

Thelate increase ofthe Weber fraction is often interpreted
as resulting from a sa.turation ofthe sensory or neuronal mech
anisms. In,turn, this'leads to the postulate that the sensory
scale, for example, the function u in Eq. (65), is bounded. An
example, along these lines is given below. It is' assumed that
the sensitivity functions satisfy the equation

(79)

(78)

(77)

(75)

(76)f3(1T)f3(l '- ''TT) = 1 .

'Pa(X) = F[a(x' - K)-l/~]'

~1T(Aa)

Thusthe Weber fractions are also convex in the ,sameconditioIis,
fact worth noticing in connection with our discussion of the

data displayedin Figure 1.14. It is clear that this model gen
eralizes the near-miss to Weber's ,law.,The .constant K may 'be
interpreted as, a measure of a threshold value.

In the case where Eisa discrimination family, we also

is convex onthe positive real numbers, with a minimum atthe
point

whereK is' a positive 'constant. III the style of the theorem in
Section 7.2.6, thi~is equivalent to the representation

for the choice probabilities (we assume x,'>'K). Provided that
13> 1 and~1T(a) > K, the function

As far asweknow,thiscon~,itionor, even more generally, the
effect ofthe choi~~probabilitY1Tonthe, estimated value of the
exponent 13 inEq. (75) has never been investigated from an
experimental viewpoint. Other substitutes to Weber's law are
ofinterest. As in the case ofthe near-miss to Weber's law, each
of~heexaIll.Plesbelow is a special case of the representation

with respect to a fixation point). It is also possible to ensure
that this ,condition holds by a "normalization" of the data. As
argued in Section 5.7, we are certainly not advocating such
tampering with the data. The fact is, however, that such nor
malizations are fairly, frequent. 'In such cases,' it is clear that
Eq. (74) describes the data only iff3 = 1 (that is, Weber's law
holds) or, possibly, if J3, is a function of 1T. This, however, is not
what is intended by the near-miss to Weber's law, at least as
we understand it.

In anyevent,'the above discussion suggests a'furthergen
eralization of Weber's law, wmch is embodied in the equation

as can be checked without difficulty.
Let th,e sensitivityfunc~ion~of a discriminationJamilybe ,

,defined by the equation

in which f3 is a functionof7r satisfying 13(.5) = 1. (This ensures
Pa(a) =' .5.) The consequences ofthatassumption deserve some
attention. It'can be shown in particular that if the balancing
condition is satisn.ed, then the function 13 ,must satisfy with
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with respect to a fixation point). It is also possible to ensure
that this condition holds by a "normalization" of the data. As
argued in Section 5.7, we are certainly not advocating such
tampering with the data. The fact is, however, that such nor
malizations are fairly frequent. In such cases, it is clear that
Eq. (74) describes the data only if/3 = 1 (that is, Weber's law
holds) or, possibly, if /3 is a function of'lT. This, however, is not
what is intended by the near-miss to Weber's law, at least as
we understand it.

In any event, the above discussion suggests a further gen
eralization of Weber's law, which is embodied in the equation

(75)
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with F = h -1 , for the choice probabilities. This model has been
discussed by several authors (see, for example, Parker &
Schneider, 1980). It is not consistent with Weber's law. However,
for appropriately chosen values of the parameters, it would
predict the main features (monotonicity, convexity) of data such
as that pictured in Figure 1.14.

The late increase of the Weber fraction is often interpreted
as resulting from a saturation of the sensory or neuronal mech
anisms. In turn, this leads to the postulate that the sensory
scale, for example, the function u in Eq. (65), is bounded. An
example along these lines is given below. It is assumed that
the sensitivity functions satisfy the equation

in which /3 is a function of'lT satisfying /3(.5) = 1. (This ensures
Pa(a) =.5.) The consequences of that assumption deserve some
attention. It can be shown in particular that if the balancing
condition is satisfied, then the function /3 must satisfy with

~'lt(a) = K{h('lT){(a)/[1 - h('lT){(a)]}l/~ , (81)

(76) ((a) =al3' + K' ,

As far as we know, this condition or, even more generally, the
effect of the choiql3 probability 'IT on the estimated value of the
exponent /3 in Eq. (75) has never been investigated from an
experimental viewpoint. Other substitutes to Weber's law are
ofinterest. As in the case ofthe near-miss .to Weber's law, each
of the examples below is a special case of the representation

as can be checked without difficulty.
Let the sensitivity function~ofa discriminationfamily be

ilefined by the eqllation

where K is a positive constant. In the style of the theorem in
Section 7.2.6, this is equivalent to the representation

(78)

for the choice probabilities (we assume x> K). Provided that
/3 > 1 and ~'lt(a) > K, the filnction

is convex on the positive real numbers, with a minimum at the
point

Thus the Weber fractions are also convex in the same conditions,
a fact worth noticing in connection with our discussion of the
data displayed in Figure 1.14. It is clear that this model gen
eralizes the near-miss to Weber's law. The constant K may be
interpreted as a measure of a threshold value.

In the case where E is a discrimination family, we also
consider the representation

(79)

for· the sensitivity functions, involving a strictly increasing,
continuous function h and three positive constants /3, 13', and
8. This leads immediately to the representation

and /3, 13' ,K,K' > 0, constants. Using simple algebra, we obtain
for the response probabilities the form

or equivalently, as II difference model,

with F(ln s) = 0(8). Thus

u(x) = In[x13l(xb + K)] < 0 .

Again, such a model is capable ofaccommodating typical Weber
fraction data (et: Alpern, Rushton, & Tori, 1970a, 1970b, 1970c).

Other models have been proposed, which differ only in details
from One or the other of those discussed in this section. They
are not reviewed here. Our purpose in this subsection is not to
single out one particular mathematical expression as the ap
propriate model forthe sensitivity function. In fact, it is quite
conceivable that the choice of a suitable model (that would
provide a good fit to the data, from a statistical viewpoint) may
dellenq. not only on the sensory continuum envisaged but also
on rather specific details of the experimental paradigm. Ac
cordingly, an effort has been made' by some psychophysicists
to focus the theoretical developments on aspects· of the data
that may perhaps be robust to minor changes ofthe experimental
procedure (cf. Falmagne, 1977; Iverson, 1983). The results are
tOo specialized to be included here.
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Weber fraction data are compiled, for example, in Boring,
Langfeld, and Weld (1948, p. 268) and Holway and Pratt (1936,
p. 337) for various sensory continua. Luce and Green (1974a;
see also Green, 1978, p. 257) review a number of experimental
studies ofthe discrimination ofthe difference in the amplitudes
of a sinusoidal tone. The data are plotted in terms of the Weber
fraction. See also the Chapters in Sections 11 and III of this
handbook. In a recent monograph, Laming (1983) gave a the
oretical analysis ofWeber functions,based on a large collection
of data. (Unfortunately, this work came to our attention in the
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A useful graphic representa.tionof such data is often used by"
psychophysicists, in which each pair of response' probabilities
[Pn(9i),Ps(8i)] is pictured as a point in the unit square (see Figure:
1.17, ',but, ignore' the three curvesfor the moment). There is'a "
co~sens~s",in,,'psychophysics that by,appropriately' choosing,the
payoffniatrix, most'types of:strategies, can be induced in the,
subject,ranging from the most conservative ones (ifthe slightes~

doubt arises, say "no detection") to the, most ,daring guessing.
(High, false' alarm, rates, however, are exceptiona1.) It is, also
reasonable'to suppose that ,any change in.',a payoff matrix that
would increase the probabilityofafalse alarm would also in
crease {continuously} the probability of a hit. (This assumption
is supported by much data.) In'other words, thismeans,that
the three points in Figure 1.17belong to the graph ofa continuous
function p mappingthe interval [0,1] intoitself.Wehave'thl.ls

8.1.ReceiverOper~tingCharacteristic ,(ROC)
Graphs and Curves';)

This section is devoted to a particular solution tothis prob
lem, which ,is, usually'discussed under, the,label signal'detection
theory, 'even, though its applicability extends far beyond the
detection ofsignals. Our presentation is far from exhaustive.
It should however be sufficient to acquaint the reader with the
most commonly used notions and techniques ofsignaldetection
theory. For an extensive, treatment of this topic, see'Green and
Swets(1974).

For"simplicity, we shall ignore statistical variability for the
moment and identify response ,frequencies and probabilities.

Let us suppose that'for a given stimulusintensity, three
payoff lIlatriceshave been used, labeled 81, 92, and 8a, inducing
three different guessing strategies. Lets and n denotethestim
ulusandthe noise, respectively.LetpsC9i)andpn(8D,i = 1, 2,

,3, be the hit 'and false ,alarm probabilities. For' concreteness,
somehypo~~etical data folloW:

SIGNAL DETECTION THEORY

final stage of the writing ofthis chapter, and no discussion of
its content could be, included.)

8.

PSYCHOPHYSICAL MEASUREMENT AND THEORY

Any psychophysical task has cognitive components, which covers
a variety of factors, such as response bias, guessing strategy,
motivation,and so on. Thusfarin our approach to psychophysical
theory, we have implicitly assumed that such factors could be
bypassed or- controlled by careful experimentaldesign. In fact,
we have ignored them. This position is not without its weak..
nesses. An example will make this clear.

Consider a task in which a subject is required to detect a
stimulus embedded in a noisy background. On 50% ofthe trials
the noise is presented alone. Across conditions, theintensity of
the stimulus is varied, providing the basic data for a psychometric
function., Two kinds oferror can be made in 'such a task, which
is often referred to'as the yes..noparadignl: (1) the 'subjectinay.
fail to report a stimulus presented (thisis called a miss) and
(2) ,the'subject may report 'a detection 'on· a'noise..alone trial
(thisis called a false alarm, or a false positive). A correct detection

"willbe referred to as a, hit. The remaining case is a correct
rejection.

A guessing strategy is'available to the subject in this sit..
uation:when not quite sure that the' stimulus was presented
on atrial, the subject may nevertheless claimto have detected
it. Such strategy would succeed in ,a situation in which a miss
is much more heavily penalized thana false alarm. For example,
suppose that' the' system,of rewards and penalties, is the one
displayed in Table 1.2, where the numbers represent monetary
values. Thus each co~ect detecti9nb~i:ngs,31llonetaryunits
(J,Ls): each miss costs 3 j..LS, and so on. Such a table is often
referred to as a payoff matrix. It is reasonable to suppose that
thePa.rticularpayoffmatrix shown above would favor a guessing
strategy over a conservative one. ,,(For instance, if the subject
reports a detection on every trial, whether or not the stimulus
'was presented, the average gain per trial is 2J..Ls,while the
opposite strat~gyof responding "no,detection" on every triar~

results in an average gain of OJ..Ls.) Obviously, another payoff
matrix may evoke a completely different strategy. A naive ex
perimenter may be tempted to believe that if a constantpayoff
matrix is used across conditions varying in stimulus intensity,
the subject strategy will not change, afact which can be tested

,by checking that the proportion offalse alarmsremains constant.
Unfortunately, a s~bject's interpretation ofa payoff matrixis in' which 9 ranges in a large setofpayoffmatricese:
largely personal, and this interpretation may change drastically 8.1.1. Definition. Lete bea collection of payoff matrices;
from one condition to another. Needless to say,these remarks ,-' for each 9 E e, letpn(9) andps(9) be the probabilities of a false
also<applywhen no explicit payoffmatrix is used, but the subject alarm and of a hit, respectively. Then the set of points
strategyis induced by verbal instructions. The problem at hand
is thus that ofdisentangling the purely sensory aspects of the
task from those resulting from the subject's strategy.

Table ,1.2. System of Rewards and Penalties in Which
Numbers Represent Monetary Values

Stimulus

Yes

No

Yes

3
Hit

-1
False Alarm

Responses

No

-3
Miss

3
Correct Rejection

in the unit square iscal1ed a receiver operating characteristic
(ROC) graph {of (n,s)). When anROCgraph is the graph of a
continuous function pmapping the closed interval [0,1] into
itself" it will be called an ROe curve. The functionp will be
referred to as the ROC function.

Three, examples of ROC ,'curves are displayed in Figure
1.17, in which the functions are increasing.It is reasonable to
supposethat any change in a payoffmatrix that would increase
the probability of afalse alarm would also increase (or at least
not decreaseJtheprobability of a hit. This assumption is sup
ported by much data. Incidentally, the acronym. ROC is borrowed
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Pn(lli) Ps(6i)

III .10 .35
112 .40 .75
63 .65 .90

A useful graphic representation of such data is often used by
psychophysicists, in which each pair of response probabilities
[Pn(6D,pi6i)] is pictured as a point in the unit square (see Figure
1.17,· but ignore the three curves for the moment). There is a
consensus in psychophysics that by appropriately choosing the
payoff matrix, mosttypes of strategies can be induced in the
subject, ranging from the most conservative ones (if the slightest
doubt arises, say "no detection") to the most daring guessing.
(High false alarm rates, however, are exceptional.) It is also
reasonable to suppose that any change in a payoff matrix that
would increase the probability of a false alarm would also in
crease (continuously) the probability ofa hit. (This assumption
is supported by much data.) In other words, thismeans that
the three points in Figure 1.17 belongto the graph ofa continuous
function p mapping the interval[0,1] into itself. We have thus

For simplicity, we shall ignore statistical variability for the
moment and identify response frequencies and probabilities.

Let us suppose that for a given stimulus intensity, three
payoff matrices have been used, labeled Ill> 1l2, and 63, inducing
three different guessing strategies. Let sand n denote the stim
ulus and the noise, respectively. Let pi6i) and Pn(IlD, i = 1, 2,
3, be the hit and false alarm probabilities. For concreteness,
some hypothetical data follow:

This section is devoted to a particular solution to this prob
lem, which is usually discussed under the label signal detection
theory, even though its applicability extends far beyond the
detection of signals. Our presentation is far from exhaustive.
It should however be sufficient to acquaint the reader with the
most commonly used notions and techniques ofsignal detection
theory. For an extensive treatment ofthis topic, see Green and
Swets (1974).

8.1. Receiver Operfl,ting Characteristic (ROC)
Graphs and Curves .

PSYCHOPHYSICAL MEASUREMENT AND THEORY

8. SIGNAL DETECTION THEORY

final stage of the writing of this chapter, and no discussion of
its content could be included.)

Any psychophysical task has cognitive components, which covers
a variety of factors, such as reSfionse bias, guessing strategy,
motivation, and so on. Thus far in our approach to psychophysical
theory, we have implicitly assumed that such factors could be
bypassed 01' controlled by careful experimental design. In fact,
we have ignored them. This position is not without its weak
nesses. An example will make this clear.

Consider a task in which a subject is required to detect a
stimulus embedded in a noisy background. On 50% ofthe trials
the noise is presented alone. Across conditions, the intensity of
the stimulus is varied, providingthe basic data for a psychometric
function. Two kinds oferror can be made in such a task, which
is often referred to as the yes-no paradigm: (1) the subjectmay.
fail to report a stimulus presented (this is called a miss)and
(2) the subject may report a detection on a noise-alone trial
(this is called a false alarm, or a false positive). A correct detection

. will be referred to as a hit. The remaining ca,se is a correct
rejection.

A guessing strategy is available to the subject in this sit
uation: when not quite sure that the stimulus was presented
on a trial, the subject may nevertheless claim to have detected
it. Such strategy would succeed in a situation in which a miss
is much more heavily penalized than a false alarm. For exam.ple,
suppose that the system of rewards and penalties is the one
displayed in Table 1.2, where the numbers represent monetary
values. Thus each correct detection brings 3 monetary units
(lJos): each miss costs 3 IJoS, and sO on. Such a table is often
referred to as a paYoff matrix. It is reasonable to suppose that
the particular payoffmatrix shown above would favor a guessing
strategy over a conservative one. (For instance, if the subject
reports a detection on every trial, whether or not the stimulus
was presented, the average gain per trial is 2 IJoS, while the
opposite strategy of responding "no detection" on every trial"
results in an average gain of 0 !-Ls.) Obviously, another payoff
matrix may evoke a completely different strategy. A naive ex
perimenter may be tempted to believe that if a constant payoff
matrix is used across conditions varying in stimulus intensity,
the subject strategy will not change, a fact which can be tested
by checking that the proportion offalse alarms remains constant.
Unfortunately, a subject's interpretation of a payoff matrix is in which 6 ranges in a large set of payoff matrices e:
largely personal, and this interpretation may change drastically 8.1.1. Definition. Let e be a collection of payoff matrices;
from one condition to another. Needless to say, these remarks· for each 6 E e, let Pn(6) and Ps(6) be the probabilities of a false
also apply when no explicit payoffmatrix is used, but the subject alarm and of a hit, respectively. Then the set of points
strategy is induced by verbal instructions. The problem at hand
is thus that of disentangling the purely sensory aspects of the
task from those resulting from the subject's strategy.

Table 1.2. System of Rewards and Penalties in Which
Numbers Represent Monetary Values

Responses

Stimulus Yes No

Yes 3 -3
Hit Miss

No -1 3
False Alarm Correct Rejection

in the unit square is called a receiver operating characteristic
(ROC) graph (of (n,s». When an ROC graph is the graph of a
continuous function p mapping the closed interval [0,1] into
itself, it will be called an ROC curve. The function p will be
referred to as the ROC function.

Three examples of Roe curves are displayed in Figure
1.17, in which the functions are increasing. It is reasonable to
suppose that any change in a payoffmatrix that would increase
the probability of a false alarm would also increase (or at least
not decrease) the probability of a hit. This assumption is sup
ported by much data. Incidentally, the acronym ROC is borrowed
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8.3. Remarks

as asserted.
In·.. the framework of this model, fthearea .below··.the ROC

curve appears·as.·a·reasonable measure ofthe'detectability of
tn(fstimulus.lnpractice, it will often be the case that onl:Y-'.a
tewpointsof the RaC curve have been determinedexperimen
ta.lly:"'Theevalu~tionof the area' below the ROC ..• curve may
thus be prone to seriouserrors. One way.out of this difficulty
ist~:rnakespecificassumptionsconcerning the distributions of
the·random variables Us and· Un. Such assumptions would de
t~rllline(up to· the valuesofacouple. of parameters) ~he exact
ana~yticalformoftheROC curve. If the assumptionsare.valid,
a. few suitably placed points of theROC curve will suffice to
estimatethe·parameters·oftheROC curve experimentally, and
the area under the ROC curve can then be evaluated by inte
gration.

One may be .suspicious of such a method and object that the
estimated·value.ofthe area will be model·bound. This objection
is not as strong asit may appear. Notice in this connection that
Eq.{85}was-obtainedwithoutmakinganyassumptionregardillg
the distribution ofthe random variables Us andUn' In fact, the
shape of these distributions is arbitrary. For instance, let us

,<= f<»Prob{Us > A}dProb{Un'" A}. (84)

According to' this model,' the response probabilities Ps(9) =
Prob{Us.<··Aa}·andpn(9)·.= .•Prob{Un·< .Aa} depend on the payoff
matriX 6 only through the number Aa. Thereis thus no ambiguity
in writing Ps('A) forps(9) and Pn(A) for Pn(9), with A = Aa. Con..
sequently, using pto denote the RaC function,Eq. (84) yields

Prob{Us > Un} = L"'", Ps (A)dU ~. Pn(A)]

-1: P[Pn(X,)Jdpn (A)

= f'" P(Pn{A)]dPn(A)

Changing variables, from A. to Pn('A.) =p, we obtain finally

Prob{Us > Un} =X[p(p)dP , (85)

The argument is spelled out below. Using ·the.fact that the
random variables in question are independent, we have

This means that the ROe function Pn(9) ~ Ps(9) must be non..
decreasing, a,prediction which, as indicated earlier, is consistent
with much data. Another basic result is that the area under
the ROC curve (the integral of the. ROe function from 0 to 1)
is equal to the probability that Us· exceeds Un:

yielding

Ps(9) ~ Ps(9').

Pn(eJ.

Figure 1.17. ThreeROCcurvesandon.e ROCgraph containing three' points'.

from signal detection theory. in telecommunication (references
are given in Section 8.11).

The basic idea of this representation is that the .' strategy
is varying alongthe ROC cutves, while the discriminabilityis
varying across the ROC curVes. In this' framework,' the .three
ROCcurvesp,Pl, and P2inFigure 1.17 correspond to increasingly
detectable stimuli. A particularly illuminating interpretation
of the' information' captured by an ROC.curve is offered"by the
model described in Section 8~2.

Suppose that to each stimulus s corresponds a random variable
representing the.activation evoked by that stimulus in Some

criticalneural location. Similarly, letUnbe the activation ran..
<lOIIlv:~riable corresponding to the noise. The.rapdomvariables '.",;
Us' and Un are assumed· to be independent. As before,"letps(9)
and PnHn ·be the·hit and false alarm probabilities,colTesponding
to a payoff matrix 9. We·· assume that on every. trial (wllether
or not the stimulus is presented) a positive response occurs if

.·the·momentary.··(or·sample)..value ofUsor·.Un .exceeds.R.eriterion
Aa, the value ofwhichis determined by.. the .• payoff matrix a.. In
symbols: ' . . '

. 8.2. A Random Variable Model for Roe Curves
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yielding

This means that the ROC function Pn(9) 1-+ Ps(9) must be non
decreasing, a prediction which, as indicated earlier, is consistent
with much data. Another basic result is that the area under
the ROC curve (the integral of the ROC function from 0 to 1)
is equal to the probability that Us exceeds Un:
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8.2. A Random Variable Model for ROC Curves

Pn(e)

Figure 1.17. Three ROC curves and one Roe graph containing three points'.

(85)Prob{Us > Un} = f p(p).dp ,
. l

8.3. Remarks

The argument is spelled out below. Using the fact that the
random variables in question are independent, we have

=f", Prob{Us> A}dProb{Un05O A}. (84)

According to this model, the response probabilities pi9) =
Prob{Us < Aa} andpn(9) = Prob{Un < Aa} depend on the payoff
matrix 9 orily through the number Aa. There is thus no ambiguity
in writing Ps('A) for Ps(9) and Pn(A) for Pn(9), with A = Aa. Con
sequently, using P to denote the ROC function, Eq. (84) yields

Prob{Us > Un} = LOO", Ps(A)d[l - Pn(A)]

- L<>=<>= P[Pn(A)]dPn(A)

= t<>= P(Pn(A)] dpn (A) .

Changing variables, from Ato Pn(A) = P, we obtain finally

as asserted.
In. the framework of this model, the area below the ROe

curve appears as a reasonable measure of the detectability of
the stimulus. In practice, it will often be the case that only a
rew points of the ROC curve have been determined experimen
tally;''l'heevalu~tion of the area below the ROC curve may
thuspe prone to serious errors. One way out of this difficulty
isto..make specific assumptions concerning the distributions of
the random variables Us and Un' Such assumptions would de
t~rmine(up to the values of a couple of parameters) the exact
analytical form ofthe ROC curve. If the assumptions are valid,
a few suitably placed points of the ROC curve will suffice to
estimate the parameters of the ROC curve experimentally, and
the area under the ROC curve can then be evaluated by inte
gration.

(83)

(82)

1.00.5

Prob{Us > Aa}Ps(9)

Pn(9) = Prob{Un > Aa} .

0.0

and

Such a model is in the spirit of the random utility, or Thurstone
type models discussed earlier in this chapter (see Sections 4.2
to 4.8). In the context ofROC curves, it,entails a few interesting
results. Suppose that .

Suppose that to each stimulus s corresponds a random variable
Us, representing the activation evoked by that stimulus in some
critical neural location. Similarly, let Un be the activation ran
dom 'Variable corresponding to the noise. The random variables
Us and Un are assumed to be independent. As before, let pi9)
andpn(9) be the hit and false alarm probabilities, corresponding
to a payoff matrix 9. We a.ssume that on every trial (whether
or not the stimulus is presented) a positive response occurs if
the momentary (or sample) value ofUs or Un exceeds acriteriotl
Aa, the value of which is determined by the payoff matrix 9. In
symbols: .

from signal detection theory in telecommunication (references
are given in Section 8.11).

The basic idea of this representation is that the strategy
is varying along the ROC curves, while the discriminability is
varying across the ROC curves. In this framework,' the three
ROe curves P, PI, and P2 in Figure 1.17 correspond to increasingly
detectable stimuli. A particularly illuminating interpretation
of the information captured by an ROC curve is offered by the
model described in Section 8.2.

for some payoffmatrices 9and 9'. Using, successively, Eqs, (83)
and (82), this implies

One may be suspicious of such a method and object that the
estimated value of the area will be model bound. This objection
is not as strong as it may appear. Notice in this connection that
Eq. (85) was obtained without making any assumption regarding
the distribution of the random variables Us and Un. In fact, the
shape of these distributions is arbitrary. For instance, let us



assume that Eqs.(82), (83), and (85) hold for some· random if!
variables Us, .Un. For any strictly increasing continuous function
g, we have Prob{S =nlUs > Aa} > .Prob{S = slUs > Aa} .

Axiom SD3.

Occasionally, we shall also assume:

ps(f)) = Prob{Us> ~a} .

Prob{Us >X}1T ;:?:Prob{Un >A}(l -- 1T) ,

fs··and··fn,·with{n >. O· •

Axiom SOl. To each stimuluss and noise n correspond inde
pendent random variables,· respectively, Us·and· Un' .The pre'"
sentatio~.of sevokes a ·sample.value .. ofthe ·random variable
Us. Similarly, the presentation ofn evokes a sample value.of
the random variable Un'

Axiom SD2.For anypayoffma.trixe .E 8,thehit and false
alarm probabilities satisfy the equation for S .= .s,n,

For convenient .reference, the assumptions ofthe IIlodelare
summarized in the··following three axioms.

8.4. Axioms of the ~andomVariable Model

for· all criterion values A. This definition does· not take int
account the monetary gains orlosses resultingfrom the strategy
Other definitions of optimality are· conceivable, one·of which
will· be considered shortly.

In words, this last inequality means that the conditional prob.
ability of a noise trial, when observing the event Us > Ao, is
greater than that ofa stimulus trial. However, according to the
model, the subject will report a a.etection. Aden.nitionof opti
malitysuggested by that argument would require that such
situation does not arise; that is,

8.5. ROe Analysis and likelihood· Radio

s} The. slope of the ROe curve is susceptible to an interesting
interpretation.. Let.us assume tI:atAxioms SD1-SD3.hold. Thus
the random ·variables Us and Un have densities fsandfn,re...
spectivelY,with fn > O. Writing, as before, p for the ROe function,
we.have successively

n}>

s}Prob{S

Prob{U~> Aa}

Prob{Us > Ao'S == n}Prob{S

Prob{Us > AolS

Prob{S

Ps(f)} = Prob{g(Us)> g(Ae)}

PnCf)) =Prob{g(Un) > g(Aa)}== Prob{U~>Aa} ,

iff

and

withU.~=g(Us} and U ~ .. =. g(Un)· and Ae·· =g(Aa).. It is clear
that the representation of the response probabilities provided
by the random variables U ~. and U~· is equivalent to that ob..
tained·with Us and Un. In particular, the predicted ROe curve
is not changed by the· transformation.

Later on in this section, we will make precise hypotheses
regarding the distributions of the random variables entering
into Eqs. (82),(83), and (85). When evaluating these hypotheses,
the reader. sh~uld keep· in mind the above .remark pointing.out
the relative arbitrariness ofthe distributions ofUs and Un' .

Itmust be.realized,thatthe.rando·mvariable Il16deldiscussed
here does not necessarily describe a rational strategy. Depending
onhow·optima~ity is.~efinedand ?n morespecific assumptions
on the random variables Us and Un, the decision rule embodied
in Eqs. (82) and (S3) may or may not be optimal.

To. illustrate this.point,·let·1T be the.probability ofa stimulus
trial and· suppose that .for somecriterionvalueAo

A· special case· of this assumption'ispicttired in Figure 1.18,
which is by no means unrealistic. Nevertheless, it. leads to a
somewhat undesirable· conclusion. Namely, when reacting to
an activation value exceeding Ab' the subjectreports a detection,
even though the likelihood of a stimUlus trial is then smaller
than that ofa noisetrial. Such a conclusion easily follows from
the above inequality.Indeed, denoting by S, as before, the stim
ulatioIli at a given trial(thusS=s orS=n),Eq. (86) holds if
and only if(if!) successively

PSYC.HOPHYSICALMEASUREMENT AND THEORY

Prob{S = S, Us> Ao}IProb{Us> Ao}

In other terms, the slope ·of the ROe curve evaluated at the
point Pn(f)) is equalto the ratio of the densities at thatpoint.

(87)

-{s(Aa)
-{n(Aa)

d(l - Prob{Us .~A6}]
==

dJ,l Prob{Un ~ Aa}]

>....
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o
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Figure 1.18. Two normal densities of Us and Un for which Eq.(86) holds,
with 71' = 1 - 71'.=.5.
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assume that Eqs. (82), (83), and (85) hold for some random iff
variables Us, Un' For any strictly increasing continuous function
g, we have Prob{S = nlUs > Ao} > Prob{S = slUs > Ao} .

PSYCHOPHYSICAL MEASUREMENT ANO THEORY

Prob{Un > Ao}(l - 71') > .Prob{Us > Ao}1r (86)
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fs and fn, with fn > 0 .

Occasionally, we shall also assume:

PS (6) = Prob{Us > X.a}

Axiom 502. For any payoff matrix 6 E e, the hit and false
alarm probabilities satisfy the equation for S .= s,n,

Prob{Us > A}7I' ;;;. Prob{Un > A}(l - 71') ,

Axiom SOL To each stimuluss and noise 71, correspond inde
pendent random variables, respectively, Us and Un. The pre
sentation of s evokes a sample value of the random variable
Us' Similarly, the presentation of 71, evokes a sample value of
the random variable Un'

For convenient reference, the· assumptions of the model are
summarized in the following three axioms.

8.4. Axioms of the ~andom Variable Model

Axiom 503. The random variables Us and Un have densities

for all criterion values A. This definition does not take into
account the monetary gains or losses resulting from the strategy.
Other definitions of optimality are conceivable, one of which
will be considered shortly.

In words, this last inequality means that the conditional prob
ability of a noise trial, when observing the event Us > Ao, is
greater thah that ofa stimulus trial. However, according to the
model, the subject will report a detection. A definition of opti
mality suggested by that argument would require that such a
situation does not arise; that is,

Prob{U~ > Aa}Ps(6) = Prob{g(Us) > g(Aa)}

Pn(6) = Prob{g(Un) > g(Aa)} = Prob{U~ > Aa} ,

with U~ = g(Us) and U~ = g(Un) and Aa = g(Aa). It is clear
that the representation of the response probabilities provided
by the random variables U ~ and U ~ is equivalent to that ob
tained with Us and Un' In particular, the predicted ROC curve
is not changed by the transformation.

Later on in this section, we will make precise hypotheses
regarding the distributions of the random variables entering
into Eqs. (82), (83), and (85). When evaluating these hypotheses,
the reader should keep in mind the above remark pointing out
the relative arbitrariness of the distributions of Us and Un'

It must be realizedthat the random variable modeldiscussed
here does not necessarily describe a rational strategy. Depending
on how optimality is defined and on more specific assumptions
on the random variables Us and Un, the decision rule embodied
in Eqs. (82) and (83) mayor may not be optimal.

To. illustrate this point, let 71' be the probability of a stimulus
trial and suppose that for some criterion value Ao

and

A special case of this assumptionis pictured in Figure 1.18,
which is by no means unrealistic. Nevertheless, it leads to a
soinewhat undesirable conclusion. Namely, when reacting to
an activation value exceeding Ao' the subject reports a detection,
even though the likelihood of a·stimulus trial is.then smaller
than that of a noise trial. Such a conclusion easily follows from
the above inequality. Indeed, denoting by S, as before, the stim
ulation, at a given trial (thusS =s Or S = 71,), Eq. (86) holds if
and only if (iff) successively

Prob{Us > AolS = n}Prob{S n} > 8.5. ROe Analysis and Likelihood Radio

71" Us > Ao}/Prob{Us > Ao} >

iff

Prob{S

Prob{Us > AolS s}Prob{S s} The slope of the ROC curve is susceptible to an interesting
interpretation. Let us assume that Axioms SDl-SD3hold. Thus
the random variables Us and Un have densities fs and fn,re-,
spectively, with fn > O. Writing, as before, pfor the ROC function,
we have successively

Prob{S = s, Us > Ao}/Prob{Us > Ao} dP[Pn(6)]/dpn(6) dProb{Us > Aa}
dProb{Un > An}

In other terms, the slope of the ROC curve evaluated at the
point Pn(6) is equal to the ratio of the densities at that point.
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Figure 1.18. Two normal densities of Us and Un for which Eq. (86) holds,
with 'IT = 1 - 11" = .5.
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(89)

+1'ns(6)][Ps(6) -Pn(tHJ3a], (88)

Figure 1.20. Tree diagram of the possible, paths, in the yes-no paradigm
with. their probabilities and their outcomes. See text for the definition of
symbols.' , "

Which we rewrite

<. Figure 'l~19. ., Successive stages of the decision process elicited by the pre
< sentation of the stimulus, in case of the likelihood ratio model. The diagram

is identical in the case of the presentation of the noise n, except that Us is
replaced'byUn•

Pan}) Prob{Us>Xa}

Axiom 504. The likelihood ratio

Prob{l(Us ) > l(Xa)}

l(x) = fs (x)lfn ex)

By'a similar argument, ,we also o~tain

Notice for further reference the monotonicity relation between
the ratio !s(Af))Jfn(Afj) and the slope of the ROe curve. Since as
a consequence of Eq. (83), Aa decreases as Pn(8) increases, a
decrease in the slope of the ROe function in some interval
corresponds to an increase in the ratio fs('A.f))lfnCAf)), in the cor
responding interval of the variable 'A.e. Typical data strongly
support the assumption of concave ROe functions-that is,
ROC functions with,nonincreasing slopes. This suggests that
the ratio ll'A)JfnCl\.) should be an increasing function of A. We
shall go back to this point.

In statistical decision theory, a ratio of densities, such as
the one appearing in Eq. (87),'is often called a likelihood ratio.
In fact, with a slight strengthening of our assumptions, the
random variable model discussed here is consistent with a fun
damental rule used in statistical decision theory. To the Axioms
SDI-SD3, we shall add the following:

is a strictly increasing function of ~.

One implication of assumptions'SDl-SD4 has been indi
cated above: the slope of the ROC curve must' be strictly de
·creasing. (That is,,in terms ofthe definition in Section 7.4.1,
the ROC function must b~ stpctlyconcave.) Another consequence
is of interest, since it suggests a drastically different interpre
tation of the model. By Axiom SD4, the likelihoodfunction l is
strictly increasing, which implies (see Section 8.3)
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Notice for further reference the monotonicity relation between
the ratio hOl.a)lfn(Aa) and the slope of the ROe curve. Since as
a consequence of Eq. (83), Aa decreases as Pn(6) increases, a
decrease in the slope of the Roe function in some interval
corresponds to an increase in the ratio hCAa)/fn(Aa), in the cor
responding interval of the variable Aa. Typical data strongly
support the assumption of concave ROe functions-that is,
ROe functions with nonincreasing slopes. This suggests that
the ratio h(A)/fn(A) should be an increasing function of A. We
shall go back to this point.

In statistical decision theory, a ratio of densities,such as
the one appearing in Eq. (87), is often called a likelihood ratio.
In fact, with a slight strengthening of our assumptions, the
random variable model discussed here is consistent with a fun
damental rule used in statistical decision theory. To the Axioms
SD1-SD3, we shall add the following:

Axiom 504. The likelihood ratio

lex) = fs (x)/fn (x)

Evocation 01 a sampie
value x of the random

variable Us

Computation 01 the likelihood ratio
~(x) = Is(x)/I.(x)

is a strictly increasing function of ,x.

One implication of assumptions SDl-SD4 has been indi-'
cated above: the slope ofthe Roe curve must be strictly de
creasing. (That is,in terms ofthe definition in Section 7.4.1,
the ROe function mustbe strictly concave.) Another consequence
is of interest, since it suggests a drastically different interpre
tation of the model. By Axiom SD4, the likelihood function 1is
strictly increasing, which implies (see Section 8.3)

Figul'eL19. Successive stages of the decision process elicited by the pre
sentation of the stimulus, in case of the likelihood ratio model. The diagram
is identical in the case of the presentation of the noise n, except that Us is
replaced by Un'

which we rewrite

Prob{Us > Aa} ,with

Prob{l(Us) > l(Aa)}

Oss (6)

Bya similar argument, we also obtain

Pn(6) = Prob{h(Un)/fn(Un) > l(Aa)}
Ps (6)

s

The last two equations prompt a comparison of the subject's
strategy with that ofa statistician engaged in a decision task
and applying an optimal decision procedure. The successive
steps of the procedure are reviewed in Figure 1.19, which is
self-explanatory. The statisticiap receiving a signal of value x
must decide in some.optimal fashion whether this signal is a
sample ofUs or a sample ofUn' We will suppose that the decision
procedure maximizes the expected value of the gain, as deter
mined by the payoff matrix 6. Let "(6)ss and "(6)nn be the gains
resulting from a hit and a. correct rejection, respectively; let
"(6)ns and "(6)sn be the costs attached toa false alarm and a
misS. Let 'IT be the probability that a stimulus is presented on
any trial. The expected valueG(6,'IT) ofthe gain is easily computed
from the tree diagram in Figure 1.20, which displays the pOElsible
paths and their probabilities. We obtain:

1 - TT

n

-Osn (6)

Pn (6)

1- Pn (6)

'ann (6)

Figure 1.20. Tree diagram of the possible paths in the yes-no paradigm
with their probabilities and their outcomes. See text for the definition of
symbols.
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irlwhich Us and U~ are'independentrandom variables with
the same interpretations as in Section 8.2. If we assume· that
Us and Un are continuous, we have

Pl,sn+P2,sn = 1

This means that the above interpretation ofthe subject's decision
process as based ona. comparison of samples.0£Us ···and· Un is
equivalent to another, in which the subject would behave as a
statistician and compare likelihood ratios.

In. any event, the conclusion to be derived from Eqs. (85)
and (90) is that the probability of a .correct .response in the
2AFC paradigm, under the assumption thatpl,sn = P2,ns, is
equal to the area under the RaC curve in the corresponding
yes-no paradigm.

As indicated, the assumption that PI,sn = P2,sn may be
unrealistic. We shall briefly·examineherethe.possibility that
the subjeetmay be biased toward one of the two intervals. A
systematic way ofinducing such bias would be to assign different
probabilities tothe events (s,n) and (n,s). Our random variable
model for the2AFC paradigm can be generalized as follows.

1-39

Tl1,e ideais that each of the. two.intervals provides·. a sample of
~neofthe random variables U$ and Un,and the subject'stesponse
is based on ·a comparison of these· samples. In the case of an
(s,n) trial, for instance, ifXl and xi are sample values ofUs and
Un, respectivelY,the subject will choose intervall (the correct
one) if Xl > X2.

Notice that, under Axiom SD4~,weha.ve

Pl,ns + >P2,ns = 1 ,

P2,sn = 1 - Pl,sn = Prob{Un > Us} = Pl,ns .

PI,sn = P2,ns·

which implies for the probabilities of errors,

and

since the subject is. forced to choose one of the two intervals on
every trial. For the time being, let us suppose that the two
probabilities of a correct response are equal,

other containing only·the.noise.There are· thus .. two types of
trials, depending··on whether the stimulus was inthe first or
the second interval. We shall denote these two cases by (s,n)
and (n,s),respectively. Let Pl,sn and P2,nsbe the corresponding
probabilities ofa correct.response,·and·.letp2,sn andpl,ns·be the
error probabilities. By design, we must have

Tllis~ss~ption,whic~isnotalwaysrealistic.andcan.be rejected
forsomedata, .• ·willbe'relaxed·ina··.moment. From· a ·purely
sensoIjviewpoint, the2AFCparadigm differs but little from
the' yes-Il<> paradigm, .. aIld it makes sense to apply· the same
-theoretical analysis. Let us assume that

We conclude that the subject strategy is optimal in the sense
of a.maximization of the expected gain if theresponseproha
bilities satisfy the two equations

It follows that the required value of Aa must satisfy

Prob{Us > A,a} -Prob{Un > AaH~a .

Ps (9)

1(A, ). = fs(~a) = Q

afn(~a), Ha ·

with(3a defined byEq. (89).

Ifprecise assumptions are made concerningthe distributions
of the random variables Us and Un, it can then be checked
whether the ··subject's strategy is optimalin the above sense,
by evaluating the fit of the above equation to the data. This
comparison;ofthesubject'sstrategywith ~hat of a statistjcian
engagedin adecision-making task was discussed in some detail,
since it is an inherent part ofthe common wisdom in this field.
It must be clear, however,·thatthe analysis ofthe·data in terms
of ROe curves is a useful device to· disentangle sensory from
cognitive components of the task, whether or not the subject's
strategy happens.to be optimal.

This analysis is also valuable, or at least relevant, in cases
of experimental procedures or paradigms somewhat different
from .those.envisaged so far in this· section. Two examples are
discussed in Sections 8.6 and 8.7.

Pnce) = Prob{Un >A,a} .

8.6. ROC Analysis and the Forced-Choice Paradigm

and

Ps (8) =Prob{Us >~a}

In the two~alternativeforced-choice (2AFC) paradigm, the sub
ject's task is to decide on every trial whichof two locations, or
two intervals of time, contains the stimulus. Even though the
effect· on performance of guessing strategies is minimized in
such paradigms,an ROC analysis will be useful. In particular,
the connections between the predictions in the yes-no and the
2AFC· paradigms are. of interest.

For'concreteness, we consider as before an auditory detection
situation. On every trial, the subject is presented with two
successive intervals of time, of equal· duration, one of which
containing the stimulus (a click, say) embedded in noise, the

The statistician decision procedure concerns the response prob
abilities p s(9)andpn(e), which can be manipulated via the
quantity A,a in the equations

Since 1T[~ss(9) + ~ns(9)]·.is constant, a value of Aa maximizes.the
expected gains G(9,1T}in Eq.(88) iffitmaximizes

PSYCHOPHYSICAL MEASUREMENT AND THEORY

that is

(90)PI,sn= Prob{Us > Un} = P2,ns,

other containing only the noise. There are thus two types of
trials, depending on whether the stimulus was in the first or
the second interval. We shall denote these two cases by (s,n)
and (n,s), respectively. Let PI,sn and P2,ns be the corresponding
probabilities ofa correct response, and let P2,sn and PI,ns be the
error probabilities. By design, we must have

This means that the above interpretation ofthe subject's decision
process as based on a comparison of samples of Us and Un is
equivalent to another, in which the subject would behave as a
statistician and compare likelihood ratios.

In any event, the conclusion to be derived from Eqs. (85)
and (90) is that the probability of a correct response in the
2AFC paradigm, under the assumption that PI,sn = P2,ns, is
equal to the area under the ROC curve in the corresponding
yes-no paradigm.

As indicated, the assumption that PI,$n = P2,sn may be
unrealistic. We shall briefly examine here the possibility that
the subjeet may be biased toward one of the two intervals. A
systematic way ofinducing such bias would be to assign different
probabilities to the events (s,n) and (n,s). Our random variable
model for the 2AFC paradigm can be generalized as follows.
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PI,sn + P2,sn = 1

Prob{Us = Un} = 0 ,

This a13sl1IIlption, which isnot always realistic andcan.be rejected
for some, data, will be relaxed in a moment. From a purely
sensory vieWpoint, the2AFC paradigm differs but little from
the yes-no paradigm, and it makes sense to apply the same
theoretical analysis. Let us assume that

P2,sn = 1 - PI,sn = Prob{U" > Us} = PI,ns .

PI,ns +, P2,ns = 1 ,

which implies for the probabilities of errors,

in which Us and Un are independent random variables with
the same interpretations as in Section 8.2. If we assume that
Us and Un are continuous, we have

and

PI,sn = P2,ns .

The idea is that each of the two intervals provides a sample of
~neofthe random variables Us and Un' and the subject's ~esponse
is based on a comparison of these samples. In the case of an
(s,n) trial, for instance, ifXl and X2 are sample values of Us and
Un' respectively, the subject will choose intervall (the correct
one) ifXl > X2.

Notice that, under Axiom S04,. we have

since the subject is forced to choose one of the two intervals on
every trial. For the time being, let us suppose that the two
probabilities of a correct response are equal,It follows that the required value of Aa must satisfy

We conclude that the subject strategy is optimal in the sense
of a maximization of the expected gain if the responseproba-.
bilities satisfy the two equations

Prob{Us > Aa} - Prob{Un > Aa}l3a

ps(e)

Since'll"hss(e) + "Yns(e)] is constant, a value orAa maximizes the
expected gains G(e,'ll") in Eq. (88) iff it maximizes

Pn(e)

that is

with f3a defined by Eq. (89).
Ifprecise assumptions are made concerningthe distributions

of the random variables Us and Uno it can then be checked
whether the subject's strategy is optimal in the above sense,
by evaluating the fit of the above equation to the data. This
comparison,of the subject's strategy with that of a statistician
engaged in a decision-making task was discussed in some detail,
since it is an inherent part of the common wisdom in this field.
It must be clear, however, that the analysis ofthe data in terms
of ROC curves is a useful device to disentangle sensory from
cognitive components of the task, whether or not the subject's
strategy happens to be optimal.

This analysis is also valuable, or at least relevant, in cases
of experimental procedures or paradigms somewhat different
from those envisaged so far in this section. Two examples are
discussed in Sections 8.6 and 8.7.

and

ps(e) = Prob{Us > Aa}

8.6. ROC Analysis and the Forced-Choice Paradigm

The statistician decision procedure concerns the response prob
abilities ps(e) and Pn(e), which can be manipulated via the
quantity Aa in the equations

In the two-alternative forced-choice (2AFC) paradigm, the sub
ject's task is to decide on every trial which of two locations, or
two intervals of time, contains the stimulus. Even though the
effect on performance of guessing strategies is minimized in
such paradigms, an ROC analysis will be useful. In particular,
the connections between the predictions in the yes-no and the
2AFC paradigms are of interest.

For concreteness, we consider as before an auditory detection
situation. On every trial, the subject is presented with two
successive intervals of time, of equal duration, one of which
containing the stimulus (a click, say) embedded in noise, the
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PI1(e) = Prob{Un > Aa} .
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Rating Val~e

Pl,sn(9')

Hypothetical Rating Data in a Signal Detection Task

Pl,snC9') = 1 - Pl,ns(9)

express the symmetry property of the ROe curve mentioned
c,'above.Thissituation is illustrated in Figure 1.21.

1

1

Pl,ns(9) + P2,ns(9)

generated by varying 9 EEl, is an ROC curve. Under fairly
general properties "on' the"set of transformations {ga 19 E' el, it:
follows then that this ROCcurve must be symmetric withrespect
to the negative diagonal of the unit square, (see Figure,l.21).
One such property is that ifga is a strictly increasing transfor
mation, then'there must be some condition e' Ee corresponding
to the "opposite" transformation, gal = ga'. Indeed, 'we ,have
then

which are inherent to the 2AFC paradigm. Let us suppose for
a momehtthat the set ofpoints' '8:~7;"'-ROC Analysis ofRating~Scale Data

1 - Pl,snce)

where ga isa strictly increasing, continuous function. With The two equations,
obvious notation, the two remaining probabilities are computed
from the equations 1 - Pl,sn(8) = Pl,ns(9') ,

Let a be a set ofbias-inducing conditions; let Pl,sn(9) and Pl,ns(9) and
be the two probabilities ofchoosing the first interval, in condition
9, for the two cases (s,n) and (n,s). We assume that the effect of
a given condition a, E a is to transform the distribution of the
random variable corresponding to the second interval.Specif...
ically, we assume that the following two equations hold:

Pl,sn(9) = Prob{Us > ga(Un )} = Prob{ga(Us ) > Un}

Figure 1.21. Hypothetical ROC curve symmetric with respect to the negative
diagonal of the unit square/in the 2AFC paradigm. We have Pl,ns(6') =
1 - Pl,sn(6).
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Let e be a set ofbias-inducing conditions; let Pl,sn.(ll) and Pl,ns(ll) and
be the two probabilities ofchoosing the first interval, in condition
ll, for the two cases (s,n) and (n,s). We assume that the effect of
a given condition II E e is to transform the distribution of the
random variable corresponding to the second interval. Specif-
ically, we assume that the following two equations hold:

Pl,snCll')

Pl,s,.Cll) = Prob{Us > ge(Un )}

Pl,nsCll) = Prob{Un > ge(Us)} , 1 - Pl,ns(f:I) .

where ge is a strictly increasing, continuous function. With
obvious no~tion, the two remaining probabilities are computed
from the equations

The two equations,

1 - Pl,snCf:I) = Pl,ns(ll') ,

Pl,s,.(ll) + P2,snCll) = 1 Pl,snCll') = 1 - Pl,nsCll)

Pl,nsCll) + P2,nsCll) = 1

which are inherent to the 2AFe paradigm. Let us suppose for
a moment that the set·of points

express. the symmetry property of the ROe curve mentioned
above. This situation is illustrated in Figure 1.21.

8~7; .. ROe Analysis of Rating;.Scale Data

[pJ.,nsCll),Pl,snCll)] ,

generated by varying II ~ e, is an ROe curve. Under fairly
general properties on the set of transformations {geIII E el, it
follows then that this ROe curve must be symmetric with respect
to the negative diagonal of the unit square Csee Figure 1.21).
One such property is that ifge is a strictly increasing transfor
mation, then there must be some condition ll' Ee corresponding
to the "opposite" transformation, gjjl = ge'. Indeed, we have
then

1 - pl,s,.(ll)

=: Pl,ns(8 /) ,

... In the .saIXle experimental situation, consider a procedUl'e· in
which,rather than giving a yes-no detection response on every
trial, the subject is required to quantify the certainty that the
stimuluswaspresented. Suppose, for example, that a six-category
ratin~s<:aJ.ejs used, ranging from 0 Ccertainty that the stimulus
was not presented).to 5 Ccertainty that the stimulus was pre
sented). Some hypothetical but plausible data are given in Table
1.3, Let Rs andR,. be two random variables corresponding to
theratin.gs in the two types of trials. CFor example, Prob{Rs =
?} ist.h.eprobabilityof observing a rating of 3 on a trial when
the stimulus was presented.) Since the experimental situation
is unc.h.anged except for the subject's responses, it makes sense
to Suppose that the same underlying activation random variables
Us andU,.are responsible for the ratings. The following model
seems <reasonable: an observed rating will exceed a value i
Ci:=O, ..., 4)oIlly if the activa,tion random variable exceeds a
criterion X.i,. the value of which depends on the rating value
considered. In symbols, .

Prob{Rs > i} Prob{Us > X.d ,

Table 1.3. Hypothetical Rating Data in a Signal Detection Task

Observe that the right members of these two equations strongly
resemble those in AXiom SD2 of the yes-no procedure. This
suggests an ROe analysis ofthedata. It is as if each possible
value of the rating Cwith the exception of the maximal one)
would implicitly define a particular payoffmatrix and a recoding
of the rating data into two yes-no classes. In Table 1.3, the
value i = 3 leads to the recoding

5

.05

.10

4

.15

.25

3

.20

.20

1,2,3,
= 4,5

2

.35

.30

Rating Value

1

.15

.10

o
.10
.05

write "yes" if
write "no" if

Prob{Rn > i}

Noise trials
Stimulus trials

Pl •ns

Figure 1.21. Hypothetical ROC curve symmetric with respect to the negative
diagonal of the unit square, in the 2AFC paradigm. We have Pl,ns(6') =
1 - Pl,sn(6).



<t.>-l[p$(a)]

cl> -l[Pn (a)] .. ,

Zn···=:

Itis. easyto .show that this model satisfies Axiom SD40nlyif
fJ's= an. (Ifwe equate the two densities ofUs and Un and take

and droppinga·inthe notations, we obtain

Ps(lJ) = Prob{Us > Aa} = <I> (!J.s ~ Aa)

Pn(6) = Prob{Un > Aa} = <I>(lLn (j~ Aa) ,

. :1 ··Iz·' :x:2/2<I>(z) =--...-... . e- . dx.V27r _~

Prob{Us > Un} = Prob{Us - Un >O}

Zs =

In other terms,when the hit and false alarm probabilities are
transformed. into z-scores, the' RaC·. curve is transformed into
a straight line with slope fJ'n/as and intercept (fJ.s- fJ.n)/as'
Using linear regression, these two parameters can be estimated
from the response frequencies ofthedata.Notice that the RaC
curve only specifies two ofthe four. parameters fJ.s,J.Ln, as, and
an' For example, we can assume without· lossofgenerality, that
fJ.n='Oandan=l.Theareaunder the RaC curve can be
computed from the equations

From Eqs. (91) and (92),itis apparent that the RaC curve
is··deterIIlinedbyfOllrpar8meters: .the ·means and .. the .standard·· .'.
deviations. ofthe random variables Us and-Un. (In fact, we shall
see that only two parameters are necessary.) From a practical
viewpointitwillbec()nvenient to rewrite Eqs. (91)and(92).·in
terms oftheso-calledz~scores.With

in_ which our notations are as -in Section- 8.2, fJ.s, fJ.n,and-cys, (J'n

denote the means and standard deviations of the random vari
abIes Us and Un, and <I> is the distribution_function of a standard
normal random Variable, __ that is,

andUn (cf. Bramber,1975). However, the application is greatly
facilitated if such assumptions-are made. We discuss here the
case of Gaussian distributions.

8.8.1. -Yes-No Paradigm. In the yes-no paradigm with a
payoffmatrixH, we shall assume that
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n
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proportion offalse· ala.rms
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Ps (i) Prob{Rs > i}

8.8. Gaussian Assumption

Pn(i)

Figure 1.22. ROe graph obtained for the rating scale data.
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In principle, an. RaC· analysis. is feasible without· making any
assumptions.on· the· distributions ofthe random varia1?les Us

with the ROC function Pn(i)~Ps(i).

An obvious advantage ofthis method is its efficiency. The
subject is requiredto make more sophisticated responsesthan
intheye§-noproceduretwhichresults in a substantial economy
in the collection of data. This was illustrated in our example,
in which only one condition, rather than five,hadtobe run to
obtain a five-point ROe graph.

On thenegativeside,it must be .noted that the points of
anexperimental·ROCgraph are not independent, which may
create difficulties in fitting and evaluating a model.

Finallyt data collected by the rating-scale procedure,but
-analyzedby :methods differentfrom those discussed here, may
provide a sharp test of some models. We return to this point in
Section 8.10.

The corresponding RaC graph is·displayed·in·Figure 1.22. In
general, the probabilities of hits and false alarms corresponding
to each rating value iup to (but not including) the maximal
onear~.. given.by the eqllations

with

The results of this recoding for Table ·1.3 are: .
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and Un (cf. Bramber, 1975). However, the application is greatly
facilitated if such assumptions are made. We discuss here the
case of Gaussian distributions.

8.8.1. Yes-No Paradigm. In the yes-no paradigm with a
payoff matrix ll, we shall assume that

•

•
(92)

(91)

Ils - A

Iln A

Zs =

zn ==

Ps(ll) == Prob{Us > Aa} == <l> (f.1s ~ Aa)

Pn(ll) == Prob{Un > Aa} == <l>(f.1n <7~ Aa) ,

1 .1z'<l>(z) ==.,._- e-:xfJ12dx
V21T -cc

and droppingS in the notations, we obtain

<l>-l[Ps(ll)]

<l>-l[Pn(ll)] ,

Eliminating A in these equations and solving for zs, yields

From Eqs. (91) and (92), it is apparent that the ROC curve
is determiIledbyJour Para.meters: the means and the standard
deviations ofthe random variables Us and Un' (In fact, we shall
see that only two paraIlleters are necessary.) From a practical
viewpoint it will be convenient to rewrite Eqs. (91) and (92) in
terms of the so-called'z-scores. With

in which our notations a.re as in Section 8.2, Ils, Iln, and 0"., 0"n
denote the means and standard deviations of the random vari
ables Us an.d Un' and <l> is the distribution function of a standard
normal random variable, that is,
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Figure 1.22. ROC graph obtained for the rating scale data.
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with

The corresponding ROC graph is displayed in Figure 1.22. In
general, the probabilities of hits and false alarms corresponding
to each rating value i up to (but not including) the maximal
one are, given by the equations

The results of this recoding for Table 1.3 are:

8.8. Gaussian Assumption

with the ROC furiction Pn(i) - PsW.
. An obvious advantage of this method is its efficiency. The

subject is required to make more sophisticated responses than
in the ye§-no procedure, which results in a substantial economy
in the collection of data. This was illustrated in our example,
in which only one condition, rather than five, had to be run to
obtain a five-point ROC graph.

On the negative side, it must be noted that the points of
an experimental ROe graph are not independent, which may
create difficulties in fitting and evaluating a model.

Finally, data collected by the rating-scale procedure, but
analyzed by methods different from those discussed here, may
provide a sharp test of some models. We return to this point in
Section 8.10.

Prob{Us > Un} == Prob{Us - Un > O}

(93)

(94)

In other terms, when the hit and false alarm probabilities are
transformed into z-scores, the ROC curve is transformed into
a straight line with slope O"t,!crs and intercept (Ils - Iln)/O"s'
Using linear regression, these two parameters can be estimated
from the response frequencies ofthe data. Notice that the ROC
curve only specifies two of the four parameters f.1s, f.1n, O"s, and
0"n' For example, we can assume without loss ofgenerality, that
Iln== 0 and 0"n . == 1. The area under the ROC curve can be
computed from the equations

Prob{Rn > i}Pn(i)

In principle, an ROC analysis is feasible without making any
assumptions on the distributions of the random variables Us

It is easy to show that this model satisfies Axiom SD4 only if
O"s == <7n' (If we equate the two densities of Us and Un and take



1-42 THEORY AND METHODS

if eE 8g ,

ifeE 8c ,

for S = s, n.

Forany'payo~matrixe,

-<~eprobabilitythatthe threshold isexceededis.equal to q(s)
ifthestimuluE3ispresente~andtoq(n) if the noise is presented,
these probabilities being independent'of the payoff matrix.)

independent of S.
(The probability ofa "yes" response to a stimulation onlydepends
on the payoff matrixe and whether the threshold has been
exceeded. If e is in 8 g , it is .equalto 1 or aa, depending on
whetherD =.1 orD = 0, respectively. Ifeis in 8 c, this probability
is·equal.f3a or 0, again depending on.whether D··= 1.orD.··=·.O.)

8.9.2. Form of the ROe Curve. ·As shownbya simple
calculation, these' axioms··predictan ROe curve made of two

abilities or other observable quantities (e.g., response latencies,
ratings). We shall discuss a simple example, due to Luce (1960,
1963a, 1963b).

We will assume that the ·presentation of the stimulus or
the noise elicits one of two sensory states in the subject: either
a neural threshold has been exceeded or it has not. The event
that the threshold is exceeded may lead to a "yes" response (the
subject reports a detection) but not necessarily so. We also assume
that a· given payofFmatrixe may induce one of two opposite
response strategies: (1) a conservative strategy, in which the
subject'never says "yes" when the threshold has not been ex
ceeded; when the threshold has been exceeded, the subject only
says "yes" with a probabilityf3(hdepending on the payoffmatnx,
and (2) a guessing strategy, in·which the subject always says
"yes".when the threshold has been exceeded; when the threshold
has not been exceeded, the subject says "yes" with a probability
aa, dependingon the payoffmatnx. This means that the collection
~()(IJ~yotf matrices is partitioned into two classes: (1) 9 c, the
Set ofpayoffmatrices inducing a conservative strategy, and (2)

..f)g;FtbeE)etofpayotfmatrices inducing a guessing strategy. The
event'that .the threshold has been exceeded' will be denoted
·P.:=l;the complementary event will bedenotedD = O. Thus

,..... irr~the,framework'ofaprobabilisticmodel,D is a random variable'
taking valuesO,l.Asbefore,th~·letterSdenotes the stimulation;
we:havetwoc~ses:S= s{thestimulus is presented) and S =
n·:tQnlythenoiseispresentedJ.Theprobability that the stim
ul~tion·.• ·determines,a·neural·.· event .exceeding the' threshold
(D:=l)onlydep.ends on S and will be denoted q(S). Notice that
'w~.. have. introduced Jour numerical .. parameters: two for the
re.sponseprobabilities,f3aandaa,and two for the probabilities
ofthe states,q(s)andq(n). In the framework ofan ROe.analysis,

. however, two ofthese parameters will be eliminated in the
equations, leaving only q(s) and q(n) to be estimated from the
data. Finally, we denote by Ya and Na the two events of a "yes"
and a "no"response,respectively.

8.9.1. Axiorns for.·the Threshold Theory. We provide a
compact summary of these assumptions in the form of two ax
ioms.

~90 .98.02 .10 .30 .50 .70

Equation (93),which specifies the transformed ROC curve, be
comes

A rather different interpretation of an ROC analysis of yes-no
detection data is possible, in which the basic, underlying notions
are 'not activation .. random .'. variables·,but· detection' states. A
number of such.· models have .been .proposed,which differ in
particular by the number of (unobservable) states postulated
or by the exact relation linkingthe states to the response prob-

logarithms, a quadratic equation obtains, which has a unique
solution only if<1s = O"n.) We shall investigate this particular
case in some detail.

8.8.2. Equal Variance Assumption. Suppose that

PROBABILITIES

Figure 1.23. In the equal variance case, three ROCcurves plotted on IIdouble
probabititylJpaper, corresponding to the cases d'=1, 2,3.

Prob{Us .> 'Un } = <I>(d') .

Thischoice hassomeintliitiveappeal, sinced' is proportional
to the difference between the means of the two activation dis.,;
tributions. Moreover, d' is closely relat~d tothe other measure,
the area under theROCcU;rve. Indeed,'from Eq. (94) we have

d' =·.·.·(J.1.s, - J,.Ln)/~,··.

O"s = <1n = 1 .

Thus. in the special casewhere'Us and Un are independent
Gaussian random variables with equalvariance,thetransformed
ROCcurves are parallel straight lines with a slope equal to 1.
Only one parameter remains in the model, whichis the difference
JJ.s - f.Ln· .When this·model is used, a standard.measure of the
detectability of the stimulusiE)

8.9. ThresholdTheory

~Occasionally,jtis convenientto plot the empiricalROCgraphs
and the theoreticalROCcurves on "double-probability"paper
(a<two-dimensionalCartesian representation in which the co
ordinates arein. units of the normal integral; see FigUre 1.23).
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abilities or other observable quantities (e.g., response latencies,
ratings). We shall discuss a simple example, due to Luce (1960,
1963a, 1963b).

We will assume that the presentation of the stimulus or
the noise elicits one of two sensory states in the subject: either
a neural threshold has been exceeded or it has not. The event
that the threshold is exceeded may lead to a "yes" response (the
subject reports a detection) but not necessarily so. We also assume
that a given payoff matrix 9 may induce one of two opposite
response strategies: (1) a conservative strategy, in which the
subject never says "yes" when the threshold has not been ex
ceeded; when the threshold has been exceeded, the subject only
says "yes" with a probability l3a, depending on the payoffmatrix,
and (2) a guessing strategy, in which the subject always says
''yes'' when the threshold has been exceeded; when the threshold
has not been exceeded, the subject says "yes" with a probability
aa, depending on the payoffmatrix. This means that the collection
E;}o( payoff matrices is partitioned into two classes: (1) ee, the

. Set ofpayoffmatrices inducing a conservative strategy, and (2)
€)g"the set ofpayoffmatrices inducing a guessing strategy. The
event that the threshold has been exceeded will be denoted
D 0:: 1; the complementary event will be denoted D = 0. Thus
in,theframework ofa probabilistic model,D is a random variable
taking values 0,1. As before, the letterS denotes the stimulation;
we, have. two cases: S= s (the stimulus is presented) and S =
nCdnly the noise is presented). The probability that the stim
ul~tion determines· a .neUral event exceeding the' threshold
(D. ~ Honly depends onS and will be denoted q(S). Notice that
we have introduced four numerical parameters: two for the
response probabilities, l3a and aa, and two for the probabilities
of the states, q(s) andq(n). In the framework ofan ROC analysis,
however,.twoof these parameters will be eliminated in the
equations, leaving only q(s) and q(n) to be estimated from the
data. Finally, we denote by Ya and Na the two events of a "yes"
and a "no"response, respectively.

8.9.1. Axioms for the Threshold Theory. We provide a
compact sununary of these assumptions in the form of two ax
ioms.

logarithms, a quadratic equation obtains, which has a unique
solution only if (J's = (J'n') We shall investigate this particular
case in some detail.

8.8.2. Equal Variance Assumption. Suppose that

(J's = (J'n = 1 .

Equation (93), which specifies the transformed ROC curve, be
comes

Thus in the special case where Us and Un are independent
Gaussian random variables with equal variance, the transformed
ROC curves are parallel straight lines with a slope equal to 1.
Only one parameter remains in the model, which is the difference
IJos - IJon· When this model is used, a standard measure of the
detectability of the stimulus is

This choice has some intditive appeal, since d' is proportional
to the difference between the means of the two activation dis
tributions. Moreover, d' is closely relat~d to the other measure,
the area under the ROC ctirve. Indeed,from Eq. (94) we have

Prob{Us > Un} = ep(d') .

Occasionally, it is convenient to plot the empirical ROC graphs
and the theoretical ROCcurves on "double-probability" paper
(atwo-dimensional Cartesian representation in which the co"
ordinates are in units of the normal integral; see Figure 1.23).

8.9. Threshold Theory

A rather different interpretation of an ROC analysis of yes-no
detection data is possible, in which the basic, underlying notions
are not activation random variables but detection states. A
number of such. models have been proposed, which differ in
particular by the number of (unobservable) states postulated
or by the exact relation linking the states to the response prob-

State Axiom T1.

Prob{D = liS} = q(S) , for S = s,n .

PROBABILITIES

Figure 1.23. In the equal variance case, three ROC curveS plotted on "double
probability" paper, corresponding to the cases d' = 1, 2, 3.
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if 9E eg ,

i£9 E ee,!'rob{Y.IS,Dj ~ {~~D~ Dl«. + D

Response AxiomT2. For any payoff matrix 9,

(The probability that the threshold is exceeded is equal to q(s)
iithe stimulus is presented, and toq(n) ifthe noise is presented,
these probabilities being independent of the payoff matrix.)

independent of S.
(The probability ofa "yes" response to a stimulation only depends
on the payoff matrix 9 and. whether the threshold has been
exceeded. If 9 is in eg , it is equal to 1 or aa, depending on
whetherD = 1 orD = 0, respectively. If9 is in ee, this probability
is equall3a or 0, again depending on whether D = lor D = 0.)

8.9.2. Form of the ROC Curve. As shown by a simple
calculation, these axioms predict an ROC curve made of two
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Prob{Rs ~ ilD} = GD(i) ,

Ps = Pnq(s)lq (n) ,

8.10.

the equation of a straight line going through, the, origin. Her
we have Pn ~ q(n).

Equations (96) and (97) together specify the class of RO
curvespredicted by Luce's two-state threshold theory. Thispre
diction has been shown to hold reasonably well, for some dat
(cf. Luce, 1963a). In other cases, however, the theory is not s
successful. For example, Nachmias and Steinman (1963) hav
shown thatin'some empirical situations the probability q(n
that the threshold is exceeded on noise trials (as estimated fro
the:data) hasto'vfiry with signal strength. Such a fact is obviousl
difficult to accommodate in the framework of, the two-stat
thr~shold'theory.

AxiomT3. For S = s, nand D = 0, 1,

Eliminating J3a and dropping 9 in the notation yields

8.9.2.2. Case 9 E ac• From Eq. (95) and Axiom T2, we
obtain

It is natural to inquire about' the predictions ofthe threshold
theory concerning data obtained by the rating-scale procedure
Some', authorsha:ve been quick to point out that rating-seal
data characteristically favoran ROC function with a smoot
curvature, a.fa.ct which may appear to be inconsistent with th
two'segmentsofstraight lines 'predicted by the threshold theo

'(Broadbent& Gregory,;1963; N3.chmias & Steinman, 1963
Swets, 1961;Watson, Rilling, & Bourbon, 1964). Actually, a
stated above and in the cited papers of Luce, the theory is no
relevant to rating data, and no inferences can legitimately b
made in this respect. (The only "response axiom" is T2, whic
concerns itself specifically with the response probabilities i
theyes~noparadigm.) Ifrating..scaledata<are. to he predicte
by the theory, a new axiom is required, and there are various
candidates, one ofwhich ishriefly considered here. Ourreasons
for including sUteh discussion in this chapter are twolold:(l) to
show by a counterexample that the argument against the two
state theory based on the curyature ofthe ROCcurve implied
by the data does not apply artd,(2)to demonstrate the general
vulnerability oftwo..state theories to a particqJ.artype ofanalysis
of the data.

We make the ,reasonable (issumption that the rating 'given
by the ,subject on 'a trial only,' depends on the sensory state
evoked 'by the 'stimulation. However, the exact ,value of the
rating is not determined by the state. To each ofthetwo sensory
states,corresponding to the eventsD = 1, D =0, corresponds
a. rating random variable, with distribution function Gl, Go;
respectively. In other terms, with Rs and Rn as in Eq.(88), we
have the following axiom:

(96)

---

PS(9) Prob{YaI S}

segments ofa straight line (see Figure 1.24). The upper limb
describes the guessing strategy and contains the corner (1,1)
of the unit square. The points of that segment are generated
by varying 9 in ag • .The lower limb descri~es the ,conseryativ:e
strategy, contains the point (0,0), and is generated by varying
8, in ac• Let us demonstrate this~

With our usual notations, Ps(8) andpn(9) for the two prob
abilities of a "yes" response, we have

Figure,1.24. An example of an ROe curve in the two-state threshold ·~;;del.
The upper limb of the.. curve corresponds, toEq~(96), ~Eag;the.l.owerlirnb.,

correspondsto Eq. (97), a E ac. .
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Eliminating eta in these two equations, dropping e in the no
lations, and solving for p~,weobtain

a linearfunction containing the point (1,1). Thus as 9 varies in
9g ,'the point of the ROC moves along a seginent of a straight
line specified by' Eq.' (96). Notice that in this case, we have q(n)

~Pn'

independent of S.

Let us derive the prediction for the ROC curve. For S =8, n,
we have

PS(Il) = Prob{YeI S }

Eliminating l3e and dropping II in the notation yields

It is naturalto inquire about the predictions of the threshold
theory concerning data obtained by the rating-scale procedure.
Some. authors. have been quick to point out that rating-scal
data. characteristically favor an ROC function with a smoot
curvature,afactwhich may appear to be inconsistent with th
two segIllents of straight lines predicted by the threshold theo
(Broadbent & Gregory, 1963; N::l.Chmias & Steinman, 1963
Swets, 1961; Watson, Rilling, & Bourbon, 1964). Actually, a
stated above and in the cited papers of Luce, the theory is nO
relevant to rating data, and no inferences can legitimately b
made in this respect. (The only "response axiom" is T2, whic
concerns itself specifically with the response probabilities i
the yes"noparadignl,) If rating-scale data are. to be predicte
by the theory, a new axiom is required, and there are variou
candidates, one ofwhich is briefly consideredhere. Our reasons
for including such discussion in this chapte'rare twofold: (1) to
show by a counterexample that the argument against the two
state theory based on the curvature of the ROCcuI'Ye implied
by the data does not apply arid (2) to demonstrate the general
vulnerability oftwo-state theories to a particular type ofanalysis
of the data.

We make the reasonable assumption that the rating given
by the subject on a trial only depends on the sensory state
evoked. by the stimulation. However, the exact value of the
rating is not deteI1nined by the state. To each ofthe two sensory
states, corresponding to the events D = 1, D = 0, corresponds
a rating random variable, with distribution function G1, Go,
respectively. In other terms, with Rs and R" as in Eq. (88), we
have the following axiom:

the equation of a straight line going through the origin. Her
we have p" "'" q(n).

Equations (96) and (97) together specify the class of RO
curves predicted by Luce's two-state threshold theory. This pre
diction has been shown to hold reasonably well for some dat
(cf. Luce, 1963a). In other cases, however, the theory is not s
successful. For example, Nachmias and Steinman (1963) hav
shown that in· sOme empirical situations the probability q(n
that the threshold is exceeded on noise trials (as estimated fro
the data) has to vary with signal strength. Such a fact is obviousl
difficult to accommodate in the framework of the two-stat
threshold theory.

8.10. Rating Data and the Threshold Theory

Ps = p"q(s)lq(n) ,

-
8.9.2.2. Case 8 Eec' From Eq. (95) and Axiom T2, w

obtain

(95)0}[1-- q{S)]

1,S}q(S) +

Prob{YelD

ps(ll) = Prob{YelD

+ Prob{YelD = O,S} Prob{D= 0IS}

Prp6{YeID = I,S} Prob{D = liS}

p$(ll) q(s) + ae[l -q(s)] ,

p,,(ll) q(n) + aiM - q(n)] .

segIllents of a straight line (see Figure 1.24). The upper limb
describes the guessing strategy and contains the corner (1,1)
of the unit square. The points of that segIllent are generated
by varying e in ego The lower limb describes the.conservative
strategy, contains the point (0,0), and is generated by varying
ein ec' Let us demonstrate this.

With our usual notations, paCll) andp,,(ll) for the two prob
abilities of a "yes" response, we have

8.9.2.7. Case 8 Eeg.. Using Axiom T2, Eq. (95) specializes
into
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Pn(e)

Figure 1.24. An example of an ROC curve in the two-state threshold~;;deL
The upper limb of thecurve correspondstoEq,(96), !l E 6g;tbe lower limb
corresponds to Eq. (97), 6 E 6e.

i
Using Axiom T1, this yields

Eliminating ae in these two equations, dropping II in the no
tations, and solving for Ps, we obtain

Ps = p,,[l - q(s)]/[l - q(n)]

+ [q(s) - q(n)]/[l - q(n)] ,

(96) Axiom 13. For S = s, n and D = 0, 1,

Prob{Rs "'" ilD} = GD(i) ,

a linearfunction containing the point (1,1). Thus as II varies in
eg , the point of the ROCmoves along a segment of a straight
line specified byEq. (96). Notice that inthis case, we have q(n)

"'"p".

independent of S.

Let uS derive the prediction for the ROC curve. ForS = s, n,
we have
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= G1(i)q{S) + Go(i)[l - q(S)] .

+ Prob{Rs ~ ilD = O}Prob{D=OIS}

Specializing this equation for the two cases S = s and S = n,
we obtain

(101)ks(i) = q(s)gl(i) + .[1 - q(s)]go(i)
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q(n) and 1 - q(n». This property is easily stated in words.
Considerthe empirical histograms ofratings obtained for s and
n in some situation. Suppose that thesetwo histograms "cross"
each other at some value} (say, the proportions of ratings} are
not significant~ydifferent). Then the histogram of ratings ob
tainedfor any other stimulus s' should have, except for statistical
errors, thesameproportio~of ratingsj(seeFigure 1.25). The
argument is as follows. Letks,·kn , go, and gl be the d~nsities

ofRs, Rn, Go, andG1, respectively. Thus these densities idealize
the histograms mentioned above. Taking derivatives in Eqs.
(98)and (99) gives

q(n}G1(i} "+'11" - q(n)]Go(i). (99)

q{s)Gl(i} + [1 - q(s)]Go(i) , (98)Prob{Rs ~ i}

Prop{Rn ~ i}

,""1-44

Prob{Rs ~ i} = Prob{Rs ~ ilD = 1}Prob{D = l"IS}

Eliminating G1(i) in "these two equations and solving for
Prob{Rs > i} yields the following prediction for the ROe curve: and

Prob{Rs "> "i} ProhfRn •.• > ·i}q (s)/q.(n)

- [1>- Go(i)] [ q(s):~ q(n,)]lq(n)

(102)

From Eqs.·(lOl) and (102) it follows necessarily that

Cons~quently,ifs'is some other·stimulus, .we must have

'kst{j) ~ q{S')gl(j) +.[l-.q(s')]go(j)

aSP:redicted.

j

RATING VALUES

Figure 1.25.... The fi.xed·.point.property .of the .·two-state· threshold·· model. applied·.tohypothetical ... rating
scale data. The two histograms "cross"atthe point indicated by the arrow, corresponding to rating j; any
other histogram (say, of s') should go through the same point.

Notice·that the Roe functiorl. definedbyEq. (lOO)depenq.son
,Go. This implies that the corresponding ROe curve is not nec
essarily made oftwo segments Qfstraight lines. In fact, a cursory
.investigation suggests that foir an appropriate. choice of the.
distribution function Go, this equation rnayproviqeanacceptable
fit to ROe data obtained from the rating-scale procedure.

On the otherhand, it.is doubtful that this:particularversion
ofthe two~state theoryis viable, sinceit makes extremely strong
predictions concerning some other aspect ofrating data. Using
an argumentof.Falmagn~(1968),Vorberg(Npte.3)poJnts out.
that the observed distributions ofratings should conform toa
very constraining fixed-point property, stemming from the fact
that, as indicated by Eqs.(98), (99),thedistribution of ratings
for any stimulus S (or noise n) isa "mixture" of the two latent
distributions G1 and· Go, in proportions q(s)and.·l -q(s) (or

= G1(i)q{S) + Go(i)[l - q(S)] .

+ Prob{Rs";;; ilD = O}Prob{D = 0IS}

Specializing this equation for the two cases S = s and S = n,
we obtain
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Prob{Rs";;; i} = Prob{Rs";;; ilD = l}Prob{D = 1jS}
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q(n) and 1 - q(n)). This property is easily stated in words.
Consider the empirical histograms ofratings obtained for s and
n in some situation. Suppose that these two histograms "cross"
each other at some value} (say, the proportions of ratings) are
not sign.ificant~ydifferent). Then the histogram of ratings ob
tained for any other stimulus s' should have, except for statistical
errors, the same proportio~of ratings j (see Figure 1.25). The
argument is as follows. Let ks, kn, go, and gl be the densities
ofRs, Rn> Go, and G1, respectively. Thus these densitiesidealize
the histograms mentioned above. Taking derivatives in Eqs.
(98) and (99) gives

q(s)Gl(i) + [1 - q(s)]Go(i) , (98)Prob{Rs ,,;;; i}

q(n)G1(i) +'[1 - q(n)]Go(i). (99) (101)

Eliminating G1(i) in these two equations and solving for
Prob{Rs > i} yields the following prediction for the ROC curve: and

Prob{Rs > i}= Prob{Rn ·> i}q(s)lq(n) kn(i) = q(n)gl(i) + [l - q(n)]go(i) (102)

- [1 - Go(i)](q(s)-- q(n)]Jq(lt)
(100)Supp()s~thatfor some rating valuej,we have
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Notice that theROC functiorl definedbyEq. (100) depends on
,Go. This implies that the corresponding ROe curve is not nec
essarily made oftwo segments of straight lines. In fact, a cursory
.investigation' suggests' that for an appropriate, choice of the
distribution function Go, this equation may provide an acceptable
fit to ROC data obtained from the rating-scale procedure.

On the other hand, it is doubtful that this particular version
ofthe two-state theory is viable, since it makes extremely strong
predictions concerning some other aspect of rating data. Using
an argumentofFalmagne (1968), Vorberg (Note 3) points out
that the observed distributions of ratings should conform to a
very constraining fixed-point property, stemming from the fact
that, as indicated by Eqs. (98), (99), the distribution of ratings
for any stimulus s (or noise n) is a "mixture" of the two latent
distributions G1 and Go, in proportions q(s) and 1 - q(s) (or

From Eqs. (101) and (102) it follows necessarily that

Consequently, ifs' is some other stimulus, we must have

as prE;!dicted.
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RATING VALUES
Figure 1.25. The fixed point property of the two-state threshold model applied to hypothetical rating
scale data. The two histograms "cross" at the point indicated by the arrow, corresponding to rating ii any
other histogram (say, of 5') should go through the same point.



(104)

(103)Prob{F(Ul,a, U2,x) > Aa},

Prob{F(V1,n, V2,n'} > Aa} ·

pax(a)

Pnn,(H)

(See Figure 1.26.)Similarassumptions holdforthe noise trials,
with the same'functionF operating onthepair.ofrandom vari
ables (Vl,n,V2;n')' The modelis thus specified by the two equa
tions

The subject reports a. detection if

9.1. A General Model for Two-Channel Detection

may mean that two sensory modalities' are involved, or two
neurophysiological. locations, or two psychophysical variables,
or even the same psychophysical variable but with different
intensities.For the time being, we urge the reader to use the
term intuitively and to check any ambitious drive toward rigor
or consistency.

9.1.1. Detection of Binaural Stimuli. In a version·of the
yes-no paradigm, the stimulus is a binaural, 1000-Hz tone (a,x)
embedded in a masking noise Cn,n'). The letters a,x denote the
intensities ofthe stiInulus in the left and right auditory channels,
respectively; n andn' stand for the intensities of the noise in
the. two channels. As in the .standard .yes-no paradigm, the
noise is presented alone on some proportion of the. trials.. TQ
evaluate a possible response bias, the experimenter varies the
payoff matrix acrossconditions. (See Section 8 for a discussion
of payoff matrices.) Let us denote' by Piz.x(a) and Pnn'{a} the two
prp1Jalliliti~so(~l."yes" response on a stimulus trial aIld on a
noise trial, respectively, with a payoff matrix 'a. (Our notation
is slightIYrnislea.ding.A more explicit but much heavier notation
for theseresponseprobabilitiea would bepax,nn'(9),poo,nn'C6).) .

This paradigm can obviously be transposed to other .ex
perimentalsituations(e.g.,binocularperception as in Arditi,
Chapter 23). From a theoretical viewpoint, the problem. is to
provide an explanationfor.th~typical.·.. data: ·the· presentation
of the stimulation throughtwo channels results in an ~mprove

ment ofdetection. performance.
9.1.2. The Model. In a natural extension of the signal

detection model discussed" in Section 8.2, we. assume that the
presentationof'a stimulus of intensity a in the left auditory
channel evokes some activity in'a specific·neural location, the
level of which is represented by a random variable U1,a. Cor
respondingly,the presentation ofx in the other channel generates
a sample of a random'variable U2,x' On noise trials, samples
are taken from two "noise" random variables V1,n and V2,d'.
We. a..ssume that (Ul (t,U2 x). and (VI n,V2~') are pairs of inde
pendent randomvariable~.O·natriai wh~te the stimulus (a,x)
is presented, the information available to the organism is thus
a sample ofthe p~r ofrandomjvariables (Ul,a,U2,x). We suppose
that Ul,a and U2,xare combined or pooled in some way, resulting
in a random variableQax.The subject reports a detection ifQax
exceeds a criterion Aa, thevalu~ofwhichdepends on the payoff
matrix a. In other terms, we assume that there is some function
F of two variables, the for~ of which ls left unspecified for the
moment, such that
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8.11. KeyReferences

:9. PSYCHOPHYSICS WITH SEVERAL VARIABLES
IOR>CHANNELS

The notions ofsignaldetection theory discussed in this section
were selected, from avast literature, as beingthe most central
fromthe.viewpoint ofthe analysis ofpsychophysical data. This
theory, a very detailed account of which can be found in Green
andSwets (1974), originatedfrom an adaptation byW. P. Tanner
and his coworkers at the University ofMichigan, of a number
of.optimal procedures.for the detection' of signal in' noise (Pe
terson, ·Birdsall,&.Fox,.1954;vanMeter&Middleton, .1954).
In turn, these procedures are based on statistical decision theory
{Neyman&Pearson, 1933; Wald, 1947, 1950). As emphasized
by our presentation, in which the roleofoptimality is played
down, signal detection theory has .also .. a valid claim to the
parentage of the law of comparative judgments (Thurstone
1927a, 1927b).

The applications of signal detection '. theory were. first in
psychophysics (e.g., Tanner.&·Swets,.·~~53,.·1954a,1954b) .. but
were very quickly extended to other fields. The extraordinary"
success.of thetheory.·is. evid~ncedbythenumberand.variety...
ofthe papers in which it is used in some form or other. Today,
.applications can be found,. forinstance., in learning,'memory,
medical diagnosis,' personality,'reactiontime,and skills (vigi
lance). A large sample of theearly~papersis collected in Swets
(1964). Green and Swets (1974), the basic reference on this
topic, contains a very 'extensive bibliography. As indicated in
the text, various forms ofthe theory' are obtained depending
on specific assumptions made on the distributions of the random
variables Us and Un' A discussion of these special cases is pro
vided in ·Egan·(1975).· A number of versions of the .threshold.
theory are examined in Krantz (1969).

Forapplicatiolls of the basic notions of signal detection
theory to other paradigms, see Sperling and Dosher, Chap
ter 2.

"We consider here a number ofparadigms and models designed
toanalyze how a subject integrates the· information flowing
fromdiffer~Ilt se~sory inputs.· EX8dIlJ;11e~(~~..:h0~~~is may arise
have been encountered earlier ihthischapter. For instance, in
the yes-no· paradigm discussed in Section·S, the subject had' to
detect a stilllulussembedded in a masking noisen.The subject's
responses were regarded as resulting from someoperation com~,

bining, on the sensory side, the effect of bothsand n on the
organism and, on the cognitive side, factors affecting decision
rnaking.

Another example, which this section trea.ts in some detail,
is offered by an auditory detectionsituationin which a stimulus
is presentedbinaurally.The intensity'in thetwoauditorychan..:
nelsmaybemanipulated independently, and theresulting.per~

formancemay be investigated. This sectionis devoted to a gen
eralstudy ofsllch.situations, various cases of which will be
given. Our purpose is not to provide an extensive survey. Rather,
ourselection ofexamples aims at familiarizing the reader with
a collection .of useful tools.

The word channel is of standard usage in psychophysics.
As far asweknow,however,no satisfying, generally accepted
definition .has been given for this term, even though several
have·heenproposed..Depending"on the context, two channels
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(103)

(104)

(See Figure 1.26.) Similar assumptions hold for the noise trials,
with the same functionF operating on the pair of random vari
ables (Vl,n,v2,n'). The model is thus specified by the two equa
tions

----------J~
,

The subject reports a detection if

9.1. A General Model for Two-Channel Detection

9.1.1. Detection of Binaural Stimuli. In a version of the
yes-no paradigm, the stimulus is a binaural, 1000-Hz tone (a,x)
embedded in a masking noise (n,n'). The letters a, x denote the
intensities ofthe stimulus in the left and right auditory channels,
respectively; n and n' stand for the intensities of the noise in
the. two channels. As in the .standard yes-no paradigm, the
noise is presented alone on some proportion of the trials. Tu
evaluate a possible response bias, the experimenter varies the
payoff matrix across conditions. (See Section 8 for a discussion
of payoff matrices.) Let us denote by Pizx(9) and Pnn,(9) the two
pr9ballilities of a ."yes" resp?nse on a stimulus trial and on a
noise trial, respectively, with a payoff matrix 9. (Our notation
is slightly misleading. A mOre explicit but much heavier notation
for these response probabilities would be Pax,nn'(9) , Poo,nn'(9).)

This paradigm can obviously be transposed to other ex
perimental situations (e.g., binocular perception as in Arditi,
Chapter 23). From a theoreticalviewpoint, the problem is to
provide an explanation for the typical data: the presentation
of the stimulation through two channels results in an improve-
ment of detection performance. .

9.1.2. The Model. In a natural extension of the signal
detection model discussed in Section 8.2, we assume that the
presentation ofa stimulus of intensity a in the left auditory
channel evokes some activity in a specific neural location, the
level of which is represented by a random variable Ul,a' Cor
respondingly, the presentation ofx in the other channel generates
a sample of a random variable U2,x. On noise trials, samples
are taken from two "noise" random variables Vl,n and V2,n'.

We assume that (UI a,U2 ,) and (VI n,V2 ~,) are pairs of inde
pendent random variable~. On a triai wh~te the stimu.lus (a,x)
is presented, the information available to the organism is thus
a sample of the pair of randomvariables (UI,a,U2,x). We suppose
that UI,a and U2,x are combined or pooled in some way, resulting
in a random variable Qax. The subject reports a detection if Qax
exceeds a criterion Aa, the.value of which depends on the payoff
matrix 9. In other terms, we assu.me that there is some function
F of two variables, th.e form of which ls left unspecified for the
moment, such that

may mean that two sensory modalities are involved, or two
neurophysiological locations, or two psychophysical variables,
or even the same psychophysical variable but with different
intensities. For the time being, we urge the reader to use the
term intuitively and to check any ambitious drive toward rigor
or consistency.
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8.11. Key References

We consider here a number of paradigms and models designed
to analyze how a subject integrates the information flowing
from different sensory inputs. Examplesofhow this may arise
have been encountered earlier in this chapter. For instance, in
the yes-no paradigm discussed in Section 8, the subject had to
detect a stimulus s embedded in a masking noise n. The subject's
responses were regarded as resulting from some operation com
bining, on the sensory side, the effect of both sand n on the
organism and, on the cognitive side, factors affecting decision
making.

Another example, which this section treats in some detail,
isolfered by an auditory detection situation in which a stimulus
is presented binaurally. The intensity in the two auditory chan
nels may be manipulated independently, and the resulting per
formance may be investigated. This section is devoted to a gen
eral study of such situations, various cases of which will be
given. Our purpose is not to provide an extensive survey. Rather,
our selection ofexamples aims at familiarizing the reader with
a collection of useful tools.

The word channel is of standard usage in psychophysics.
As far as we know,however, no satisfying, generally accepted
definition has been given for this term, even though several
have been proposed. Depending on the context, two channels

The notions of signal detection theory discussed in this section
were selected, from a vast literature, as being the most central
from the viewpoint ofthe analysis ofpsychophysical data. This
theory, a very detailed account of which can be found in Green
and Swets (1974), originated from an adaptation by W. P. Tanner
and his coworkers at the University of Michigan, of a number
of.optimal procedures for the detection of signal in noise (Pe
terson, Birdsall, & Fox, 1954; van Meter & Middleton, 1954).
In turn,these procedures are based on statistical decision theory
(Neyman & Pearson, 1933; Wald, 1947, 1950). As emphasized
by our presentation, in which the role of optimality is played
down, signal detection theory has also a valid claim to the
parentage of the law of comparative judgments (Thurstone
1927a, 1927b).

The applications of signal detection theory were first in
pl3ychophysics(e.g., Tanner & Swets, 1953, 1954a, 1954b) but
were very quickly extended to other fields. The extraordinary·
success of the theory is evidenced by the number and variety
of the papers in which it is used in some form or other. Today,
applications can be found,forinstance, in learning, memory,
medical diagnosis,personalitY,reaction time, and skills (vigi
lance). A large sample oftheearlY'papers is collected in Swets
(1964). Green and Swets (1974), the basic reference on this
topic, contains a very extensive bibliography. As indicated in
the text, various forms of the theory are obtained depending
on specific assumptions made on the distributions of the random
variables Us and Un' A discussion of these special cases is pro
vided in Egan(1975). A number of versions of the threshold
theory are examined in Krantz (1969).

For applications of the basic notions of signal detection
theory to other paradigms, see Sperling and Dosher, Chap
ter 2.

9. PSYCHOPHYSICS WITH SEVERAL VARIABLES
IOR CHANNELS
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(106)

1 PrOb{Aa ~ max(U1,a, U2,x}}

1 Prob{Af) ~ U1,a,Aa ~ U2,x}

1 PrOb{A& ~ U1,aJPiob{A6 ~ U2,x}

p~17,;(9)==.1":'Prob{V 1,17, ~ Aa}Prob{V2,17,' "~Aa}' . (107)

"~Ab~s1cassumption is implicit in Eqs. (106) and (107), a
clear stat~nient"of which. is critical at this point. '

. 9.2.1. Weak Criterion Invariance. Within a yes-no para
dig.tn.involvinga stimulus (a,x) and a noise (n,n'), the criterion
value Af) .. only depends on .the payoff matrix 9. (Thi~ value is
t~'Us'~hesGlIl1e <J,Ilstimuhlstrials an.d on noise trials.) This as
sumptionls·i:nb.erent·to an ROC analysis and practically ines
capable.

At thislevel'ofgenerali~y,~t.isnotclear that the predictions
ofthernodeL are sufficiently constraining to be rejected by
~y~l~~l~da.~a~Th~p.~g~~iy~:e~c1~Ilc~,.. sOlpe.ofwhi~~is :revie'W~.4
·bY.131l;l~eand F'oxH973), ismo$tly circumstantial, by which·
we mean that it has no direet bearing on the predictions formally
derivable from. the assumptions. However, for (irnplicitly)fixed
e~:Eq.'(106)has been checked by various authors.. Some refine
ments:ofthe'assumptions, considered below, lead to useful em-
pirical' tests.,... . . ..

9.2.2. . Strong. Criterionlnvariance~ Consider' the, following
strengthening ofthe criterion invariance. The criterion value
~e.Qnlydepend's'on the payoffmatrix 6. In,particular, for ag,iven
payoff'matrix, this value is "consta~tover' conditions varying
the intensities ofthe stimulus (a,x) and of the noise (n,n').

. This assumption.is.fr~quentlymade' (explicitly or not). It
lends itself to a straightforward empirical test. For example,
consider an applicationofEq.(106) to a situatio~jnwhichtwo

payoff matrices eland 82 have been used, togetherwith'four
values of the variable a and six values of the variable x.The
data consist of2 x' 4 .' ><. 6 =.48 empirical frequencies of "yes"
responses, to be explained with 2 x 4 +2 x 6 = 20parameters.
This leads to a standard chi-square .(or likelihood ratio) .test,
with 48 - 20 .. = 28 degrees. offreedom..Inthe framework of

F(s,t) = max{s,t} ,

in which max stands for the maximum' in the set of numbers
{s,t}. (Thus max{s,t} = s lif s ~t.) Using the assumption of
independence ofthe random variables, we obtain for the stimulus
trials,

rizing, especially in visual perception. We shall limit our dis
cussion to a two-channel situation. (For the case of a large
number of channels, see' Watson, Chapter 6,· and 01zak .and
Thomas, Chapter 7.)

In the framework ofthe general model discussed in Section
9.1.2, this notion leads to the assumption that the subject reports

.a detection ifat leastone of the two activation random variables
exceeds the criterion Aa. (Sometime~, different criteria are pos
tulated for the two channels. This assumption seems to be more
general. See, however, Section 9.3.) This means that the function
F has the form
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from two sensory channels. Special cases of themodeLcorrespond to spec- Sinlil~rly, for the noise trials,
ifications of the function F. '

The application ofthis idea in psychophysics can be traced back
toPirenne(1943)and plays an important role in current theo-

PrQbability .. summationcovers a 'class of models in, which the
improvement ofperformance resultingfroIIl having the stim~

ulation.delivered to two ormore channels is attributed to chance
alone. Forananalogy,consideragroup of n~2observers,
watchingthe same visual display. Suppose that the probability
p ofdetecting a faint stimulusis the same for allobservers and
thatt.he groupreports a detection ifat leastone ofthe n observers
claims to have detected the stimulus. Assuming that the ob
servers' responses are.independent, the detection probability
of the group is

Several particular cases of this model,which is also discussed
byOlzakandThomasinChapter7,_areconsidered.,.'rhes$!~cases

correspond to special 'forms, :'ofthe •function Fili:Eqs.{103),
(104), and (105).

9.·2. ProbabilitySummation

I ...·.... (l.-p)17, ~.'p.

'It is clear that the data collected by varying the payoff matrix
e are amenable to a receiver. operating.characteristic. (ROC)
allalysis(cf.Section 8). Applying the argument used in Section
8.2, we obtain as.a measure.ofthearea under the ROC curve,
which, you will recall from Section 8.2, isa measure of per
form,aIl,-ces independent of the. efr~ct~ofrespoIl;secriterion,
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Combination of the
two channels

F(U,•• , U2,xl

rizing, especially in visual perception. We shall limit our dis
cussion to a two-channel situation. (For the case of a large
number of channels, see Watson, Chapter 6, and Olzak and
Thomas, Chapter 7.)

In the framework ofthe general model discussed in Section
9.1.2, this notion leads to the assumption that the subject reports
a detection ifat least one of the two activation random variables
exceeds the criterion All. (Sometimes, different criteria are pos
tulated for the two channels. This assumption seems to be more
general. See, however, Section 9.3.) This means that the function
F has the form

F(s,t) = max{s,t}

in which max stands for the maximum in the set of numbers
{s,t}. (Thus max{s,t} = s iff s ;;;; t.) Using the assumption of
independence ofthe random variables, we obtain for the stimulus
trials,

(106)

1 PrOb{All ;;;; maxfUl,a,U2,%}}

1 Prob{All ;;;; Ul,a, Aa ;;;; U2,%}

1 PrOb{All ;;;; Ul,a}Pi-ob{All ;;;; U2,%}

Report
no detection

Figure 1.26. Ageneral random variable model for the pooling of information
from two sensory channels. Special cases of the model correspond to spec- Similarly, for the noise trials,
ifications of the function F.

1 - Prob{Vl,n ... All}Prob{V2,n' ... All}' (107)

1 - (1 - p)n;;;; p .

Several particular cases of this model, which is also discussed
~yOlzakand Thomas inChapter 7,are considered.Thes.~cases

correspond. to special forms. of the function F in Eqs. (103),
(104), and (105).

9.2. Prob~bility Summation

It is clear that the data collected by varying the payoff matrix
6 are amenable to a receiver operating characteristic (ROC)
analysis (cf. Section 8). Applying the argument used in Section
8.2, we obtain as a measure of the area under the ROC curve,
which, you will recall from Section 8.2, is a measure of per
formances independent of the effects of response criterion,

Probability summation covers adass of models in which the
improvement of performance resulting from having the stim
ulation delivered to two or more channels ia attributed to chance
alone. For an analogy, consider a group of Tt ;;;; 2 obaervers,
watching the same visual display. Suppose that the probability
p ofdetecting a faint stimulus is the same for all observers and
that the group reports a detection ifat least one ofthe n observers
claims to have detected the stimulus. Assuming that the ob
servers' responses are independent, the detection probability
of the group is

Abasic assumption is implicit in Eqs. (106)and (107), a
clear stat~mentof which is critical at this point.

9.2.1.• Weak Criterion Invariance. Within a yes-no para
digm involving a stimulus (a,x) and a noise (n,n'), the criterion
value Aa only depends on the payoff matrix 6. (This value is
t~usthe same on. stimulustrials and on noise trials.) This as
sumptionis inherent to an ROC analysis and practically ines
capable.

At this level ofgenerality, it is not clear that the predictions
of the model· are sufficiently constraining to be rejected by
av~lli~lE:ldata.Th.ep.egatiyeevidence, some ofwhich is reviewed
'bY:illakea.ndFox'(1973},is rnostiy circumstantial, by which
we mean that it has no direct bearing on the predictions formally
derivable fro:mthe assumptions. However, for (implicitly) fixed
6,Eq.(106) has been checked by various authors. Some refine
mentsoftheassumptions, considered below, lead to useful em
pirical tests.

9.2.2. .Strong Criteriol1.lnvariance. Consider the following
strengthening of the criterion invariance. The criterion value
Aa only depends on the payoffmatrix 6. Inparticular, for a gjven
payoff matrix, this value is constant over conditions varying
the intensities of the stimulus (a,x) and of the noise (n,n').

This assumption is frequently made (explicitly or not). It
lends itself to a straightforward empirical test. For example,
consider an application ofEq. (106) to a situation in which two
payoff matrices fh and 62 have been used, together with four
values of the variable a and six values of the variable x. The
data consist of 2 x 4 x 6 = 48 empirical frequencies of "yes"
responses, to be explained with 2 x 4 + 2 x 6 = 20 parameters.

i The application ofthis idea in psychophysics can be traced back This leads to a standard chi-square (or likelihood ratio) test,
I to Pirenne (1943) and plays an important role in current theo- with 48 - 20= 28 degrees of freedom. In the framework of

~.!..-------------.!
!



Prob.{UI,a ~.
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Pax (9) = 1 - '(I - Pl,a)(l ~2.%m, ~(9)] (112

Pnn' (6) (1 - Pl,n)(l P2,ri,)[1 - .·."1(9)] (113

pax(9)

and,iS·.sometimes····referrea't?as;tl:ie'high:thre$hold.model. ·1
Eq. (11~) PI,a and p2,xaretwoparameters sp~cifyingthe prob
abilities, when stimulus (a,x)ispresented, that the threshold
are exceeded in channels1 an~2, respectively. A "yes" respons
-is given ifthe threshold is exceededin at 'least one of th~ tw
channels. A."yes" .·responsemayalsoresult. from. a guess, in
case in which neither ofthe two thresholds is exceeded. Th
probability ofthis positive guess is "Ice), the value ofwhich ma
vary with thepayofflllatrix.Asimilar interpretation holds. fo
Eq. (113),whichcorrespondsto the noise trials aIld.introduce
two.additionalparatrietersPl,~,and P2,n' ·

The apparent popularity of this model isdifficulttojustif
sinceit makes the inescapable but unlikely prediction that th
ROCcurves in the binaural situation are .. straight .lines. Fo
visual contrast detection data,. this model was rejected co
vincinglybyNachmias (1981) in the framework of particula
assumptions on the parameters Pl,a, P2,x, Pl,n, andp2,n'.

Furtherdiscussion'regarding probability summation model
can be found in Watson,Chapter 6,andOlzakand Thomas
Chapter 7.

erality is only apparent, however. This must be understood
follows. Let ebe the set of all payoff matrices. To each pay
matrix e in e correspond. two criteria Aa,! and Ae,2' In oth
terms, there are two functions 9 ~. Aa,l, 9~. Aa,2, each of whi
maps e onto a real interval.. It is reasonable to suppose th
even. though' these functions' may be different, they genera
the same order on the set e.ofpayoffmatrices. That is, fora
two·9and 0' in e, we must have

SilnilarlyEq. (111) yields

By a simple mathematical argument, this means· that the
exists a continuous, strictly increasing function g,suchth
g(Aa,2)= Ae,I.But then Eq.(ll0} implies

Thus after transformingU2,xintog(U2,x)andV2,n' into g(V2,n')
the criteria are identical for both channels. We conclude tha
the two models areeqllivalent.Obviously, the distributions 0
therandomvariablesU2,x· andV2,n,may be modified by th
transformationg. For example, ifboth U2,xandV2,n' are norm
g(U2,x) and g(V2,n')' are normal onlyifgis a linear functio
This means that if particular forms of distributions are impos

. ,. by the .model, the above equivalence does not' necessarily' hol
The notion.ofprobability summation is often formalizeddiffe
ently (e.g., Nachmias, 1981}, interms of a two-state threshol
model in the spirit of Luce (1960, 1963a, 1963b) which wedi
cussed in. Section 8.9. This model is defined by thetwoequatio

'(~09)

Prob{max{g(U1,a),g(U2,x)}' >max{g(VI,n),g(V2,n')}}
(108)·

the strong criterion'invariance, this is essentially a test of the
independence of the·random. variables U1,a'and U2,x' To·the
best of our knowledge, no such test has been performed.

Notic~ that signal detection theory ·.is not •. used or even
needed here (the data only concernEq. (106». In fact, signal
detection theory was introduced explicitly to deal with situations
in which an assumption such as the strong criterion invariance
does not hold.

A rejection of this model could thus be attributed either to
a failure of the strong criterion invariance or to a failure of the
assumption ofindependence ofthe random variables. Dropping
the strong criterioninvariance, the model can be strengthened
in a different way, by making specific assumptions regarding
the distributions of the random variables. Obviously, there are
numerous possibilities, each of which leads to a specific form
of the· R·OC. curves. We shall not .enter here the details ofsuch
assumptions.

9.3. Remarks

A~ ..ind~ca~ed 'above, ..th~ ....probability..su~mation ...Illod~l.·ti.~fined
by Eqs. (106)and (l07) takesdifferent forms depending'o~ 'specific
assumptions regardingthedistribp.tions ofthe activation random
variables~ The.arbitrariness of the choice of the distributions'
should not be a cause of excessive concern (cf. Section 8.3).
Indeed,suppose that a particular version of the model involves
the fourrandomvariablesU1,a, U2,x;V1,n,and V2,n,.Nothing .
changes inthe predictionsjfthese'random,variablesaresubjected ,
to ... a .strictly. inc!easing' transformation,provided .that this
transformation. is the same 'for all.·variables.For·example, let
g be an arbitrary, strictly increasing function~ Starting. from
Eq. (105),with F as the maximum function, we have
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pa:c(e) = 1 - PrOb{Ul,a ~A6,1}Prob{U2,x ~A6,2}, (110)

Pnn,ce) = 1- PrOb{Vl,n~Aa,1}Prob{V2,1t'~Aa,2}' (111)

Occasionally (e.g., Nachmias, 1981),amodelis used in which
Eqs. (106Jand (107) are replaced bythe forms

Thusfor a given payoff matrix e, the criteria Ae,l. and Aa,2 cor
responding to each channel maybe different. The extra gen-

Thus the prediction for the area under theROC curve is un
affected by the transformation g. Notice. that this relative "ro
bustness"· of the prediction with regard to the particular form '

-'ofthe" distributions .. ca.nnot·be ". extended to other"combination
rules, that is, when thefunctionF is different from themaxim~
function. Two examples.of such combination rules will be briefly
considered in Section.9.4.

As specified by Eqs.(106)and (107), probabiiitysummation ..
assu:rnesthatthe same·criterionA6 is used for both channels.
AccordingtoEq. (106), for, instance, a "yes" response occurs
following the presentation ofa.stimulus (a,x) if

...

Pax (6) 1 (1 P1,a)(1
I -.y(e)] (112p2,x)[1

Pnn'(6) = 1 - (1 - P1,n)(1 - P2,n')[1 - "(6)] (113

and is sometimes referredtoasthehigh;threshoZd model. I
Eq. (112,) P1 a and P2 x are two parameters specifying the prob
abilities, when stim~lus (a,x) is presented, that the threshold
are exceeded in channels 1 a~d 2, respectively. A "yes" respon
is given if the threshold is exceeded in atleast one of the two
channels. A "yes" response may also result from a guess, in
case in which neither of the two thresholds is exceeded. Th
probability of this positive guess is "({6), the value ofwhich may!
vary with the payoff matrix. A similar interpretation holds for
Eq. (113), which corresponds to the noise trials and introduces
two additional parameters P1,n, and P2,n'.

The apparent popularity of this model is difficult to justify
since it makes the inescapable but unlikely prediction that th
ROC curves in the binaural situation are straight lines. Fo
visual contrast detection data, this model was rejected con
vincingly by Nachmias (1981) in the framework of particula1
assumptions on the parameters P1,a, P2,x, P1,n, and P2,n'· I

Further discussion regarding probability summation models
can be f~und in Watson, Chapter 6, and Olzakand Thomas~

\Chapter 7. I
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Thus after transforming U2,x into g(U2,x) and V2,n' into g(V2,n')
the criteria are identical for both channels. We conclude tha
the two models are equivalent. Obviously, the distributions <>

the random variables U2,x and V2,n' may be modified by th
transformation g. For example, ifboth U2,xand V2,n' are norm
g(U2,x) and g(V2,n') are normal only if g is a linear functio
This means that ifparticular forms of distributions are impose
by the model, the above equivalence does not necessarily hol
The notion ofprobability summation is often formalized diffe
ently (e.g., Nachmias, 1981), in terms of a two-state thre~hol
model in the spirit of Luce (1960, 1963a, 1963b) which we dis
cussed in Section 8.9. This model is defined by thetwo equatio

1

A8,l < Aa',l iff Aa,~ < Aa',2 .

erality is only apparent, however. This must be understood
follows. Let e be the set of all payoff matrices. To each pay
matrix e in e correspond two criteria Aa,l and Aa,2, In ot
terms, there are two functions e- Aa,!> 6 - Aa,2, each of whi
maps e onto a real interval. It is reasonable to Suppose t
even though these functions may be different, they genera
the same order on the set e ofpayoffmatrices. That is, for a
two 6 and 6' in e, we must have

Similarly Eq. (111) yields

By a simple mathematical argument, this means that the
exists a continuous, strictly increasing function g, such th
g(Aa,2) = Aa,l' But then Eq. (110) implies

either U1,a > Aa or U2,i > Aa . (109)

Thus for a given payoff matrix e, the criteria A8,l and Aa,2 cor
responding to each channel may be different. The extra gen-

Prob{g(max{U1,a,U2,x}) > g(max{V1,n,V2,n'})}

Prob{max{g(U1,a),g(U2,x)} > max{g(V1,n),g(V2,n')}}
(108)

Occasionally (e.g., Nachmias, 1981), a model is used in which
Eqs. (106) and (107) are replaced by the forms

the strong criterion invariance, this is essentially a test of the
independence of the random variables U1,a and U2,x. To the
best of our knowledge, no such test has been performed.

Notic~ that signal detection theory is not used or even
needed here (the data only concern Eq. (106)). In fact, signal
detection theory was introduced explicitly to deal with situations
in which an assumption such as the strong criterion invariance
does not hold.

A rejection of this model could thus be attributed either to
a failure of the strong criterion invariance or to a failure of the
assumption ofindependence ofthe random variables. Dropping
the strong criterion invariance, the model can be strengthened
in a different way, by making specific assumptions regarding
the distributions ofthe random variables. Obviously, there are
numerous possibilities, each of which leads to a specific form
of the ROC curves. We shall not enter here the details of such
assumptions.

9.3. Remarks

pax(e) = 1 - Prob{U1,a ~ Aa,l}Prob{U2,x .;;; Aa,2} , (110)

Pnn,(e) = 1 - PrOb{V1,n~ Aa,l}Prob{V2,n' ~ Aa,2}' (111)

As indicated abo"e, the probability summation .model.efefined
by Eqs. (106) and (107) takes different forms depending on specific
assumptions regarding the distributions ofthe activation random
variables. The arbitrariness .ofthe choice of the distributions"
should not be a cause of excessive concern (cf. Section 8.3).
Indeed, suppose that a particular version of the model involves
the four random variables U1,a, U2,x, V1,n, and V2,n,.Nothing
changes in the predictionsifthese randomvariables aresubjected
to a strictly. increasing transformation, provided that this
transformation is the same for all variables. For example, let
g be an arbitrary, strictly increasing function. Starting from
Eq. (105), with F as the maximum function, we have
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Thus the prediction for the area under the ROC curve is un
affected by the transformation g. Notice that this relative "ro
bustness" of the prediction with regard to the particular form

. of the distributions cannot be extended to othertombination
rules, that is, whenthe functionF is different from the maximum
function. Two examples of such combination rules will be briefly
considered in Section 9.4.

As specified by Eqs. (106) and (107), probability summation.
assumes that the same criterion Aa is used for both channels.
According to Eq. (106), for instance, a "yes" response occurs
following the presentation ora stimulus (a,x) if
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The same decison rule holds for the noise trials,· based· on a
sample of(VI,n,V 2,n') . Green and Swets (1974, p. 271) show that
if all four random variables are Gaussian, and in addition

Var(V1,n) ,

Var(V2,n') ,Var(U2,x)

For the same two-channel·paradigm, we consider here two other
possibilities for the form ofthe function F of the> general model
defined by Eqs. (103) and (104).

9.4.1. An Additive, Equal Variance, Gaussian Model. We
assume thatF is a binary addition, namely

1-48

9.4. Two Additive Combination Rules

F(s,t)=s+ t . then

Applications ofthis model to visualperception data are discussed
(114) in Kristofferson and Dember.(1958) and Green and Swets (1974).

Another combination rule

(117)The area under thetwo-channelROC curve, expressed by Eq.
(105), becomes

Let JJ.l,a, ~2,x, ~l,n, and f.12,n' be the expectations of the respective
random variables,. and suppose that their common variance is di,2
equal .. to 1. AssuIIlemoreover .t~a>t all four ran40m va:riables
are normally distributed. From Eq. (114) we obtain i~alsoconsidered'there.

di +d!2.

Prob{Ul,a +U2,x - V I,n V 2,n' > O} 9.5. Additive Conjoint Measu,rement

g(y) < {(a) + g(x). (118)((b)iftby< ax

by<ax ,

asthe datafor the tria1.Itis assumedthatthe.effect ofcomponent
aofstimu.lus (a,x) can berepresent~dbysome number, denoted
byf(al. Similarly,. the effect of component.x is·represen.ted by
anuniberg(x). These numbers can be interpreted as measuring
th'eintensitiesoftheactivationsevokedby the stimulus at
some neural locations. The model,hpwever, is noncommittal
in that.respect. The .basic assumption is that

A central notion in a number of models in this chapter is that
the. sensory system of the subject, when confronted with a mUl
tidimensfo'nal stimulus,. performs a. simple· arithmeticaloper-,
ation(e~g.~ addition, multiplication, subtraction). Often, this
operati()~,is at the kernel of a processmodeling other aspects
of the subject's performance· (e.g., probabilistic or cognitive),
such as In the models introduced in Section 9.4. ·Tlie analysis
ofsuch operations, to· the extent that they· can tnodel aspects

- ofscientific data, is the concern ofmeasurement theory, a case
ofwhich was discussed in Section 2. This subsection is devoted
toadiscussion ofan important special case, in which the effect
onthe organism ofa two-dimensional stimulus (a,x) is captured
by an addition of two numbers, f(a) + g(x).

Consider a two-alternative forced-choice (2AFC) paradigm.
OIle~ch"t.r-ial,the,subjectrispresented with two stimuli.(a,x)
andfb"y}.ForcQncreteness, supposethat as earlier. in this section,
these are pure tones presente<i binaurally. Thus aandb are
the inteIlsities of the· tone. in> the left auditory channel, and x
and y ar~th~ intensit.iesin the right auditory channel. The
subject~is.asked"whichof-(ajx),and(b.,y)seemsloudest. If (a,x)
is.chosen,.·theexperimenter'writes·'

(115)

(116)

<I>[(~2,x - ~2,n' )tY/2]

<I>[(f.Ll,a ... - .fJ.l,n)tv'2]

<1>( d!2.)

= <I>(dil ,

(ax(S,t)

fnn'(s,t)

= {I,a (S)f2,x(t)I{1,n (S){2,n,(t)

di,2 = (di+ dl;)tv'"2 ,

F(s,t)

= <P[(tkl,a+ J12,x

Prob{U1,a· > 'VI,n}

Prob{U2,x > V 2,n'}

By simple algebra, it follows that

This model iain the spirit of those discussed in Section 9.4,
except. that,····somewhat .unrealistically, it· is deterministic:· the

by the independence of the random variables. Thus when a' presentation of (a,x) .always evokes the same number ((a) +
stimulus (a,x) is·presented, the subject reports. a detection· if g(x). (By comparison, ... in the model· ofSection· 9.4.1, .each pre-

sentationof (a,x).determines·a sample ofa random.variable
Ul,a+U2~x.}Thisimplies that each presentationofapair·of

The last equation definesa,detertabilityind~xdl,2,forthetwo..
cha,nnel situation, .consistent with that intlroducedinSeetion
8.3 for the one-channel situation. Let d land d'2 be the detect..
ability· indices in the 2 one-channel situations. That is,

a prediction which can be.tested'by.methods discussedin SeCtion
8. '

9.4.2. Integration Model. Let fax be the jointdensity of
Ul,a andU2,x, and let fnn,be· tile joint density ofyl,n and V2:n';
let (1,a,f2,x,. fl,n, and f2,n,he the. densities .. of U1,a,'U2,x,Vllh
andV2,n', respectively.Ce.g., Green&,Swets,.1974). As.in.·Section
8.5, we supposet.hat the subject ,behaves asa statistician and
bases th'e· decision on the· computation of likelihood ratios. In
other terms, we assume that the function F has the form
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The same decison rule holds for the noise trials,· based· on a
sample of(VI,n,V 2,n') . Green and Swets (1974, p. 271) show that
if all four random variables are Gaussian, and in addition

Var(V1,n) ,

Var(V2,n') ,Var(U2,x)

For the same two-channel·paradigm, we consider here two other
possibilities for the form ofthe function F of the> general model
defined by Eqs. (103) and (104).

9.4.1. An Additive, Equal Variance, Gaussian Model. We
assume thatF is a binary addition, namely

1-48

9.4. Two Additive Combination Rules

F(s,t)=s+ t . then

Applications ofthis model to visualperception data are discussed
(114) in Kristofferson and Dember.(1958) and Green and Swets (1974).

Another combination rule

(117)The area under thetwo-channelROC curve, expressed by Eq.
(105), becomes

Let JJ.l,a, ~2,x, ~l,n, and f.12,n' be the expectations of the respective
random variables,. and suppose that their common variance is di,2
equal .. to 1. AssuIIlemoreover .t~a>t all four ran40m va:riables
are normally distributed. From Eq. (114) we obtain i~alsoconsidered'there.

di +d!2.

Prob{Ul,a +U2,x - V I,n V 2,n' > O} 9.5. Additive Conjoint Measu,rement

g(y) < {(a) + g(x). (118)((b)iftby< ax

by<ax ,

asthe datafor the tria1.Itis assumedthatthe.effect ofcomponent
aofstimu.lus (a,x) can berepresent~dbysome number, denoted
byf(al. Similarly,. the effect of component.x is·represen.ted by
anuniberg(x). These numbers can be interpreted as measuring
th'eintensitiesoftheactivationsevokedby the stimulus at
some neural locations. The model,hpwever, is noncommittal
in that.respect. The .basic assumption is that

A central notion in a number of models in this chapter is that
the. sensory system of the subject, when confronted with a mUl
tidimensfo'nal stimulus,. performs a. simple· arithmeticaloper-,
ation(e~g.~ addition, multiplication, subtraction). Often, this
operati()~,is at the kernel of a processmodeling other aspects
of the subject's performance· (e.g., probabilistic or cognitive),
such as In the models introduced in Section 9.4. ·Tlie analysis
ofsuch operations, to· the extent that they· can tnodel aspects

- ofscientific data, is the concern ofmeasurement theory, a case
ofwhich was discussed in Section 2. This subsection is devoted
toadiscussion ofan important special case, in which the effect
onthe organism ofa two-dimensional stimulus (a,x) is captured
by an addition of two numbers, f(a) + g(x).

Consider a two-alternative forced-choice (2AFC) paradigm.
OIle~ch"t.r-ial,the,subjectrispresented with two stimuli.(a,x)
andfb"y}.ForcQncreteness, supposethat as earlier. in this section,
these are pure tones presente<i binaurally. Thus aandb are
the inteIlsities of the· tone. in> the left auditory channel, and x
and y ar~th~ intensit.iesin the right auditory channel. The
subject~is.asked"whichof-(ajx),and(b.,y)seemsloudest. If (a,x)
is.chosen,.·theexperimenter'writes·'

(115)

(116)

<I>[(~2,x - ~2,n' )tY/2]

<I>[(f.Ll,a ... - .fJ.l,n)tv'2]

<1>( d!2.)

= <I>(dil ,

(ax(S,t)

fnn'(s,t)

= {I,a (S)f2,x(t)I{1,n (S){2,n,(t)

di,2 = (di+ dl;)tv'"2 ,

F(s,t)

= <P[(tkl,a+ J12,x

Prob{U1,a· > 'VI,n}

Prob{U2,x > V 2,n'}

By simple algebra, it follows that

This model iain the spirit of those discussed in Section 9.4,
except. that,····somewhat .unrealistically, it· is deterministic:· the

by the independence of the random variables. Thus when a' presentation of (a,x) .always evokes the same number ((a) +
stimulus (a,x) is·presented, the subject reports. a detection· if g(x). (By comparison, ... in the model· ofSection· 9.4.1, .each pre-

sentationof (a,x).determines·a sample ofa random.variable
Ul,a+U2~x.}Thisimplies that each presentationofapair·of

The last equation definesa,detertabilityind~xdl,2,forthetwo..
cha,nnel situation, .consistent with that intlroducedinSeetion
8.3 for the one-channel situation. Let d land d'2 be the detect..
ability· indices in the 2 one-channel situations. That is,

a prediction which can be.tested'by.methods discussedin SeCtion
8. '

9.4.2. Integration Model. Let fax be the jointdensity of
Ul,a andU2,x, and let fnn,be· tile joint density ofyl,n and V2:n';
let (1,a,f2,x,. fl,n, and f2,n,he the. densities .. of U1,a,'U2,x,Vllh
andV2,n', respectively.Ce.g., Green&,Swets,.1974). As.in.·Section
8.5, we supposet.hat the subject ,behaves asa statistician and
bases th'e· decision on the· computation of likelihood ratios. In
other terms, we assume that the function F has the form
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cz<ax.

9.6. Random Conjoint Measurement

The error term Eiy(a)isassumedto be a random variable with
a (uniquelydefined)medianequal.toO.. This model is in the
spirit of the additive conjoint measurement model discussed in
this section but may be applied to noisy data.

Since· the- scalesfandgare unknown, one may ask, .How
isEq. (119) constraining the data? Or, in other terms, under
whichconditioris (necessary orsllfficient}do scales (and gexist
satisfying Eq.(119)?Itturnsout that Eq.(119) imposes strong,
highly testable constraints on the medians ofthe randomvari
abIes Uxy(a).A simple argument demonstrating this fact is given
in Section 9.6.3.

9.6.3. Some Necessary Key Conditions. If T is a random
variable having a unique median v,we writeM(T)= v.The
following fact willbe useful: ifhis any real, strictly increasing
function, then·· M[h(T)] =. h[M(T)]. .(This follows· immediately
from the definition ofthe unique median ofT.) For simplicity,
we shall adopt the abbreviation

mersma, and Bunt (1972). However, Levelt and colleagues' pos
itive conclusions have·.recently (and rightly, in the opinion of
this writer) been criticized by Gigerenzer and Strube (1983).

The appeal ofmeasurement.modelsofthis kind is that they
offer, at least in principle, the possibility .of getting at thees
sentialdeterminants·ofthe subject's performance, from apsy...
chophysical viewpoint: the scale or. scales transforming the
physical input or inputs, the basic operati.on or operations per..
formed by the sensory system. A serious weakness ofsuch models
is that they are ill-equipped to deal with data variabilitY,which
c~aracteristicallyresults from psychophysical experimentation.
In Sections 9.6 and 9.7 we discuss some probabilistic versions
of the additive conjointmeasurement model considered here.

We begin with a slight modification ofthe .binaural loudness
paradigm~ . '

9.6.1. MatchingTa~k. As in the 2AFC paradigm, the
-subjectis, first presented with a binauraLstimulus (a,x), followed
by another stimulus (b,y).· The task is to modify the intensity
of b(for 'example, .by turning a dial)uIltil, bysuccessiveap

,... proximations, the two stimuliappear equally lO\1q. Thi8final
value of b is recorded. Typically, this·value varies.·across trials
(for fixed a, x, and y).

9.~.2.>'TheModel. Let us write Uxy(a), a random variable,
for the "final value of b yielding a match.· This notation seems
~ppropriatesincethis value depends on a,x, and y. (The reason
forthea.sYIl\metryin..·the···.notation-x, .y ..•as indices. and.a .•.in
parentheses---willbecome clear· in a moment.) In the deter...
mini~tic ..fr~mErW"0r~ of additive .. conjoint· .measurement,
'should appear as loud'as'(o,y) ifi' .

cy <. bx .andbz < ay

((c) +'g(z) < {(a) + g(i) ,

Addingthesetwoinequalities and canceling appropriately yields

SuIIlmarizing.this.·argument, ... we see that ,the m9de1specified
byEq.(118) holds only if

which in turn predicts that

and

((b) + g(z) < (Ca) +g(y)

According to the model, this can arise only if

In th~ .~e::lsur~ment liter~ttl:re.,~,his .. ~s ,It.I1.own~s·. the.do1J,q~e ..
cancellation condition. Itis illustrated· thus: '

f(c) +g(y) < ((b) + g(x) .

wheneverbz <ayandcy <. bx,then··cz .. <·.··.ax
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stimuli (a,x) and (b,y) results in the same choice by the subject,
a prediction which may be reasonable forsorne carefully selected
set of stimuli but would certainly not be acceptable in general.
It is not assumed that the numbers {(a), ((b), g(x), and so on,
are accessible to direct investigation. It may notbe immediately
clear that this model imposes strong constraints on the data,
but it does. Suppose indeed .that the· experimenter observes

In addjtion, a pairofindependence conditions are easily shown
to .benecessary: . . ,

1.ax <bx iff ay <by.
2.ax< ay iff bx<by.

(The v~rification.ofthe .• necessity is· left to the reader.) The
double-cancellation condition and the two independence con..
ditions are'the key axioms. of a model·that,measureIrient theory
tells us, implies the existence ofthe two.scales f and g satisfying
Eq. (118). We will not go into the details ofthis model, which
are quite technical (see, e.g., Roberts, 1979; or Krantzet aI.,
1971). It suffices to remember that ifthe data areto be explained

'by the additiye model specified by Eq.(118), then the. double..
cancellation condition and thetwo independence conditions must
be.· satisfied. ,"

An illustration ofan experimental testofthese conditions,
in binaural perception, can be found ina paper by Levelt, Rie..

and

cz<ax.

([Uxy(a)] = g(x) - g(y) + ((a) + Exy(a). (119)

mersma, and Bunt (1972). However, Levelt and colleagues' pos
itive conclusions have recently (and rightly, in the opinion of
this writer) been criticized by Gigerenzer and Strube (1983).

The appeal ofmeasurement models ofthis kind is that they
offer, at least in principle, the possibility .of getting at the es
sential determinants of the subject's performance, from a psy
chophysical viewpoint: the scale or scales transforming the
physical input or inputs, the basic operati,on or operations per
formed by the sensory system. A serious weakness ofsuch models
is that they are ill-equipped to deal with data variability, which
characteristically results from psychophysical experimentation.
In Sections 9.6 and 9.7 we discuss some probabilistic versions
of the additive conjoint measurement model considered here.

Ifb is replaced by the random variable Uxy(a), itseems reasonable
to balance the above equation by adding a.n error term in the
right member, which gives

((b) =g(x) ~g(y) +' ((a)
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or, equivalently,

((a) + g(x) = ((b) + g(y) ,

9.6. Random Conjoint Measurement

We begin with a slight modification of the binaural loudness
paradigm.

9.6.1. Matching Ta~k. As in the 2AFC paradigm, the
,subject isflrst presented with a binaural stimulus (a,x), followed
by another stimulus (b,y). The task is to modify the intensity
of b (for example, by turning a dial) until, by successive ap
proximations, the two stimuli appear equally loud. This final
value of b is recorded. Typically, this value varies across trials
(for fixed a, x, and y).

9.6.2.• The Model. Let us write Uxy(a), a random variable,
for the final value of b yielding a match. This notation seems
appropriate since this value depends on a, x, andy. (The reason
forthe asymmetry in the notation-x, y as indices and ain
parentheses-wilLbecome clear in a moment.) In the deter
ministicframeworkof additive conjoint measurement, (a,x)
should appear as loud as (b,y) iff .

z

cy<bx.

y

and

x

bz < ay

a

b

c

((c) + g(z) < ((a) + g(i) ,

((c) + g(y) < ((b) + g(x) .

Summarizing.this argument, we see that.the model specified
by Eq. (118) holds only if

Adding these two inequalities and canceling appropriately yields

((b) + g(z) < ((a) + g(y)

whenever bz < ay and cy < bx, then cz <ax

which in turn predicts that

In the measurement literature, this is. known as •the.ao@li!-
cancellation condition. It i~ iliustrated thus: . .

According to the model, this can arise only if
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stimuli (a,x) and (b,y) results in the same choice by the subject,
a prediction which may be reasonable for some carefully selected
set of stimuli but would certainly not be acceptable in general.
It is not assumed that the numbers {(a), ((b), g(x), and so on,
are accessible to direct investigation. It may not be immediately
clear that this model imposes strong constraints on the data,
but it does. Suppose indeed that the experimenter observes

In addition, a pair of independence conditions are easily shown
to be necessary:

1. ax<bx iff ay<by.
2. ax < ay iff bx < by.

(The verification of the necessity is left to the reader.) The
double-cancellation condition and the· two independence .con
ditions are the key axioms of a model that, measurement theory
tells us, implies the existence ofthe two scales{andg satisfying
Eq. (118). We will not go into the details of this model, which
are quite technical (see, e.g., Roberts, 1979; or Krantz et al.,
1971). It suffices to remember that if the data are to be explained
by the additive model specified by Eq. (118), then the double
cancellation condition and the two independence conditions must
be satisfied.

An illustration of an experimental test ofthese conditions,
in binaural perception, can be found in a paper by Levelt, Rie-

The error term £xyCa) is assumed to be a random variable with
a (uniquely defined) median equal to O. This model is in the
spirit of the additive conjoint measurement model discussed in
this section but may be applied to noisy data.

Since the scales { and g are unknown, one may ask, How
is Eq. (119) constraining the data? Or, in other terms, under
which conditions (necessary or sufficient) do scales{and g exist
satisfying Eq. (119)?It turns out that Eq. (119) imposes strong,
highly testable constraints on the medians ofthe random vari
ables Uxy(a). A simple argument demonstrating this fact is given
in Section 9.6.3.

9.6.3. Some Necessary Key Conditions. If T is a random
variable having a unique median v, we write M(T) = v. The
following fact will be useful: if h is any real, strictly increasing
function, then M[h(T)] = h[M(T)]. (This follows immediately
from the definition of the unique median ofT.) For simplicity,
we shall adopt the abbreviation
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x' .....-----+-----+---+--------.-,
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z-------+----~__-+-------~

which is equivalent to the cancellationrule, since {is a one-to
one.function.· Afurther understanding ofthis condition.will be
obtained from a discussion ofhow it can be tested. (See Section
9.6.4') Using similar methods, another condition can also be
shown.Jobe ,l'le.cessary.

9.6.~.2.· ,CommutativityRule.

mxy[mzw(a)]=mzw[mxy(a)] ,

whenever .all four medians are' defined.
In.oth~rJ~rms,ifwe pick.one.intensity a in the left channel·· ..

and fourintensitiesx, y, z, and w in the rightchannel and take
the two mediansM[Uzw(a)] =mzw(a) ;;'bl and M[Uxy(a)] =
mxy(a} = b2and, next, the two medians M[Uxy(b1 )] = mxy{bI )
andM[Uzw(b2)1= ·mzw(b2),thenthe two medians mxy(b1) and
mzw(b2) should be equaL The commutativity rule is illustrated

,inl?igu:r~l·.~~·l '.. ' .. . .. ". .
It~c~~beshowri thatif continuity assumpt~onsaremade,

then the implication can be 're'V~:sed: the cancellation rule and
the commutativity ruletog~therimply that Eq. (120) holds for
somescalesfand g.A proofofthisfact can be found in Falmagne
(tf)79}.,c_:..~

~~;&:...-. ~:-::" ~

9.6.4.;~··< A Test.'A testof the cancellation rule could proceed
as follows. '

Step'l.' .... Chooseone .. intensity a .in the left .channel and
threeintensities' x,y,' and z in the right channel. Have the
subject find .anintensity b in the left channel, sothat·.(b,
z)matches .(a,y) ·inloudness.Repeat·2p times.·Orderthese
2p'+ lvaluesbf~b2··~·· ... ~b2p+I~·Thenbp+iisanestimate
ofmyz(a}.

Step 2. Ha.veth.e subject find an intensityc such that (c,
y) matches (bp +1,X) in loudness. Repeatqtimes. 'The obtained
e~pirica~distribution is denQted·byD.
Step 3. Have the subjectfind an intensityd, suchthat
(d,zJmatches (a,x). Repeat·l!- times. The obtained empirical
distribution is denoted It.
Step 4. Test whether Uxy(bp +l) and Uxz(a) have the same
median, for example, by performing a .median test com..
paringD and D'. (This test is known to be reasonably robust
to a .difference. in. the shape of the •.. distributions; cf.. Pratt,
1964.) .. . ...

mzw[mXy(a)] = mxy[mzw{a)] t mzw(a) a
mXy(a}

Figure 1.28. Commutativity rule. The conventions are similar to those of
Figure 1.27. The four distributions are those of Uxy(a), Uzw(a),Uxy [mzw(a)],
and Uzw[mzy(a)]. The four curves are the "isoloudnesscurves" of (a, x), (a,
z), [mzw(a), x], and (mxy(a),w].) (From]. C. Falmagne, Random'conjoint
measurement and, loudness 'summation, Psychological Review,B3. .Copyright
1976 byAmerican Psychological Association. Reprinted with permission.)

(120)

g(y) + f[lnyz(a)]

g(y) + ,f{f~I[g(y)

- g(z) + f(a)]}

g(x)-g(y) + g(y)

g(x)

g(x)

mxy(a) = f-1 [g(x) - g(y) + f(a)] ,

M{{[Uxy(a)]} = ({M[Uxy(a)]} = g(x) - g(y) + ((a)

which {-I is the inverse of the scale (From this equation,
following condition is easily derived.
9.6.3.1. Cancellation Rule.

r the median ofthe.matching'random variable Uxy(a).Taking
ediansonboth sides ofEq. (119) yields -

r, .equivalently,

mxz(a) =... mxy[myz(a)] ,

We 'conclude that

whenever all three medians are defined.
This condition, which is illustrated in Figure, 1.27, is the

counterpart·in thisprobabilistic framework·ofthe double-can..
cellation condition encountered in additive conjoint measure
ment. It,.has.an,elegant,compactexpressiQnbutappears,some..
what·abstract at first. A good grasp of this condition requires'
careful study.Tobeginwith,noti~e'that it only concerns the
"observabl~",medians of-the matc~ing random. variables. (the
unknown, scalesf and g have been ',eliminated). ,Let 'us show
how the cancellation rule follows from Eq. (120). 'Successively,

i myz(a)mxz(a).=mxy[myz(a))

~igure1.27. Cancellation rule. The three distributions of the figure are
~hose of Uxz(a),UXY [myz(a)]andUyz(a).Thethreecurves are the "isoloudness
~urves"of(a, x), [myz(a), xl and (a,y).) (See also section 9.6.4.) (FromJ.C.
falmagne,.·.Random.·conjoint. measurement··and ·.loudness ·summation, .. Psy
f;hologicaJ Review, 83. Copyright 197Gby. AmericanPsychplogical Asso
~iation. Reprinted with permission.)

f
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MU[Uxy(a)]} = ({M[Uxy(a)]} = g(x) - g(y) + ((a)

wt----

y ....----

z~---+----=~-+_---===::::::.,

X't-----+----+-+----4

(120)mxy(a) = rl[g(x) - g(y) + {(a)) ,

the median ofthe matchingrandom variable Uxy(a). Taking
'littJledians on both sides of Eq. (119) yields

whenever all four medians are defined.
Inotherterms, ifwe pick one intensity a in the left channel

and four intensities x, y, z, and w in the right channel and take
the two medians M[Uzw(a)) = mzw(a) =b l and M[Uxy(a)] =
m.:y(a) = b2 and, next, the two medians M[Uxy(b l )] = mxy(b1)

andM[Uzw(b2)J = mzw(b2),.then the two medians m.:y(bl ) and
mzw(b2) shQuld be equal. The commutativity rule is illustrated
in Figur~:L.28., ••••.•• ,'.•' I

It can be.shown that if continuity assumptions are made,
then the implication can be reversed: the cancellation rule and
the commutativity rule together imply that Eq. (120) holds for
some scales {andg. A proofofthis fact can be found in Falmagne
(1976).....

9.6.4. - A Test••·c A test of the cancellation rule could proceed
as follows.

Step' 1. Choose one intensity a in the left channel and
threeintensities x, y, and z in the right channel. Have the
subject find an intensity b in the left channel, so that (b,
z) matches (a,y) in loudness. Repeat 2p times. Order these
2p + 1 values bl "" b2 "" ... ""b2p+I; Then bp+Iis an estimate
of~(a).

Step' 2. Have the subject find an intensity c such that (c,
y) matches (bp + hX) in loudness. Repeat q times. The obtained
empirical distribution is denQted by D.
Step 3. Have the subject find an intensity d, such that
(d,z) matches (a,x). Repeat k times. The obtained empirical
distribution is denoted D'.
Step 4. Test whether Uxy(bp +1) and Uxz(a) have the same
median, for example, by performing a median test com
paring D and D'. (This test is known to be reasonably robust
to a differe:nce in the shape of the distributions; cf. Pratt,
1964.)

which is equivalent to the cancellation rule, since {is a one-to
one function. Afurther understanding of this condition will be
obtained from a discussion ofhow it can be tested. (See Section
9.6.4.) Using similar methods, another condition can also be
shown,to be necessary.

9.6.3.2•. Commutativity Rule.

mzw[mXy(a)) = mxy[mzw(a)] t mzw(a) a

mXy(a)

Figure 1.28. Commutativity rule. The conventions are similar to those of
Figure 1.27. The four distributions are those of Uxy(a), Uzw(a), Uxy [mzw(a)l,
and Uzw[mZy(a)]. The four curves are the "isoloudness curves" of (a, x), (a,
z), [mzw(a), x], and [mxy(a), w].) (From J. C. Falmagne, Random'conjoint
measurement and loudness summation, Psychological Review, 83. Copyright
1976 by American Psychological Association. Reprinted with permission.)

:We conclude that

f{mxy [myz (a)]}

in which r I is the inverse of the scale f. From this equation,
the following condition is easily derive<1.

9.6.3.1. Cancellation Rule.

g(x) - g(y) + g(y) - g(z) + ((a)

- g(z) + {(a)]}

x .....--~ ---,....."..

y .... k----==""""'+-------

z-.--t-------

I a m,~(a) m",(a) ; m,,[m,,(a»)

rigure 1.27. Cancellation rule. The three distributions of the figure are
~hose of Uxz(a), UXy [myz(a)J and Uyz(a). The three curves are the "isoloudness
~urves" of (a; x), [myz(a), xl and (a, y).) (See also secti,on 9.6.4.) (From j. C.
falmagne, Random conjoint measurement and, loudness summation, Psy
Ehological Review, 83. Copyright 1976 ,by American Psychplogical Asso
iiation. Reprinted with permission.)
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whenever all three medians are defined.
This condition, which is illustrated in Figure 1.27, is the

counterpart in thisprobabilisticframework ofthe double-can
cellation condition encountered in, additive conjoint measure
ment. Ithasanelegant, compaett!xpressiQn butappears some
what abstract at first. A good grasp of this condition requires

Icareful study. To begin with, notice that it only concerns the
"observable" medians of the ma.tching random:, variables (theIunkno\lY'n scales ( and g have been eliminated). Let us show

Ihow the cancellation rule follows from Eq. (120). Successively,
j

If{mxy[~(a)]} g(x) g(y) + ([Tnyz(a)]

g(x) g(y) + (U-I[g(y)
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g(y)J ·

F{[f(a) + g(x)]/[f(b) + g(x)]}

F[f(a) + g(x)- ((b)

Pax,by

Pax,by

9.8. HOri1ogefleityla""s.-

There is a class of empirical laws that~p.eservesserious consid
eration by the psychophysicist.. (Let us avoid. both. misunder
standing and. a philosophical trap. By. "law" we mean an im
portantequation putportingtoexplain a body of data. The
equation derives itsimportance,andthusthe label "law,"from
thatof the data· to be' explained,from the consequences of the
equation regardingfeasible theories, and possibly also from the
simplicity ofits form.' Scientific usage indicates that complete
accuracy of the prediction.isn'ota major requirement,e.g.,the
failure of Boyle's law at low temperature.) Examples of laws
in that class are provided by twoforms ofWeber's law encoun
tered in Section 7. As defined in Section 7.2.3, it constrains the
psychometric .functions and takes the form
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P~,by = F[f(a)g(x) - {(b)g(y)] . (127)

{

linear '} {.independent ofx;
k is.. strictly convex·. iff Pax,bx is strictly increasing in x;

strictly concave .. strictly. decreasing in x.

and the median are equal.) The model specified by Eq. (121)
can thus be tested by checking whether the cancellation and
commutativity rules are satisfied empirically by the expectations
E[Vxy(a)].·A number of special cases ofthis.model·are of interest,
the defining equations of which are listed below. Note that the
function kin Eq. (124) is assumedto be strictly increasing and
continuous.

Pax,by = F{k[f(a) + g(x)] -k[fCb) + g(y)]}. (124)

(We recall thatstrictlycpnvexmeans curved upward and strictly
concavem~ans.curved ·downward; •. cf.· ••.Section ... 7.4.) Important
examples of (strictlyJ convex and concave functions are the log
arithmic'.and.•..·expone~tial.·functions ...Observe in·this .connection
that each of the Eqs.(125), (126), and (127) follows fromEq.

,(124) by,assumingthatkis a linear; a logarithmic, or anex~
ponentialfunction,respective~y.(Obviously, a change of no
tations vis-a.-vis. functions F, l, and g is taking place between
Eqs.(124) and (125},(126),and(127).

These models have been applied by Falmagne and colleagues
(1979) to binaural loudness data collected ~n a series of exper
.iments~using the,2.t\,.FC. paradigm. Aspectal case ofEq.. (126)
was found to yield a goodfit. (See, however,.Gigerenzer & Strube, '
1983.) More·will be said about this study i~ Section 9.8.

Diagnostic properties permitting one to sort out these models
have been developed (Falmagne, 1979). ·The. behavior()f the

...function a "'~'. Pax,bx is.·particularly. instructivein this. respect.
Assuming that Eq. (124) holds, it can be shown, for example
(FalInagne'et'at, 1979),.that, for a'> b,thEffunction

(122)F{s,t) = .5 iff s = t .

Pax,by = ,FTf(a)+g(x),f(b)+g(y)] ,. (121)

in whichthe'real-valued.fun<;tionsF,f, andg in,the right member
are unspecified,except for monotonicity and continuity prop
erties: allthreefunctions are continuous, F is strictlyincreasing
in the first variable and strictly decreasing inthe secondvariabl~,
and f andgarestrictly increasing. We also assume that the
function Fin Eq. (121) satisfies the following balance property
(seethe definition in Section 3.5.1):'

The·connections between this· model and that previously· dis
~ussedunder the label random conjoint·measurement·mustbe
~ppreciated. ·Consider a situation in 'Yhich·th~.experimenter,

an expert in adaptive methods (see Section 6), fixes the values
of a, x, and yin Eq. (121) and has the subject's performance
-converging over trials-say, using stochastic approximation
to apoint{3 satisfying

f(a) .+g(x} = 'f(f3} + .g(y)" ,

The estimated value of {3 is actually a random variable, the
distribution ofwhich depends on a, ~,andy.Under reasonable,
differentiabilityassumptions (see Section 6.2.1), the asymptotic
distribution of this random variable is normal and has an ex
pectationequal to·· (3.Let us denote this ,asymptotic. random
variable by Vxy(a).Noticethat, usingEq. (122),

P~,~y=F[f(a) + g(x),f({3)+g{y)] = .5 .

E[Vxy(a)] = (--l[g(x) .~.g(y) + f(a)] , (123)

9.7. Probabllistic·Conjoint Measurement

Asreportedin a number ofpapers, Falmagne and his coworkers
have investigated another way of injecting statistical consid
erations into additive conjoint measurement (Falmagne, 1978,
1979; Falmagne&Iverson,.1979; Falmagne, Iverson,.& Mar
covici, .1979). Suppose that, in a 2AFC paradigm, the subject
mustselectone ofthe 2. two-component stimuli. (cz,x) and (b,y).
As before, we assume that a,b,x, and y are numbers denoting
physicalvariaJ>1es.·.. Let .Pax,by .~e:theprobab~lity.·. that. (a,x)js,
chosen over (b,y). A general additive model is embodied inthe
equation

A· similar test can. be designed for· the· cancellation rule.· A
discussion regarding the soundness of such procedures can be
found in Falmagne (1976).

Gigerenzer and Strube (1983) have applied this model to
binaural loudness data. The hypothesis thatthe two auditory
channels are additive, in the sense ofEq.(119), is convincingly
rejected. The datafavor a model in which one channel dominates
when its intensity sufficiently exceeds thatof the other.

In words, a psychometric function is invariantundermultipli
cation of the intensities· of the standard and the stimulus by

(128)P'AaCAX) = Pa(x) ~

whichis, for all practicalpurposes,equivalent toEq. (120) con
straining ·themedians, in' our discussion of random conjoint
measurement.·(Indeed, for normal distributions the expectation
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9.7. Probabilistic Conjoint Measurement

Pax,by = F[f(a) + g(x),f(b) + g(y)] , (121)

(126)

g(y)]. (125)

F{[f(a) + g(x)]I[f(b) + g(x)]}

F[f(a) + g(x) - f(b)Pax,by
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9.8. Homogeneity laws·

{

linear } {independent of x;
k is. strictly convex. iff Pax,bx is strictly increasing in x;

strictly concave strictly decreasing in x.

(We recall that strictly convex means curved upward and strictly
concave means curved downward; cf. Section 7.4.) Important
examples of (strictly) convex and concave functions are the log
arithmic and exponential functions. Observe in this connection
that each of the Eqs. (125), (126), and (127) follows from Eq.
(124) byassumingthatkis a linear,a logarithmic, or an ex
ponential function, respectively. (Obviously, a change of no
tations vis-a-Yisfunctions F, f,and g is taking place between
Eqs. (124) and (l25), (126), and (127).

These models have been applied by Falmagne and colleagues
(1979) to binaural loudness data collected in a series of exper
iments, using the2AFC.paradigm. A spectal case ofEq. (126)
was found to yield a good fit. (See, however, Gigerenzer & Strube,
1983.) More will be said about this study i~ Section 9.8.

Pax,by = F[f(a)g(x) - f(b)g(y)] . (127)

Pax,by = F{k[f(a) + g(x)] - k[f(b) + g(y)]}. (124)

and the median are equal.) The model specified by Eq. (121)
can thus be tested by checking whether the cancellation and
commutativity rules are satisfied empirically by the expectations
E[V>:y(a)]. A number of special cases ofthis model are ofinterest,
the defining equations of which are listed below. Note that the
function k in Eq. (124) is assumed to be strictly increasing and
continuous.

Diagnostic properties permitting one to sort out these models
have been developed (Falmagne, 1979). The behavior of the

.function a ~ Pax,bx is particularly instructive in this respect.
Assuming that Eq. (124) holds, it can be shown, for example
(Falmagne etal., 1979),that for a >.bi the function

(122)F(s,t) = .5 iff s = t .

As reported in a number ofpapers, Falmagne and his coworkers
have investigated another way of injecting statistical consid
erations into additive conjoint measurement (Falmagne, 1978,
1979; Falmagne & Iverson, 1979; Falmagne, Iverson, & Mar
covici, 1979). Suppose that, in a 2AFC paradigm, the subject
mustselectoneofthe 2 two-component stimuli (a,x)and (b,y).
As before, we assume that a, b, x, andy are numbers denoting
physical variables. Let P ax,by. be the probability .that. (a,x) cis
chosen over (b,y). A general additive model is embodied in the
equation

The connections between this model and that previously dis
~ussed under the label random conjoint measurement must be
j:l.ppreciated. Consider a situation in which the experimenter,
an expert in adaptive methods (see Section 6), fixes the values
of a, x, and y in Eq. (121) and has the subject's performance
converging over trials-say, using stochastic approximation
to a point ~ satisfying

in which the real-valued funGtionsF,f, andg inthe right member
are unspecified, except for monotonicity and continuity prop
erties: all three functions are continuous, F is strictly increasing
in the first variable and strictly decreasing in the second variable,
and f and g are strictly increasing. We also assume that the
function Fin Eq. (121) satisfies the following balance property
(see the definition in Section 3.5.1):

A similar test can be designed for the cancellation rule. A
discussion regarding the soundness of such procedures can be
found in Falmagne (1976).

Gigerenzer and Strube (1983) have applied this model to
binaural loudness data. The hypothesis that the two auditory
channels are additive, in the sense ofEq. (119), is convincingly
rejected. The data favor a model in which one channel dominates
when its intensity sufficiently exceeds that of the other.

Pax,~y = F[f(a) + g(x),f(~) + g(y)] = .5 .

The estimated value of ~ is actually arandom variable, the
distribution of which depends on a, x, .andy. Under reasona1;>le
differentiability assumptions (see Section 6.2.1), the asymptotic
distribution of this random variable is normal and has an ex
pectation equal to ~. Let us denote this asymptotic random
variable by Vxy(a). Notice that, using Eq. (122),

f(a) + g(x) = f(~) + g(y) ,

and thus

E[Vxy(a)] = r 1 [g(x) -g(y) + f(a)] , (123)

There is a class of empirical laws that,deserves serious consid
eration by the· psychophysicist. (Let us avoid both misunder
standing and a philosophical trap. By "law" we mean an im
portant equation purporting to explain a body of data. The
equation derives its importance, andthus the label "law," from
that of the data to be explained, from the consequences of the
equation regarding feasible theories, and possibly also from the
simplicity of its form.· Scientific usage indicates that complete
accuracy of the prediction is nbt a major requirement, e.g., the
failure of Boyle's law at low temperature.) Examples of laws
in that class are provided by two forms ofWeber's law encoun
tered in Section 7. As defined in Section 7.2.3, it constrains the
psychometric functions and takes the form

In words, a psychometric function is invariant under multipli
cation of the intensities of the standard and the stimulus by

which is, for all practical purposes, equivalent to Eq. (120) con
straining the. medians, in our discussion of random conjoint
measurement. (Indeed, for normal distributions the expectation

P>"a(t..x) = Pa(x) • (128)
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the same constant 1\ > O. Equivalently (theorem in Section
7.2.6), Weber's law.concerns the 'Weber functions and states
that

(129)

We recall that a real-valued function h of n real variables is
homogeneous ofdegree f3 iff

THEORY AND METHODS

three equations are easy to discriminate experimentally., For
instance, Eq. (132) can be eliminated immediately, as a model
for binaural loudness, since it predicts thatPax,by is decreasing
in x and increasing in y. A different way of separating these
equations leads us to introduce two other homogeneity laws,
each of which is"'a strengthening of the conjoint Weber law:

Strong Conjoint Weber Law Type ,I (SeWI)

Pax,by = P(Aa)(Ax)J(Tb)(TY)

for all A > 0 (see Section 7.2.2). Thus Eqs. (128) and (129) mean
that the functionsp and il are homogeneous of degree 0 and 1,
respectively.

A couple of additional examples of homogeneity laws will
be' discussed. They show that such laws. are typically easy to
verify experimentally and tend to have strong implications on
theorization. IfWeber's law is any indication; they may: have
a more durable irnpact.than specific process models, a prospect
that justifies' the space allocated here to this' topic.

No proofofany ofthe results discussed below will be given.
.Incidentally, we' mention' that' the. arguments used to derive '
the theoretic'al'consequences ofhomogeneity laws often appeal
to results from a field ofmatheIIl~tics called fu(tCtional equations,
an introduction to which the re~der ,can findjn Aczel (1966).

~.8.1. The ,Conjoint Weber Laws. Let ,us' go back to the
2AFCparadigm used by Falmagne' and colleagUes (1979), in'
which"the subject was required to compare binaural stimuli
(a,x)~and(b,y). A test ofthe following generalization ofWeber's
law was performed:

PCAa)(AX)J(Ab)(AY) =Pax,by ·

That is, using the decibel scale, the choice probability does not
vary when the same number of decibels is added to all four
intensities. This prediction, called the conjoint Weber law, was
found to l;>e well supported by the data, at least for the relatively
modest range of stimulus intensities considered in thee:x:peri~

ment. The importance ofthis result froma'theoretical standpoint
should 'not be underestimated. Researchers in' this field are
concerned with the hypothesis that 'the two auditory channels
mayb~ additiye. Asin~icated.i:[)."Sect~on9.7"."a",p()ssi~lefor..
"maliz21tion of this notion lies In JEq: (121)." . ,':" ..

in which the functionsF,f, and g are unspecified, 'except' for
continuity and monotonicity properties. Falmagne and Iverson
(1979) ,show that if both the conjoint Weber law andEq. (121)
hold, then the choice probabilities must have one ofthe following
three 'forms:

(131)

(132)

in which f3 and 'Y' are, constants" G is strictly' increasing, and
continuous, and Q is continuous, strictly increasing in the first
variable and strictly decreasing in the second variable. These

Strong Conjoint Weber Law Type 11 (SeWII)

Pax,by = ,P(Aa)(Tx),(Ab)(TY) •

These equations ,are assumed to hold for all positive a, b, x"y,
A,; ~nd T•.These twoJawsprovidea sharp method to distinguish,
between Eqs.(130), (131), and (132), from an experimental
standpoint:-In:particular; itis easytoprove that sweI isequiv~
alent toEq. (132). It can also be shown that the additive form
Eq.(121).t()~etherwith·SCWII. is equivalentto Eq, (13l). A

'useful c'onclusion follows: if the conjoint Weber law holds, but
both SCWI 'andSeWII fail, then the' additive formEq. (121)
has I!ecessarily the form of Eq. (130).

.;This exa,mple' shows how' the experimental testing ,of ho
Inogenelty laws (with positive or negative outcomes) may result'
in'a,'considerable'strengthening of the, hypotheses ofa modeL
Following is another example,along the same lines but with a
diffete;nt. motivationand a different paradigm.

9.8.2. Shift Invariance ,in Loudness'Recruitment. A tone
embeddedin Ilolsedoes not appear as loud as the same tone in
quiet. As the intensity ofthe tone increases, however, the sub
jective difference tends 'to' disappear. In psychoacoustics, this
phenomenon is known as loudness recruitment. Let us denote
by <p(x,n) the intensity of a tone in quiet matching an intensity
x of the" same tone embedded in a noise of intensity n.These
matc;hing functions lwere'recently investigated" by Iverson and' .
Pavel (1981a, 1981b; see also Pavel, 1980),'whodemonstrate'd
that~o an excellentapproximation the following property was
satisfied by the dat~: for' some f), > 0 and all A >,0

(133)

They lfi:vestigated the theoreticalcons~quencesof this property,
which they calledshift:invariance.The choice of this name is
justified by a geometrical interpretationofEq. (133), an illus
trationof which is given in Figure 1.29. Shift invariance can
be ,seen, as 'a.'homogeneity'property. 'under a slight disguise:
defining the function tV"

it follows that

A\jJ(X,Y) •

That is, \jJ is homogeneous ofdegree 1.
Asin the preceding example, it may be asked whether shift

invariance may be assumed in conjunction with some general,
reasonable model" with the effect of strengthening the model
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the same constant X > O. Equivalently (theorem in Section
7.2.6), Weber's law concerns the Weber functions and states
that

(129)

We recall that a real-valued function h of n real variables is
homogeneous of degree ~ iff

THEORY AND METHODS

three equations are easy to discriminate experimentally. For
instance, Eq. (132) can be eliminated immediately, as a model
for binaural loudness, since it predicts that Pax,by is decreasing
in x and increasing in y. A different way of separating these
equations leads us to introduce two other homogeneity laws,
each of which is·a strengthening of the conjoint Weber law:

Strong Conjoint Weber Law Type I (SCW!)

Strong Conjoint Weber Law Type n (SCWn)

These equations are assumed to hold for all positive a, b, x,y,
X, J:tnd 'r;These two laws provide a sharp method to distinguish
between Eqs.(130),. (131), and (132) from an. experimental
standpoint:In particular, it is easy to provethat SWCI isequiv
alent toEq. (132). It can ~lso be shown that the additive form
Eq.(21), to?etherwith scwn, is equivalent toEq. (131). A
useful conclusion follows: if the conjoint Weber law holds, but
both SCWI and scwn fail, then the additive form Eq. (121)
has~ecessarily the form of Eq. (130).

··This example· shows how the experimental testing of ho
mogeneity laws (with positive or negative outcomes) may result
in a considerable strengthening of the hypotheses of a model.
Following is another example, along the same lines but with a
diffeientmotivation and a different paradigm.

9.8~2. Shift Invariance in loudness Recruitment. A tone
embedded in noise does not appear as loud as the same tone in
quiet. As the intensity ofthe tone increases, however, the sub
jective difference tends to disappear. In psychoacoustics, this
phenomenon is known as loudness recruitment. Let us denote
by cp(x,n) the intensity ofa tone in quiet matching an intensity
x of the. same tone embedded in a noise of intensity n. These
matching functions iwere recently investigated by Iverson and
Pavel (1981a, 1981b; see also Pavel, 1980), who demonstrated
that to an excellent approximation the following property was
satisfied by the data: for some 9 > 0 and all A > 0

for all X> 0 (see Section 7.2.2). Thus Eqs. (128) and (129) mean
that the functions p and Il are homogeneous of degree 0 and 1,
respectively.

A couple of additional examples of homogeneity laws will
be discussed. They show that such laws are typically easy to
verify experimentally and tend to have strong implications on
theorization. IfWeber's law is any indication, they may have
a more durable impact than specific process models, a prospect
that justifies the space allocated here to this topic.

No proofofany of the results discussed below will be given.
Incidentally, we. mention· that' the. arguments used to derive·
the theoretical consequences of homogeneity laws often appeal
to results from a field ofmathematics cal1edfU~tionalequations,
an introduction to which the re~dercanfind;inAczel (1966).

9.8.1. The Conjoint Weber laws. Let us go back to the
2AFC paradigm used by Falmagne and colleagUes (1979), in
which the subject was required to compare binaural stimuli
(a,x)cand (b,y). A test ofthe following generalization ofWeber's
law was performed:

P(}\a)(Ax),(Ab)(AY) = Pax,by .

That is, using the decibel scale, the choice probability does not
vary when the same number of decibels is added to all four
intensities. This prediction, called the conjoint Weber law, was
found to be well supported by the data, at least forthe relatively
modest range of stimulus intensities considered in the experi~

ment. The importance ofthis result from atheotetical standpoint
should not be underestimated. Researchers in this field are
concerned with the hypothesis that the two auditory channels
may be additive. As indicatedinSection9.7,a possible for-
malization of this notion lies inEq. (121). . ..

(133)

Pax,by = F[ f(a) + g(x),f(b) + g(y)] ,

in which the functions F, f, and g are unspecified, except for
continuity and monotonicity properties. Falmagne and Iverson
(1979) show thatif both the conjoint Weber law and Eq. (121)
hold, then the choice probabilities must have one ofthe following
three forms:

Theyihvestigated thetheotetical consequences of this property,
which they called shiftinvariance.Tlle choice of this name is
justified by a geometrical interpretation of Eq. (133), an mus
trationof which is givenin FigUre 1.29. Shift invariance can
be seen as a homogeneity property under a slight disguise:
defining the function I/J,

Pax,by = G[(a~ + 8x~)!.(b~ + Sl)] (130)

(131)
it follows that

I\I(x,y) IIcp(x,y) ,

P ax,by = Q[a/x, bly] , (132)
XI\I(x,y) .

in which ~ and 'Y are constants, G is strictly increasing and
continuous, and Qis continuous, strictly increasing in the first
variable and strictly decreasing in the second variable. These

That is, 1\1 is homogeneous of degree 1.
As in the preceding example, it may be asked whether shift

invariance may be assumed in conjunction with some general,
reasonable model, with the effect of strengthening the model



(137)
u(a) + u(b)

2
u[B (a,b)]

B [B (a,b),B(c,d)] = B [B (a,c),B (b,d)] ,
i

'. ", . ,... ".. ..J' ' ..: ,.'

which' is. often·referred. to as bisymmetry.· The easy proof that
Eq. (137) impliesbisymmetry is left to the reader. This impli
cation can be reversed; under generial ,continuity and monoton-

which yields Eq. (139) since u is a one-to-one function. Aless
obvious consequence of Eq. (137) is the condition

u[B(a,a)]=,.[u{a) + u(a)]f.2 =. ,u(a)

TONE IN NOISE (dectbels)

Figure 1.30. Best fit of Eq. (135) to scale data of Stevens and Guirao (1967).
(From G. J. Iverson & M. Pavel, On the functional form of partial masking
functions in psychoacoustics, Journal of Mathematical Psychology, 1981,
24. Reprinted with permission.)
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in which the function u is assumed to be strictly increasing and
continuous but is, otherwise arbitrary. The idea behind this
representation is that the subject performs the task by computing
the arithmetic average of a and b. This eomputation,·however,
is not (necessarily) carried out in the physical scale, but may
involve instead some unknown psychophysical scale, represented
in Eq~ (137) by the function u. It may seem that since u is
unspecified, Eq. (137) is not saying very much. But this is not
so. Equation (137) is telling us that B is an operation .which
must behave essentially like an arithmetic average. In fact,
this model puts severe constraints on the data. A simple example
is the commutativity equation·

cases, B(a,b) may be obtained by applying an adaptive procedure
(cf. Section 6.2).

A frequently proposed model for the resulting data is for..
malized by the equation

10

La.J ...........
Z (I)
0
I- Q)

z~· 20
o u
U1~
- """'"Cl::
«
a..
:=i
o
U

....J

~ 30
w
..J

with the functions g, h,.k, andFbeingsubjected only to natural
monotonicity. and continuity .conditions. They show then that
in the presence ofshiftinvarianceEq. (134) can take only one
of two forms:

9.9. Bisection

Thisname refersto a class ofparadigms in which, on each trial,
a subject is presented with a pair (a,b) ofstimuli and is-required
to "produce" (in a way depending on the experimental conditions)
a stimulus appearing "midway" between a and b.As before in
this section, a and b are.physical intensities. We shall denote
by B(a,b) the midway intensity, produced by the subject.. In
some situations, ·thesubject may be asked to adjust a dial;
B(a,b) maythen be estimated by averaging over trials. In other

40··....,.-------~---------.

where A,K, a, a' ,and a are appropriately chosen constants.
Note that a special case ofEq. (136)wa~ proposed by Lochner
and Burger (1961) as anextensionofthepowerla¥( (cf. Section
10), incorporating t4e·effects of a masking noise. ,Objections to
Eq. (136) as a possible'model for recruitment can he found in
Scharf (1978). A plot of a least..squarefitofEq.(135) to some
data of Stevens and,Guirao (1967) is presented in Figure 1.30.

Anotherexample ofhomogeneity law arises in our discussion
of the bisection methodin Section 9.9.
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MASKED TONE ,LEVEL
(decibe Is)

,Figure1.29. The property of shiftinvariance,illustrated bytwo hypothetical
loudnessmatching curves. The right curve representing loudness matching
with noise Aan. can be obtained by. a rigid· shiftof the .·Ieft curve (generated
by loudness matches :with noise n)along thefirstbisector,.(FromM.Pavel,
Homogeneity in complete and partial masking. Unpublished doctoral dis..
sertation, New York University, 1980.)
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(138)

(137)
u(a) + u(b)

2

B(a,b) = B(b,a) ,

u[B(a,b)]

in which the function u is assumed to be strictly increasing and
continuous but is otherwise arbitrary. The idea behind this
representation is that the subject performs the task by computing
the arithmetic average of a and b.This computation, however,
is not (necessarily) carried out in the physical scale, but may
involve instead some unknown psychophysical scale, represented
in Eq; (137) by the function u. It may seem that since u is
unspecified, Eq. (137) is not saying very much. But this is not
so. Equation (137) is telling us that B is an operation which
must behave essentially like an arithmetic average. In fact,
this model puts severe constraints on the data. A simple example
is the commutativity equation:

which immediately results from Eq. (137) by observing that
the terms u(a) and u(b) commute in the right member. Equation
(137) also implies thatB must be idempotent; that is, we must
ha.ve

cases, B(a,b) may be obtained by applying an adaptive procedure
(cf. Section 6.2).

A frequently proposed model for the resulting data is for
malized by the equation
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MASKED TONE LEVEL
(decibels)

Figure 1.29. The property of shiftinvarianceillustratecfbytwo hypothetical
loudness matching curves. The right curve representing loudness matching
with noise A6n can be obtained bya rigid shift of the left curve {generatecf
by loudness matches with noise n) along the firstbisector.{From M. Pavel,
Homogeneity in complete and partial masking. Unpublished doctoral dis
sertation, New York University, 1980.)

in a useful way. Iverson and Pave1(1981a) assume that the B(a,a) = a (139)
matching functionp satisfies the. gaincontrol equation

for all stimuli a. This follows from the fact that

or

with the functions g, h,k, andFbeing subjected only to natural
monotonicity and continuity conditions. They show then that
in the presence of shiftinvarianceEq. (134) can take only one
of two forms:

B[B(a,b),B(c,d)] = B[B(a,c),B(b,d)] , (140)

u[B(a,a)] = ..[u(a) + u(a)]/2 = u(a)

I
., .. " ,,' "j

which·is often referred to as bisymmetry. The easy proof that
Eq. (137) implies bisymmetry is left to the reader. This impli~

cation can be reversed; under gener,al ,continuity and monoton-

which yields Eq.(139) sinceu is a one-to-one function. A less
obvious consequence of Eq. (137) is the condition

(135)

(134)<p(x,n) = F{g(x)/[h(x)

where A, K, a,d', and 6 are appropriately chosen constants.
Note that a special case of Eq. (136) was proposed by Lochner
and Burger (1961) as an extension of the powerlaw (cf~ Section
10), incorporating the effectsofa masking noise. Objectionsto
Eq. (136) as a possible model for recruitment can be found in
Scharf (1978). A plot of a least-squa.re.fitof Eq.. (l35) to some
data ofStevens and.Guirao (1967) is presented in Figure 1.30.

Another example ofhomogeneity law arises in our discussion
of the bisection method in Section 9.9.

9.9. Bisection

This name refers to a class ofparadigms in which, on each trial,
a subject is presented with a pair (a,b) ofstimuli and is required
to "produce" (in a way depending on the experimental conditions)
a stimulus appearing "midway" between a and b. As before in
this section, a and b are physical intensities. We shall denote
by B(a,b) the midway intensity produced by the subject. In
some situations, the subject may be asked to adjust a dial;
B(a,b) may then be estimated by averaging over trials. In other
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Figure 1.30. Best fit of Eq. (135) to scale data of Stevens and Guirao (1967).
(From G. J. Iverson & M. Pavel, On the functional form of partial masking
functions in psychoacoustics, Journal of Mathematical Psychology, 1981,
24. Reprinted with permission.)



u(a) = alog a + 8
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u(a) = aa13 + ~' ,

or a logarithmic function,

(a, (3, ~ constants). No other forms exist which would satisfy
both Eqs. (137) and (141).' This was noted by Krantz (Note 3),
who also remarked that essentially the same argument applies
to the basic equal-spacing principle underlying the construction
of the Munsell system ,(Munsell, 1929). We recall"in this con
nection the results of Weiss (1975)' and Anderson (1976, 1981)
who, using a different method,' also obtained a power function
for their bisection data.

The bisection models discussed here are deterministic, which
renders their, application to data delicate. Fortunately, proba
bilisticversions of such m.odels can be, developed, which are
similarin spirit to the models discussed in Sections 9.6and·9.7
foradditiveconjointm.~asureIIlent.For the sake of illustration,
one possibility is outlined here~·

We begin by replacing the operation yielding a stimulus
midwaypetv.veen a ~ndb.by arangorn variableB(a,b). Eq~(137)
beco~es' " .u[B(a,b)] =au(a) + (1 -a)u(b)

icity properties of the midway function B, idempotent,com
mutativity, and bisymmetry together imply the existence of a
function u satisfying Eq. (137) (Krantz et al., 1971).

An experimental test ofhisymmetry in auditory perception
can be found in Cross (1965; cited by Coombs, Dawes, &Tversky,
1970). Bypassing such tests, it is also possible to "search" directly
for a function u satisfying Eq. (137). This is done by Weiss
(1975) and Anderson (1976, p. 107, 1981~ p. 37). A good fit is
obtained for ,a power function u(a) = 'Aa . 'As we shall see in
this section, this form, of the scale u is of particular interest.

In, some cases, commutativity may not hold. Consider a
situation in which a and b are two intensities of a pure tone
presented monaurally and successively. It is conceivable (in
fact, ,likely), that the' produced ,midway value will depend on
which of a and b is presented first: the'midway operation has
to be performed between two stimuli, one of which is being
kept in memory for, some time and thus subject to the effects
of a possible' decay. The, idempotent properly may, alsofaiL 'In,
such cases,Eq.(137) may be generalized as follows. Ifbisym
rnetry andidempotent hold, butri6t(necessarily) commutativity,;,"
then the appropriate model is

(142)

u(b)]/2,

m(b,a)

=a ,

=mlin (a', c), m{b,d)]

[u(a)+u(b)]/2 +E(a,b) ,

,u[m{a,b)] = I u(ci)

u[B(a,b)]

Preoccupations' with the role of chance in the improvement of
performance observed in multichannel'perceptionwereex
pressed early (Dawson, 1913). The first explicit formalization
ofprobability summationin the sense ofthis section is attributed
toPirenne (1943l.A review can be found in Blake and Fox
(1973).' Chapter 9 in Green and Swets (1974) is devotedto,models
for multichannel perception,iIlcluding the integration model.

Similarly, the homogeneity', conditiQn ,uncovered' in,' Plateau's
exp~rimerit.is formalized by the equation

As in the case of the random ' conjoint measurement model,
nOl).patametrictests can be used to evaluate. the empirical,va
lidity of these conditions.

an equation which has exactly the form ofEq. (137), with the
median m replacing the deterministic operation B. This means
that the conditions ofidempotency, commutativity, andbisym
metrymustb~·,satisfied·,by"themedians.In other terms, we
mus~have' ;,j

in which 'E(a;b) is an elTor randpmvariableWithaunique median
equaltoO.Letm(a,b)be them~dian'oftherandom,variable

B(a,b).Bya"simple argwnentalong the ,lines of that 'used in
Section 9~6.3,Eq. (142l1mplies

(141) 9.10. Key ReferencesB(Aa,Ab)'= ,AB(a,b).

u[B (a~b)] = au(a) + ."'(u(b) + 8

Indeed, this means that the midway disk obtained in Plateau's
laboratory is identical to that produced by the artist in the
studio, when seen under the same conditions. In other terms,
B is homogeneous ofdegree 1 {cf. Section 7.2.2). But ifboththe
averaging model,Eq. (137), and the homogeneity property,Eq.
(141), are assumed to hold, then the possible forms ofthe function
u are very limited; u must be either a power function,

with a'>,O,a constant. Ifneithertidempotent horcommutativity
is~~sumedto hold, but bisynunetry is satisfi~d, then we have
the still more general model

with a >0,')1·>0.
Bisection providesan additional example ofa homogeneity

law. In a classic application' of this type of paradigm, Plateau
(1872) gave a pair of painted disks, one white and one black,
to each 'of eight' artists and instructed them to return to their
respective studios and paint a gray disk midway between the
two.. Th~ resulting gray disks,. report~d.Plateau, were, almost
identical for~ll eight artists" In" spite,ofthevaria:tion in, the,
illumination conditions under which they were produced. ,Let
·us suppose that such "results would, hold for any pair of gray
disks. A possible formalization' of this' circumstance would be
·as follows..Let (a,bldenote.a.pairofgray disks,jnaspecified ..·
viewing condition inPlateau?slaboratory.'·Letaand b ,denote
the luminariceof the disks 'inconve.ntionalunits. 'Let B(a,b)
denote the midway ,gray ,disk' in the,same' viewing ,condition.
Theartist"however, has pe,~formed the task jnastudio,·i~

different illumination conditions, that is,wjththepair('Aa,Ab)
(where A,,isa 'positive constantequaltothe:ratio" oftheillu·
mination. in the artist's studio' to that ofPlateau's labo:ratory)~
By hypothesis, the resulting midway disk isiridependent ofthe
illumination..Asa consequence,., the following equation must,
hold:
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icity properties of the midway function B, idempotent, com
mutativity, and bisymmetry together imply the existence of a
function u satisfying Eq. (137) (Krantz et al., 1971).

An experimental test of bisymmetry in auditory perception
can be found in Cross (1965; cited by Coombs, Dawes, &Tversky,
1970). Bypassing such tests, it is also possible to "search" directly
for a function u satisfying Eq. (137). This is done by Weiss
(1975) and Anderson (1976, p. 107, 1981~ p. 37). A good fit is
obtained for a power function u(a) = A.a . As we shall see in
this section, this form of the scale u is of particular interest.

In some cases, commutativity may not hold. Consider a
situation in which a and b are two intensities of a pure tone
presented monaurally and successively. It is conceivable (in
fact, .likely) that the produced midway value will depend on
which of a and b is presented first: the midway operation has
to be performed between two stimuli, one of which is being
kept in memory for some time and thus subject to the effects
of a possible decay. The idempotent property may also fail. In ..
such cases, Eq. (137) may be generalized as follows. If bisym
metry andidempotent hold, but not (necessarily) commutativity,
then the appropriate model is

u[B(a,b)] = cLU(a) + (1 - a)u(b)

with a > O,a constant. Ifneithercidempotent l10r commutativity
is a~sumed to hold, but bisymmetry is satisfied, then we have
the still more general model

u[B(a,b)] = au(a) + yu(b) + 8

with a > 0, y> O.
Bisection provides an additional example ofa homogeneity

law. In a classic application of this type of paradigm, Plateau
(1872) gave a pair of painted disks, one white and one black,
to each of eight artists and instructed them to return to their
respective studios and paint a gray disk midway between the
two. The resulting gray disks,report~dPlateau,were. almost
identical for all eight artists, in spite of the variation in the
illumination conditions under which they were produced. Let
us suppose that such results would hold for any pair of gray
disks. A possible formalization of this circumstance would be
as follows. Let (a,b) denote a pair ofgray disks,in a specified ..
viewing condition in Plateau's laboratory. Let a and b denote
the luminance of the disks in conventional units. Let B(a,b)
denote. the midway gray disk in the same viewing .condition.
The artist, however, has performed the task in .a studio,· in
different illumination conditions, that is, wit}:J. the pair (A.a,A.b)
(where A. is a positive constant eqliaUo the ratio ofthe illu
mination in the artist's studio to that of Plateau's laboratory).
By hypothesis, the resulting midway disk is independent ofthe
illumination. As a consequence, •. the following. equation must
hold:

THEORY AND METHODS

u(a) = aa~ + 'Y ,

or a logarithmic function,

u(a) = alog a + 8

(a, 13, 'Y constants). No other forms exist which would satisfy
both Eqs. (137) and (141). This was noted by Krantz (Note 3),
who also remarked that essentially the same argument applies
to the basic equal-spacing principle underlying the construction
of the Munsell system (Munsell, 1929). We recall in this con
nection the results ofWeiss (1975) and Anderson (1976,1981)
who, using a different method, also obtained a power function
for their bisection data.

The bisection models discussed here are deterministic, which
renders their application to data delicate. Fortunately, proba
bilistic versions of such models can be developed, which are
similar in spirit to the models discussed inSections 9.6 and 9.7
for additive conjoint measurement. For the sake ofillustration,
one possibility is outlined here.

We begin by replacing the operation yielding a stimulus
midway,between a and bby a random variable B(a,b). Eq, (137)
becoInes· . .

u[B(a,b)] = [u(a) + u(b»)/2 + E(a,b) , (142)

in which e(a;b) is an error random variable with a unique median
equal to O. Let m(a,b) be the median of the random variable
B(a,b); By a simple argument along the lines of that used in
Section 9.6.3,Eq. (142) implies

u[nt(a,b)] = [u(a) + u(b)]/2 ,

an equation which has exactly the form ofEq. (137), with the
median m replacing the deterministic operation B. This means
that the conditions of idempotency, commutativity, and bisym
metry must b~ satisfied by the medians. In other terms, we
must have i

m(a,a) = a ,

m(a,b) m(b,a)

117.(117.(a,b),m(c,d)] = m[m(a,c),m(b,d)]

Similarly, the homogeneity conditio.n uncovered in Plateau's
experiment. is formalized by the equation

m{A.a,A.b) = A.m(a,b)

As in the case of the random conjoint measurement model,
nOl).parametric tests can be used to evaluate the empirical va
lidity of these conditions.

B(A.a,Ab) = AB(a,b) . (141) 9.10. Key References

Indeed, this means that the midway disk obtained in Plateau's
laboratory is identical to that produced by the artist in the
studio, when seen under the same conditions. In other terms,
B is homogeneous of degree 1 (cf. Section 7.2.2). But ifboth the
averaging model, Eq. (137), and the homogeneity property, Eq.
(141), are assumed to hold, then the possible forms ofthe function
u are very limited; u must be either a power function,

Preoccupations with the role of chance in the improvement of
performance observed in multichannel perception were ex
pressed early (Dawson, 1913). The first explicit formalization
ofprobability summation in the sense ofthis section is attributed
to Pirenne (1943). A review can be found in Blake and Fox
(1973). Chapter 9 in Green and Swets (1974) is devotedto models
for multichannel perception, including the integration model.
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Density

Temperature

Counting

Length, mass

AdnlissibleTransformations

Identity: 'x~,.<1>(x) = x

Similarity: x 1-+ <f>(x) == <xx,
with et >0
Affine: x ~<1>(x) = <XX + 13,
with et> 0

X 1-+ 4>(x) = <xx~,

with et > 0 and~·> 0
Log-interval

Absolute

Ratio

Interval

Scale Type

Each type is defined by thee/ass of admissible transformations of the scale;
for example, the ratio scale typeis that defined by all the transformations of
theform X 1-+ Ctx,with et > O.The case for density and otherfundamental
physical quantities tobe log-interval scales is rnadeby Krantz, Luce, Suppes,
and ·Tversky··(1971).

In mostcases, numerical scales constructed from (and explaining)
some empiricaldata are not defined uniquely. It is usually agreed,
for example, that the numerical scale used for the measurement
of length is· a ratio scale, which means that the numerical values
assigned to the objects are defined up to a multiplication by a
positive constant (e.g., a change ofunits from centimeter to
meter is .admissible). In this exemplary .case, the exact degree
of arbitrariness of the scale isa consequence derivable from a
completely axiomatized theory.· One assumes that the data satisfy
the·axioms of the· theory,which ·In· turn provides a procedure
for ·the. cop.struction of· t~e ... scaleand.specifies the degree, of
arbitrariness ofsuch construction. How this applies in the case
of length has been discussed in detailin.SectioI... ·2. The degree
of arbitrariness ,of the .scale. is referred, tpas its. type.pespite
the .. variety of forms· of data, only a few .. types .. of scales are
actually used in scientific practice. Thereasonsfor this scarcity
are not very well understood (see, however, Narens; 1981). The
mostcommonlY.use,d types of scales are listed inT,ab~e1.4.

10.2. Overview of (Unidimensional) Scaling
Methods

Table 1.4.. The Most Commonly Used Types of Scales.

10.1. Common Types of Scales

cedures, introduced by Norman Anderson. A brief.discussion
of the issue of the psychophysical scale and the measurement
of sensation will follow. Finally, the notion ofmeaningfulpsy
chophysicallaws will be brought to the attention of the reader.
(Note that the so-called· multidimensional scaling techniques
are considered byWyszecki, Chapter 9.)

Thepsyr;hophy'sicalprocedllr~s .discussed in.e~rlier sections. of
this chapter (such as that used in the yes-no paradigm) were
rather painstaking. In a typical experiment, several hundred"
observations per point are collected for each subject. By contrast,
the methods considered here may use only a few observations
per point (sometimes as few as one or two observations per
subject). However, the .subject'~ .responses tend to be much more
elaborate. For example, the subject may be.' asked' to identify
'the stimulus presented, using· a label previously. attache.d'to
that stimulus (as i~ theabsqlu'tl! identification method) or be
required to evaluate the stimulus numerically, according to
,s()IIlertlle (asJn~~g11:~~~u4~"~~~i!!l-atio~)''I':l,l~I"~aI"e a number of
such scaling methods, andwayso~classifyingthem. In the next
four sections,we classify the methods by the type of response
required· from the subject'. Each subsection contains a brief de-

Scaling covers a collection ofmodels, procedures,· and empirical
analyses, purporting to provide'a representation of some data
in terms ofone or more nUlIlerical scales. Such is, ofcours.e,
also the aim ofmeasurement theorY,a fieldjnwhic~,typically,
axiom systemsare·.given justifying· specific methods of.scale
construction (cf.•Section 2). In the work usually classified under
the scaling label, however,acquiring.the.sca~esisoften regarded
as •an. end ... in itself, and· the theoretical· underpinnings are .of
s~condary importance. Objections.have deservedly been made
to that state of affairs. The uses of a scale withouta firmthe
oretical foundation are restricted. In particular,. if the type of a
scale (see Section 10.1) is unknown, it may be difficult to decide
whether a given model or a mathematical expression employing
that scale makessense from a certain logicophilosophical vievJ
point (see Section 10.10).

After an introduction to scale types, the most common uni
dimensional scaling methods and data will be "reviewed. Two
theoretical approaches will then be considered: the Shepard
Krantz relation theory andthe·.functionalmeasurement pro-

PSYCHOPHYSICAL MEASUREMENT AND THEORY

10. SCAtlNG

Tests ofa specific model ofprobability summation are described
inarecent paper by Nachmias (1981). The applications ofprob
ability summation considered in this chapter were limited to
a two-channel situation. The ideas developed are easily extended
to n-channels. However, when· a large number of channels is
involved, a new situation arises,· in which some convergence
theorems of probability theory are applicable. These issues are
considered in chapters by .Watson; Arditi;· Olzak and· Thomas;
Regan, Kaufman, and Lincoln; Ginsburg;and Treismanin this
handbook.

Additive conjoint measurement is a standard topic ofmea
surement theory, a detailed exposition ofwhich is contained in
KrantzandcolleaguesC1971} and Roberts (1979). The intro
duction ofprobabilisticmodels in additive conjoint measurement
is in the spiritofthemodelsencounteredin probabilistic choice
theory(Luce&Suppes, 1965). The models discussed here were
developed by Falmagneand hiscoworkers (Falmagne, 1976,
1978, 1979;·Falmagne .&Iverson, 1979; Falmagne, Iverson, 8t
Marcovici, 1979).

Implicitly, the.~tudy.,ofh()IIlogent1.ity·l~wsl].~s.~eenpart,of
psychophysics sinceits inception (Weber's law is a homogeneity
law).. Many psychophysical laws or models are instances of or
at· least are consistent·.with.some·homogeneity· law.<·A systematic
investigation ofhomogeneity laws and their impact on psycho
physical theorizing has recently been ~dertakenbyFalmagne,

Ive:rson,andPavelCFalmagne& Iverson, 1979; Falmagne,'
Iverson, & Marcovici, 1979;Iverson&Pavel, 1980,1981a, ,1981b; ,
PaveI, 1980). An Jntroduction to thefunctionalequationtech
niquesusediIlthe~epaperscan be found in. Aczel(1966J.

A treatment ofbisection, from the viewpointofmeasurement
theory, is contained in Krantz and colleagues (1971; see also
Pfanzagl,1968). "

There was a substantial .amount of arbitrariness in· the
choice of topics coveredin.this section. The reader may be sur
prised, fore:x:ample, that only a passing reference· was made to
the work of Anderson and his collaborators (Anderson, 1970a,
1970b, 1974, 1976, 1981]. Actually, the organizing principle for
this section was to includemultivariable models· or· techniques
only if they were a naturalextension of"classical" psychophysics'.
Scaling models or techniques are covered in 'Section 10.
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10.1. Common Types of Scales
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Examples

Density

Temperature

Counting

Length, mass

Identity: x ..... <l>(x) "'" x

Similarity: x ..... <!>(x) == <xX,

with a >0

Affine: x ..... <l>(x) "'" <xX + 13,
with a > 0

x"'" <l>(x) "'" J,
with a > 0 and 13 > 0

Interval

Log-interval

Absolute

Ratio

Table 1.4., The Most Commonly Used Types of Scales.

Scale Type Admissible Transformations

10.2. Overview of (Unidimensional) Scaling
Methods

Each type is defined by the class of admissible transformations of the scale;
for example, the ratio scale type is that defined by all the transformations of
the form x ..... ax, with a > O. The case for density and other fundamental
physical quantities to be log-interval scales is made by Krantz, Luce, Suppes,
and Tversky (7971).

The psychophysical proyedures discussed in earlier sections of
this chapter (such as that used in the yes-no paradigm) were
rather painstaking. In a typical experiment, several hundred.
observations per point are collected for each subject. By contrast,
the methods considered here may use only a few observations
per point (sometimes as few as one or two observations per
subject). However, the subject's responses tend to be much more
elaborate. For example, the Jubject may be asked to identify
the stimulus presented, using a label previously attached'to
that stimulus (as in the absqlu~e identification method) or be
reqUired to evaluate the stimulus numerically, according to
some rule (as inmagnitude estimation). There are a number of
such scaling methods, and ways of:dassifying them. In the next
four sections, we classify the methods by the type of response
required from the subject. Each subsection'contains a brief de-

In most cases, numerical scales constructed from (and explaining)
some empirical data are not defined uniquely. It is usually agreed,
for example, that the numerical scale used for the measurement
oflength is a ratio scale, which means that the numerical values
assigned to the objects are defined up to a multiplication by a
positive constant (e.g., a change of units from centimeter to
meter is admissible). In this exemplary case, the exact degree
of arbitrariness of the scale is a consequence derivable from a
completely axiomatized theory. One assumes that the data satisfy
the axioms of the theory,which in turn provides a procedure
for the ,construction of the scale and specifies the degree of
arbitrariness of such construction. How this applies in the case
of length has been discussed in detail in SectiOI. 2. The degree
of arbitrariness of the scale is referred to as its type. Despite
the variety of forms of data, only a few types of scales are
actually used in scientific practice. The reasons for this scarcity
are not very well understood (see, however, Narens, 1981). The
most commonly used types of scales are listed in Table 1.4.

cedures, introduced by Norman Anderson. A brief discussion
of the issue of the psychophysical scale and the measurement
of sensation will follow. Finally, the notion of meaningful psy
chophysicallaws will be brought to the attention of the reader.
(Note that the so-called multidimensional scaling techniques
are considered by Wyszecki, Chapter 9.)

Scaling covers a collection ofmodels, procedures, and empirical
analyses, purporting to provide a representation of some data
in terms of one or more numerical scales. Such is, of course,
also the aim ofmeasurement theory, a field in which, typically,
axiom systems are given justifying specific methods of scale
construction (cf. Section 2). In thework usually classified under
the scaling label, however, acquiring the scales is often regarded
as an, end in itself, and the theoretical underpinnings are of
secondary importance. Objections have deservedly been made
to that state of affairs. The uses of a scale without a firmthe
oretical foundation are restricted. In particular, if the type of a
scale (see Section 10.1) is unknown, it may be difficult to decide
whether a given model or a mathematical expression employing
that scale makes sense from a certain logicophilosophical view
point (see Section 10.10).

After an introduction to scale types, the mo~tcommon uni
dimensional scaling methods and data will be reviewed. Two
theoretical approaches will then be considered: the Shepard
Krantz relation theory and the functional measurement pro-

PSYCHOPHYSICAL MEASUREMENT AND THEORY

10. SCALING

Tests ofa specific model ofprobability summation are described
in a recent paper by Nachmias (1981). The applications ofprob
ability summation considered in this chapter were limited to
a two-channel situation. The ideas developed are easily extended
to n-channels. However, when a large number of Channels is
involved, a neW situation arises, in which some convergence
theorems of probability theory are applicable. These issues are
considered in chapters by Watson; Arditi; Olzak and Thomas;
Regan, Kaufman, and Lincoln; Ginsburg; and Treisman in this
handbook.

Additive conjoint measurement is a standard topic ofmea
surement theory, a detailed exposition ofwhich is contained in
Krantz and colleagues (1971) and Roberts (1979). The intro
duction ofprobabilistic models in additive conjoint measurement
is in the spirit ofthe models encounteredin probabilistic choice
theory (Luce & Suppes, 1965). The models discussed here were
developed by Falmagneand his coworkers (Falmagne, 1976,
1978, 1979; Falmagne &Iverson, 1979; Falmagne, Iverson, &
Marcovici, 1979).

Implicitly, the studyofhomogen~itylt1wS,ht1s been part of
psychophysics since its inception (Weber's law is a homogeneity
law). Many psychophysical laws or.models are instances. of or
at least are consistent with some·homogeneity law. A systematic
investigation of homogeneity laws and their impact on psycho
physical theorizing has recently been undertaken by Falmagne,
Iverson, and Pavel(Falmagne & Iverson, 1979; Falmagne,
Iverson, & Marcovici, 1979; Iverson& Pavel, 1980,1981.a,1981b;
Pavel, 1980). .An introduction to the functionalequation tech
niques used in these papers can be found in Aczel (1966).

A treatmentofbisection, from the viewpoint ofmeasurement
theory, is contained in Krantz and colleagues (1971; see also
Pfanzagl, 1968).

There was a substantial amount of arbitrariness in the
choice of topics covered in this section. The reader may be sur
prised, for example, that only a passing reference was made to
the work of Anderson and his collaborators (Anderson, 1970a,
1970b, 1974, 1976, 1981]. Actually, the organizing principle for
this section was to include multivariable models or techniques
only ifthey were a natural extension of"classical" psychophysics.
Scaling models or techniques are covered in Section 10.



(143). Dx,y =·P[u(x),' ..... 'u(y)]',

Magnitude Esti~ation

Category.Rating

In the ..wldely. used method of magnitude·estimation, the .main
advocat~>ofwhichwas S. S. Stevens, the subject is required to
provide "direct" numerical estimates of the magnitude of the
sensation evoked by the stimulation. Two variants ofthe method
have been employed.

In one, the subject is initially presented' with a stimulus
(the standard) and told that the sensory magnitude of that
stimulusis assigned a certain value Cmodulus), say, 100. Other
stimuli are then presented in random order,andthe subject is
instructedto estimate their sensory·magnitude so as· to preserve,
ratios.. For instance, if the. second stimulus presented seems to

10.5.

THEORY AND METHODS

and Green (1977), Purks, Callaghan, Braida, and Durlach (1980),
Ward (1972), and Ward and Lockhead (1970, 1971).

10.4.

As with absolute identification, in category rating one stimulus
from a sensory continuum is presented at each trial. The subject
is.instructed to assign each stimulus to··one of m-ordered cat·
egories,·for example, the numbers 1 to m. These categories are
assumed to be subjectively "equally spaced"; that is, the sub
jectivedistance between category 3 and 4is identicalto that
between 1,0 and 11. The number m ofcategories is often smaller
than·the number of stimuli and may vary from a few (5-7) to
several ·dozen.

In variations of this method, pairs ofstimuli are presented
at each trial, and the subject is required to rate (that is,. to
assign a category to) subjective "differences" or "ratios" ofthese
stimuli-Jn a.,rather extreme version, four stimuli are presented
simultaneously, and the .subjects are asked to make very so
p~isticat~<i_ju.dgments,.· such as rating. the ratio of differences
or the difference of ratios (Birnoaum, 1978).

The most startling result is perhaps that the subjects not
only· are· capableofperformingsllchtasks without major dif·
ficultiesbut also provide surprisingly regulardata: the average
rating. values often appear to v8fY smQo~hly with stimulus in
tehsity.The data may'be aIlalyzed in various ways. In an ex
emplary'case,the subjects rate· subjective differences between
stimuli, and it. is assumed that the average ratingDx,ycorre
sponding to physical intensities x, y satisfies.a Fechnerian-type

.relation

Absolute Identification'

In apreliminary period,.the subj~ct is.trainedto·associate one
of n labels (say, the numbers from 1 to n = 10) to each of n
stimuli. During the main phase· o~\the experiII\ent .the. subject
is presented a stimulus on each trialandis required to produce
the appropriate label. The subject's response is recorded. The
succession of stimuli is random. Occasionally, .immediate rep
etitionsare avoided.

A straightforward. analysis of the data isjn terms of the
proportion ofcorrect responses. Another measure ofperformance,
not often used ·now, is the average· information transmitted by
the>responses (cf. Coombs, Dawes, & Tversky,.·1970; Garner,
1962; Miller, 1953).. ~ore recently, a measure based on the in which u and F .are strictly· increasing functions. I~ some
inuexd' of signal detection theory {cf. Section 8) has peen pro- cases, F is shownto.bewellapproximatedbyaJinear function.
posed (Luce, Green,· & Weber, 1976). Unfortunately, thesubject's performance inthese tasks varies

For stimuli varying along one sensory continuum, the main markedly with tpe context. For~xample, the·value. of Dx,y. in
finding is that the maximum~umberofstimulithatcan..be~q.(143).str?n.;1~ dependsx>nthe,distribution ofall the stimuli
identified perfec~lyby an untrainedsubjectis between five(Uld. used iIlthe.;experimeIlt, sI>ecifically, the range,the spacing, and
nine, depending on the continuum, for example, Pollack (1952) the freqtlencie~·ofthesestimuli.Such facts, which are well
and Garner (1953). (See Miller, 1956,for a review of the facts. documented,ma:rcFceate problemsfor psychophysical theorizing,
Obviously, specialists, such as professionalmusiciansfor pitch. depenciiI1gon the locus ofthe effects. To pursue our example,
identification,may score much better than that.}~Thisresultis-" amajor-OOllCern,is.which,oftnetw() functions u, F in the. right
regarded as puzzling since it ·appearstol:leatvariancewith the- --member--·or'Eq-:(t43)-is.affected -by the context. The available
data oflocal studies. Forinstance, only-stimuli that are very evidence,P?int~outthatonlyFis affected (Parducci, 1963, 1965,
close on the physical scale (say, less than a couple of decibels 1974;Plird\lCci&·Perret.t, 1971; see Birnbaum, 1982, for a general
apa.rt in auditory discrimination) are·.everconfusedjnatwo~ discussion-~tldfurtherreferences).Sincethe function u. is a
alternative forced-choice (2AFC) paradigm. An extrapolation. -candidat~Jorthe~psychophysical scale, the key invariant, this
would lead top:redict a perfect identification of several dozenwouldle~veopenthe possibility .of a general theory.
suitably located stimuli in an absolute identification eXperiment.
The discrepancy may be. due to the fact.thatefficient.guessing
trategies can,be used ina,2AFCsituation, which are no longer,
vailable in absolute identification.

At first, the .absolute identification. paradigm. may seem
raightforward.Actually, the data are plagued.with a variety

fsequential effects and "anchoring" effects that render the
alysis.extremely difficult. Regarding anchoring, or edge,ef~
ts, see, for example, Berliner and Durlach (1973),Berliner,
lach, and Braida (1977), BraidaandDurlach(1972), Durlach

d· Braida (1969),Gravetter and Lockhead (1973), Lippman,
raida,.and Durlach (1976),· and Weber; Green,· and Luce(1977).
quential effects in absolute identification have been explored,
r example, by Holland and Lockhead (1968), Jesteadt,·Luce,

10.3.

scription of the procedures and of the typical experimental re
sults.

Under the impetus of S. S. Stevens, an impressive array
ofexperimental results were collected, which generally support
the contention that through subjective judgments the sensory
continua are related to each other and to the number continuum
by power laws (at least to a first approximation). The power
law was offered by Stevens as a substitute for the logarithmic
relation of Fechner (cf. Section 7.3). The merit of this proposal
is discussed. in Section 10.10. In this connection, the reader
should bear in mind that the psychophysical methods discussed
in this section were often introduced in a spirit of criticism of
the "classical" methods, such as the yes-no paradigm and its
close relatives. These were thought to lack realism, tothe extent
that the data were focusing on "local" effects (e.g., the discrim...
inationofneighboring stimuli), whilethe natural environment
involves the simultaneous apprehension ora large collection of
widelydistrihuted stimuILThe',termslocal,andglobal are
sometimes used to denote the two. classes of procedures.
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(143)Dx,y = F[u(x)- u(y)) ,

10.5. Magnitude Estimation

In.the wfdely used method of magnitude estimation, the.main
advocate of which was S. S. Stevens, the subject is required to
provide "direct" numerical estimates of the magnitude of the
sensation evoked by the stimulation. Two variants ofthe method
have been employed.

In one, the subject is initially presented with a stimulus
(the standard) and told that the sensory magnitude of that
stimulus is assigned a certain value (modulus), say, 100. Other
stimuli are then presented in random order, and the subject is
instructed to estimate their sensory magnitude so as to preserve
ratios. For instance, if the second stimulus presented seems to

THEORY AND METHODS

and Green (1977), Purks, Callaghan, Braida, and Durlach (1980),
Ward (1972), and Ward and Lockhead (1970, 1971).

10.4. Category Rating

As with absolute identification, in category rating one stimulus
from a sensory continuum is presented at each trial. The subject
is instructed to assign each stimulus to one of m-ordered cat
egories, for example, the numbers 1 to m. These categories are
assumed to be subjectively "equally spaced"; that is, the sub
jective distance between category 3 and 4 is identical to that
between 10 and 11. The number m ofcategories is often smaller
than the number of stimuli and may vary from a few (5-7) to
several dozen.

In variations of this method, pairs of stimuli are presented
at each trial, and the subject is required to rate (that is, to
assign a category to) subjective "differences" or "ratios" ofthese
stimuli. In aTather extreme version, four stimuli are presented
simultaneously, and the subjects are asked to make very so
phisticated Judgments, such· as rating the ratio of differences
or the difference ofratios (Birnbaum, 1978).

The most startling result is perhaps that the subjects not
only are capable ofperforming such tasks without major dif
ficultiesbut also provide surprisingly regular data: the average
rating values often appear to vary smoothly with stimulus in
tensity. The data maybe analyzed in various ways. In an ex·
emplarycase, the subjects rate subjective differences between
stimuli, and it is assumed that the average rating Dx,y corre
sponding to physical intensities x, y satisfies.a Fechnerian-type
relation

10.3. Absolute Identification

scription of the procedures and of the typical experimental re
sults.

Under the impetus of S. S. Stevens, an impressive array
ofexperimental results were collected, which generally support
the contention that through subjective judgments the sensory
continua are related to each other and to the number continuum
by power laws (at least to a first approximation). The power
law was offered by Stevens as a substitute for the logarithmic
relation of Fechner (cf. Section 7.3). The merit of this proposal
is discussed in Section 10.10. In this connection, the reader
should bear in mind that the psychophysical methods discussed
in this section were often introduced in a spirit of criticism of
the "classical" methods, such as the yes-no paradigm and its
close relatives. These were thought to lack realism, to the extent
that the data were focusing on "local" effects (e.g., the discrim
ination ofneighboring stimuli), while the natural environment
involves the simultaneous apprehension of a large collection of
widely distributed stimuli. The terms local and global are
sometimes used to denote the two classes of procedures.

In a preliminary period, the subj~ct is trained to associate one
of n labels (say, the numbers from 1 to n = 10) to each of n
stimuli. During the main phase of.the experim,ent the subject
is presented a stimulus on each trial and is required to produce
the appropriate label. The subject's response is recorded. The
succession of stimuli is random. Occasionally, immediate rep
etitions are avoided.

A. straightforward analysis of the data is.in terms of the
proportion ofcorrect responses. Another measure ofperformance,
not often used now, is the average information transmitted by
the responses (cf. Coombs, Dawes, & Tversky, 1970; Garner,
1962; Miller, 1953). M.ore recently, a measure based on the in which u and F are strictly increasing functions. In some
index d' of signal detection theory (cf. Section 8) has been pro- cases, F is shown to be well approximated by a linear function.
posed (Luce, Green, & Weber, 1976). Unfortunately, the subject's performance in these tasks varies

For stimuli varying along one sensory continuum, the main markedly with*e context. For example, the value of Dx,y in
finding is that the maximum ll,umber ofstimuli that can be Eq. (143)stron~l~depends on the distribution ofall the stimuli
identified perfectly by an untrained subject is between five and used in the experimel).t, specifically, the ran~e, the spacing, and
nine, depending on the continuum, for example, Pollack (1952) the frequencies of these stimuli. Such facts, which are well
and Garner (1953). (See Miller, 1956, for a review of the facts. documented, may create problems for psychophysical theorizing,
Obviously, specialists, such as professional musicians for pitch depending on the locus ofthe effects. To pursue our example,

,identification, may score much betterthan that.)This result is .. amajor.CQIlCernis which of the two functions u, F in the, right
regarded as puzzling since it appears to be at variance withthemember\lf~q:{t43) is affected by the context. The available
data of local studies. For instance, only stimuli that are very evidence points out that only F is affected (Parducci, 1963, 1965,
close on the physical scale (say, less than a couple of decibels 1974;Parducci&Perrett, 1971; see Birnbaum, 1982, for a general

I apart in auditory discrimination) are ever confused in a two- discussional).d further references). Since the function u is a
alternative forced-choice (2AFC) paradigm. An extrapolation candidate for the pSYchophysical scale, the key invariant, this
would lead to predict a perfect identification of several dozen would leave openthe possibility of a general theory.
suitably located stimuli in an absolute identification experiment.
IThe discrepancy may be due to the fact that efficient guessin~
!strategies can.be used in a2AFC situation, which are no longer.
lavailable in absolute identification.I At first, the absolute identification paradigm may seem
~traightforward.Actually, the data are plagued with a variety
lof sequential effects and "anchoring" effects that render the
!analysis extremely difficult. Regarding anchoring, or edge, ef
Ifects, see, for example, Berliner and Durlach (1973), Berliner,
Durlach, and Braida (1977), Braida and Durlach (1972), Durlach
and Braida (1969), Gravetter and Lockhead (1973), Lippman,

raida, and Durlach (1976), and Weber; Green, and Luce(1977).
quential effects in absolute identification have been explored,

or example, by Holland and Lockhead (1968), Jesteadt, Luce,
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10.6. Production ·andMatchingMethods

The magnitude estimation procedure is also used in other
paradigms. For example, in ratio estimation, the observer is
askedto evaluate the subjective "ratio" of two stimuli. Atleast
to a first approximation, the experimental results are consistent
with those ·reported for the magnitude estimation of single
stimuli. More is said about such consistency in Section 10.7.

It was strongly arguedbyS. S. Stevens (1957, 1959a, 1961a,
1961b, 1961c) that Eq. (144) should be taken as the fundamental
psychophysical law, rather than the logarithmic Fechnerian
form derived from. Weber's law together with the· difference
representation for choice probabilities (cf. Section 7.3). Accord
ingly, serious consideration is given to the estimated value of
the exponent (3 inEq. (144),< which some believe could be a
measure ofsome basic feature of the subject'ssensory system.
Several dozen sensory· continua were investigated by Stevens
and others,and the values of the exponent f3·were tabulated
(see, for example, Table 1 in S.S.Stevens, 1975). The claim
that the. exponent. in Eq.• (144) is. offundamental .. importance
for psychophysical theory encounters difficulties ·with various
da,.ta,.however, which indicatethat its esti~atedvaluestrongly
depends on the experimental·conditionsoreven on the instruc
tions given to the subject. Among other .studies, we. mention
Teghtsoonia;n (1971)"who showsthatthe:estimated values of
(3. are correlated with the range of the set of stimuli used in the
experiment, and Robinson (1976), who demonstrates how the

.instructions' can systematically affect this exponent. A review
of some ofthes~·effects can befoundinPoulton(1968).. In the
light ofavailable evidence, it "is clear thatnosingle,basic sensory
factor is responsible for the variations oftlle exponent. In par...
ticular, as argued byGreenand·Luce(1974), its value may
reflect some aspects ofthe subject's decision.-making process.

In production and matching methods, the subject is requested
to react to the stimulation by "producing" a value ofa sensory
variable,forexa:rn..ple,byturn.inga dial. There are several com
IIlonly.used p):"ocedures,so$eofwhic:h havebeen encountered
:earlier inthischapter.. rhe>Hisection method.described in Section
9.9 belongs to that category.

Th~magnitude~roducti0rL,r~verses the procedure used in
magnitudeestimation.The~ubjectis given a number and asked
tg pr~duce~matchiIlg'inte~s~t!.·A~in~~~itude.estimation,

.. '-a.p(»)Verla._w~aIl·1?~Jitt~(lto thEtcla.~a~ ~owever,as observed by
ma.ny investigators, the estimated\exponent.tends to. be larger
(seeS:S.Stevens&G,reenbaum, 1966, for a summary of the
data).

. In the ratio production method, the observer is instructed
to adjust the intensity ofthe stimulus·· in such a manner that
it appears to be a particularmultjpleor fraction of a standard.
(In this last case, the term fractionationmethod is8.1so used.)
For ,example, the. subject maybe required to produce atone
intensity appearing. half as.· loud as the standard tone· of the
same frequency. These methods have a long but scattered history
and were regarded with some. suspicion untilStevens'smajor
contribution to the field. By and large, the data are similar to
those obtained with magnitude estimation. (For details,see
Marks, 1974 or S. S.Stevens, 1975).

A rather startling prediction maybe obtained for the data
of the so..calledcross-modality matching method. Suppose that
for two s.ensory·continua, denoted below as 1 and 2, the mag
nitude estimation data are adequately summarized by the two
power laws

(144)<f>(x)=ax~ .

X (decibels re
3.8x10-7 candelas!meter2

)

Figure 1.31. Magnitude estimates ofbrightness. Inabscissa, the luminance
of the stimuli in decibels re 10-6 Lambert. (Adopted fro"m l C Stevens,
Brightness function:. Binocular versus monocularstimulation, Perception and
Psychophysics, 1967, 2. Reprinted with ·permission.)

<f>(x)=ax~ +-y

In log-logcoordinates,Eq. (144) becomes the equation .of a
linear fun:tionwithslope ~,whichcanbe fittedto the data by
linear regression. As exemplifiedin Figure 1.31, this prediction
holds reasonably \VeIl for much da~~, atleast for moderate to
large intensities (see Marks, 1974, or S.S. Stevens,1975, for a
presentation ofthe evidence). A better overall fit may be· ob
tained,atthecost of one extra parameter,byforIns such ~s

both ofwhich are capable ofhandling the data ·atlowintensities
(cf. Ekman,1956, 1961; Fagot, 1963; Galant~r &Messick, 1961;
Luce, 1959a;S.S.Stevens,1959a).

<f>(x) = a(x --y)~ ,

have a sensory magnitude whichis half that of the standard,
its sensory magnitude should be estimated to be 50. Typically,
only a couple of observations are taken from each subject, and
the data of all subjects. are combined by computing the median
or the geometrical mean.

The second variant has thefavor of many investigators.
No standard and no modulus are provided. The subject is.simply
told to assign to anystimulus presented any number that seems
suitable as an estimate ofthe sensation magnitude.

Interestingly, the· results are very similar for the two
methods. For intensive continua, the mean or median response
<f>(x) is approximatelya power function ofthe physical intensity
x:

---------------.---------- --_.--_ .... -... _.-

In production and matching methods, the subject is requested
to react to the stimulation by "producing" a value of a sensory
variable,for exarnple,hyturninga dial. There are several com
monly used procedures, so$e of which have been encountered
earlier in this chapter.. The bisection method described inSection
9.9 belongs to that category.

Themagnitudeproductionr~verses the procedure used in
- ~ .~

magnitl.l.deestimation. The subject is given a number and asked
to produce a matching intensity. As in magnitude estimation,
a powerJawcanoii"nttedto the data. H:0wever, as observed by
many investigators, the estimated'exponent tends to be larger
(see S; S. Stevens & Greenbaum, 1966, for a summary of the
data).

In the ratio production method, the observer is instructed
to adjust the intensity of the stimulus in such a manner that
it appears to be aparticular multiple or fraction of a standard.
(In this last case, the term fractionation method is also used.)
For example, the subject may be required to produce a tone
intensity appearing· half as'loud as the standard tone of the
same frequency. These methods have a long but scattered history
and were regarded with some suspicion until Stevens's major
contribution to the field. By and large, the data are similar to
those obtained with magnitude estimation. (For details, see
Marks, 1974 or S. S. Stevens, 1975).

A rather startling prediction may be obtained for the data
of the so-called cross-modality matching method. Suppose that
for two sensory continua, denoted below as 1 and 2, the mag
nitude estimation data are adequately summarized by the two
power laws

10.6. Production and'Matching Methods

The magnitude estimation procedure is also used in other
paradigms. For example, in ratio estimation, the observer is
asked to evaluate the subjective "ratio" of two stimuli. At least
to a first approximation, the experimental results are consistent
with those reported for the magnitude estimation of single
stimuli. More is said about such consistency in Section 10.7.

It was strongly argued by S. S. Stevens (1957, 1959a, 1961a,
1961b, 1961c) that Eq. (144) should be taken as the fundamental
psychophysical law, rather than the logarithmic Fechnerian
form derived from Weber's law together with the difference
representation for choice probabilities (cf. Section 7.3). Accord
ingly, serious consideration is given to the estimated value of
the exponent 13 in Eq. (144), which some believe could be a
measure of some basic feature of the subject's sensory system.
Several dozen sensory continua were investigated by Stevens
and others, and the values of the exponent 13 were tabulated
(see, for example, Table 1 in S. S. Stevens, 1975). The claim
that the exponent in Eq. (144) is of fundamental importance
for psychophysical theory encounters difficl.l.ltieswith various
data, however, which indicate that its estimated value strongly
depends on the experimental conditions oreven on the instruc
tions given to the subject. Among other studies, we mention
Teghtsoonian (1971), who shows that the estimated values of
13 are correlated with the range of the set of stimuli used in the
experiment, and Robinson (1976), who demonstrates how the
instructions .can systematically affect this exponent. A review
of some of these effects can be found in Poulton (1968). In the
light ofavailable evidence, it is clear that no single, basic sensory
factor is responsible for the variations of the exponent. In par
ticular, as argued by Green and Luce (1974), its value may
reflect some aspects of the subject's decision-making process.
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(144)<!>(x) = ax~ .
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or

<!>(x) = ax~ + 'Y

In log-log coordinates, Eq. (144) becomes the equation of a
linear function with slope 13, which can be fitted to the data by
linear regression. As exemplified in Figure 1.31, this prediction
holds reasonably ",ell for much data, atleast for moderate to
large intensities (see Marks, 1974, or S. S. Stevens, 1975, for a
presentation of the evidence). A better overall fit may be ob
tainEid, at the cost of one extra parameter, by forms such as

GEOMETRIC MEANS
o =Binocular
o =Monocular (L+R)I
,,= Left eye ,
9 =Right eye

o.1-t--..--r-.,..-,--,--,..----r---,------1
30 50 70 90 110

X (decibels re
3.8xl0·7 candelas/meter2

)

Figure 1.31. Magnitude estimates of brightness. In abscissa, the luminance
of the stimuli in decibels re1 0-6 Lambert. (Adopted fro'm]. C Stevens,
Brightness function: Binocular versus monocular stimulation, Perception and
Psychophysics, 1967,2. Reprinted with permission.)

both ofwhich are capable ofhandling the data at lowintensities
(cf. Ekrnan, 19513, 1961; Fagot, 1963; Galanter &Messick, 1961;
Luce, 1959a; S. S. Stevens, 1959a).
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have a sensory magnitude which is half that of the standard,
its sensory magnitude should be estimated to be 50. Typically,
only a couple of observations are taken from each subject, and
the data of all subjects are combined by computing the median
or the geometrical mean.

The second variant has the favor of many investigators.
No standard and no modulus are provided. The subject is simply
told to assign to any stimulus presented any number that seems
suitable as an estimate of the sensation magnitude.

Interestingly, the results are very similar for the two
methods. For intensive continua, the mean or median response
<!>(x) is approximately a power function ofthe physical intensity
x:
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(145) 10.7. Krantz-ShepardTheory

Cj j( YjIXj,Xi).'" The cross-modality matching value· of stimulus
Yj from sensory continuumj into sensory continuum i, with mod
ulus (Xj,xi};;'

In Krantz's system, the cross-modality matching modulus
may be taken to be the stimulus-response.pairofthe preceding
trial. Six axioms, labeled RT1-RT6, specify the theory.

Pi (x,Y). 'The ratio estimation of the pair (x,y) in the sensory
continuum ,i.

Axiom ~Tl.;~or ev~ry sensory continuumi, 1 ·~i ~ n, there
isa functfori (lx,y) ~ li(x,y) mapping the pairs of stimuli onto
asubsetof'the'positivereals (independent of i). These functions

Despite the limitations, the array of results collected by Stevens
and his followers, and summarized in the last two subsections,
contains enough regularities to require a systematic explanation.

The relation theory outlined below representsthe most sat
isfactory effort ma'de to· account for· a substantial part of the
data. Some seminal ideas were first proposed by.Shepard, in
an unpublished manuscript, and were then elaborated and ax
iomatized by Krantz (1972; see also Shepard, 1981). Inpresenting
this theory, we make a number of idealizations. We omit the
fact that the data are noisy, are the locus ofimportant contextual
and sequential effects, and so forth. To simplify and shorten
the exposition, we alsospecify the theory by properties actually
derivable from more abstract axioms in Krantz's paper.. (To
some extent, our presentation "trivializes" the theory but hope
fully· renders key notions more transparent.)

The data concern n sensory continua, numbered 1, 2, , n.
We begin by tightening up the notations. The letters 'x, y, (or
sometimes Xi,Yi, .•. , 1 ~ i ~ n, to avoid ambiguities) will stand
for positive real nunibers representing· physical intensities of
the stimuli (energy level).·We·.denote by:

Nj(ylx,p).':: The magnitude estimation of stimulusy, with
standard x·and modulus p, in the sensory·continuum i, 1 ~ i ~
n.

(146)

(148)

(147)(31,2

The'prediction that the cross-modality matching function
a·power law has been.verified by several authors, for many
nti!lua, and it holds rather well (ef.Figure 1.32). For a number
reasons, the verification of the· specific relation linking the
ponents in cross-modality matching and magnitude estimation
not as straightforward as it may seem. While S. S. Stevens
975) and Marks (1974) conclude that Eq. (147) is well supported
the facts, doubt has been expressed by others, based on their
alysisoftheir own data (Baird, Green,& Luce, 1980; Mashour

~ Hosman, ·1968).

concreteness, suppose that the two sensory continua·. are
udness and brightness. Imagine now that in a t~dexperiment
e subject, ratherthan matching physical quantities to numbers
ina magnitude estimation experiment, is requested to match
e values directly from one sensory continuum to the other,
y, from loudness to brightness. At first, this instruction may
em rather bizarre~Actually, not only are the subjects capable
performing such·a task without undue hardship, but, once
ain, they provide reasonably regular data. Assuming that

matching ofbrightness to loudness is achieved by equating
the values of the two psychophysical scales, that is,· the two
right members inEq. (145), we obtain

riting 4>1,2 for the cross-modality matching function (thus
+1,2(X). = y)and rearranging, yields

RELATIVE INTENSITY OF eR I TER ION ST lMULUS

Figure 1.32. Cross-modality matching data between Joudnessand 10 other sensorycontinua. {From S~

S. Stevens,Matching function between loudness and ten other continua, Perception and Psychophysics,
1966, 1. Reprinted with permission.)
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(145) 10.7. Krantz-Shepard Theory

Writing <P1.2 for the cross-modality matching function (thus
<P1.2(X) = y) and rearranging, yields

Despite the limitations, the array of results collected by Stevens
and his followers, and summarized in the last two subsections,
contains enough regularities to require a systematic explanation.

The relation theory outlined below represents the most sat
isfactory effort made to account for a substantial part of the
data. Some seminal ideas were first proposed by Shepard, in
an unpublished manuscript, and were then elaborated and ax
iomatized by Krantz (1972; see also Shepard, 1981). In presenting
this theory, we make a number of idealizations. We omit the
fact that the data are noisy, are the locus ofimportant contextual
and sequential effects, and so forth. To simplify and shorten
the exposition, we also specifY the theory by properties actually
derivable from more abstract axioms in Krantz's paper. (To
some extent, our presentation "trivializes" the theory but hope
fully renders key notions more transparent.)

The data concern n sensory continua, numbered 1,2, , n.
We begin by tightening up the notations. The letters x, Y, (or
sometimes Xi, Yi, ... , 1 .;;; i .;;; n, to avoid ambiguities) will stand
for positive real numbers representing physical intensities of
the stimuli (energy level). We denote by:

Nj(Y!x,p)• ...• The magnitude estimation of stimulusy, with
standard X and modulus p, in the sensory continuum i, 1 .;;; i .;;;
n.

(146)

(147)131.2

For concreteness, suppose that the two sensory continua are
loudness and brightness. Imagine now that in a third experiment

e subject, rather than matching physical quantities to numbers
in a magnitude estimation experiment, is requested to match

values directly from one sensory continuum to the other,
, from loudness to brightness. At first, this instruction may
m rather bizarre; Actually, not only are the subjects capable
performing such a task without undue hardship, but, once
ain, they provide reasonably regular data. Assuming that

the matching ofbrightness to loudness is achieved by equating
the values of the two psychophysical scales, that is, the two
right members in Eq. (145), we obtain

la power law with

I
land

(148)

Pj(X,y). The ratio estimation of the pair (x,y) in the sensory
continuum i.

The prediction that the cross-modality matching function
~s a power law has been verified by several authors, for many
Fontinua, and it holds rather well (cf. Figure 1.32). For a number
'pf reasons, the verification of the specific relation linking the
~xponentsin cross-modality matching and magnitude estimation
is not as straightforward as it may seem. While S. S. Stevens
r1975) and Marks (1974) conclude that Eq. (147) is well supported
py the facts, doubt has been expressed by others, based on their
!Ulalysis oftheir own data (Baird, Green, & Luce, 1980; Mashour
~ Hosman, 1968).

Cjj(YjIXj,xj).The cross-modality matching value of stimulus
Yj from sensory continuumj into sensory continuum i, with mod
ulus (xj,xi);

In Krantz's system, the cross-modality matching modulus
may be taken to be the stimulus-response pair of the preceding
trial. Six axioms, labeled RT1-RT6, specify the theory.

Axiom RT1. .Jfor every sensory continuum i, 1 .;;; i .;;; n, there
is a function (x,y) -') li(X,y) mapping the pairs of stimuli onto
a subset onhe'positive reals (independent of i). These functions
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RELATIVE INTENSITY OF CRITERION STIMULUS

Figure 1.32. Cross-modality matching data between loudness and 10 other sensory continua. (From S.
S. Stevens, Matching function between loudness and ten other continua, Perception and Psychophysics,
1966, 1. Reprinted with permission.)
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p(x/y)~i'Y ;

li(X,y) = G[ fi(x)/fi(y)] ,

Pi (X,Y) = H{G[{;,(x)I{;,(y)]} .

Functional. Measurement

For somepsychophysicists, the data of magnitude estimation
and productionare'hopelessly biased by uncontrollable nuisance
effects and such methods should be. abandoned.. Such is the
position of Anderson, who advocates an alternative collection
ofprocedures and models which he calls functional measurement
(see Anderson 1974,1976,1981, for numerous references).

H[G(s)] = s~

fi('Ax)If;,('Ay) = (;,(x)IfT,(y) ,

for some positive constant 'Y. From Eq. (150) and AxiomRT6,
we deduce

By a standard functional equation argument, applying Eq. (150)
and Axiom RT4 results in the functionH[G(s)] having the
form

for strictly increasing, continuous functions G and fl,. Combining
this result and Axiom RT2, we obtain

Ifliy,x) = ll(Z,W), then

Ni (Ylx,p) = Pl(z,w) .

Note that this last axiom, which will procure the power law,
has the form of Weber's law but applies also todiscriminable
stimuli. These six axioms have a number of consequences for
psychophysical judgments, examples of which follow.

From AxiomRT1 it can be derived that for arty sensory
continuum i

Axiom RT4.

Axiom RT2. There isa positive-valued, strictly increasing
function H such that for every. sensory continuu:rni,

AxiomRT3~.' For every pair (j, i) of sensorycorttinua,

are continuous, strictly increasing in the first variable and
strictly decreasing in the second variable. Moreover, the func
tions li are assumed to. satisfy the two conditions:

1. li(X,y) ~ lj(z,w) implies lj(w,z) ~ li(Y,X).
2. If li(X,Y} ~ lj(x' ,y') and li(Y,Z) ~ lj(y' ,z'), then li(x,z) ~

~(X',Z').

This is the basic notion. Every pair (x,y) ina sensory continuum
i is mapped into a sensation.· continuum by the function li.·We
shall see that the two conditions (1) and (2) ensure that the
quantities li(X,Y), lj(z,w), ... , and so forth, behave in a certain
sense like arithmetical ratios (see Eq. (149)). In the sequel, we
shall refer to li(x,y) as the sensation "ratio" of (x,y). Any esti
mation or production task is then carried out through the me
diation ofthe sensation "ratios" ofthe pairs ofstimuli involved.
Examples are given in the next two axioms.

PSYCHOPHYSICAL MEASUREMENT AND THEORY

Cji (Yjl Xj,Xi) Xi (YjIXj)f3j/f3i

Notice thatth~ ..cross-mod~ity matching exponents /3)/3i ..can
be.predicted by the ratio of the magnitude e'stimation expo~ents

of the preceding equation. i

Various criticisms~a~bttIriadeligainst this theory. In par
ticular, (1) it is deterministic, whiletl1e data are highly variable,

. The special.' continuum. is assumed. to.. be .length. Axiom..RT4. ,within. or acrossQ'Qs~:ryers;(2) it omits .important sequential
states essentially that mental estimationoflengthrati()sheha~es-.~ ··and contextual effects,. which--someilelieve toaeimportant
like physical measurement, an. assumption which, Krantzar- enough to bias the picture'seriously; and (3) the'specialrole of
"gues, is supported by the fact that the estimated exponents of the length continuulIl~can'bequestioned,specifically the con
the powerlaw· for judgments of distance are often dose to. 1. tention that the estimated exponent of the power law is ap
(Some would question that fact .. We postpone criticism at this proximately equal to 1 (Baird,·1970).
point.) 'AxiomRT5 is consistent' with' a mechanism in.which In our opinion, even though the predictionsofrelation theory
magnitudeestiIIlation in any sensorycontinu:um 'i is obtained may not be fully supported~y the data, they certainly represent
through computation in the lengthcontinuuIIl.· useful. approximations. If nothing more, relation theory may

be taken as. a, good summ~ryof the way a sizable part of the
psychophysical community 'id~alizes data,. still a serviceable
device.

fi('Ax)lfi('Ay) = fi(x)lfi(y) ,

for some positive constant 'Y' From Eq. (150) and Axiom RT6,
we deduce

for strictly increasing, continuous functions G and fi. Combining
this result and Axiom RT2, we obtain

(151)

(150)
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(149)

H[G(s)] = s'Y

li(X,y) = G[ fi(x)lfi(y)] ,

Pi (x,y) = H{G[fi(x)lfi(y)]}

By a standard functional equation argument, applying Eq. (150)
and Axiom RT4 results in the function H[G(s)] having the
form

a functional equation which (in the conditions of monotonicity
or continuitY,of{;,) has only the solution

Axiom RT2., There is a positive-valued, strictly increasing
function H such thatfor every sensory continuum i,

Pi (x,y) = H[li(X,Y)] .
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are continuous, strictly increasing in the first variable and
strictly decreasing in the second variable. Moreover, the func
tions li are assumed to satisfy the two conditions:

1. li(X,y);;;' l/z,w) implies l/w,z) ;;;. l/y,x).
2. If li(X,Y) ;;;. lj(x' ,y') and li(Y,Z) ;;;.lj(y' ,z'), then li(X,Z) ;;;.

lj(x' ,z').

This is the basic notion. Every pair (x,y) ina sensory continuum
i is mapped into a sensation continuum by the function h We
shall see that the two conditions (1) and (2) ensure that the
quantities li(X,y), liz,w), ..., and so forth, behave in a certain
sense like arithmetical ratios (seeEq. (149)). In the sequel, we
shall refer to li(X,y) as the sensation "ratio" of (x,y). Anyesti
mation or production task is then carried out through the me
diation ofthe sensation "ratios" ofthe pairs ofstimuli involved.
Examples are given in the next two axioms.

In words, the ratio estimates" are strictly. increasing with
the sensation "ratios." for some constant a, 13 > O. From Eq.(149), we obtain thus

AxiomRT3; " For every pair (j, i) of sensory continua, (152)

In words, with cross-modality- matching modulus (Xj,Xi), Yj
is matched to Yi only if the sensation "ratios" of (yj,Xj) and
(Yi,Xi ) coincide.

The next two axioms emphasize the special role played byone
sensory continuum, arbitrarily numbered!.

Replacing the sensation magnitudes in AxiomsRT2, RT3, and
RT5 by their expressions as given by Eq.(152) and using also
Eq. (l5l)gives the expected predictions:

Pi (X,Y) (xly)P>i'Y;

Ni (yIx,p)

Axiom RT4. For the sensory continuum 1,

P1(x,y) . Pl(Y,Z) = Pl(X,Z)

Axiom RT6. Fotany sensory continuum i and any positive real
numbers x, y, and 'A, '

Cji(YjIXj,Xi) Xi (YjIXj)p>jlP>i

Notice thatth~ cross-mod~lity matching exponents 13)l3ican
be predicted by the ratio,of the magnitude estimation exponents

Axiom RTS. If l;Cy,x) = h(z,w), then ofthe preceding equation.
Ni (Ylx,p) = Pl(z,w) Various criticisms can,be made 1,igainst this theory. In par-

ticular, (1) it is determinIstic, while tlie data are highly variable,
The specialcontinuum is assumed to belength. Axiom.RT4 within or across obseryer!l; (2) itomitsimportantsequential
states essentially tha.t mental estimationoflengthratiosbehaves- .,. and contextual effects" which some~elieve to be important
like physical measurement, an assumption which, Krantz ar- enough to bias the picture seriously; a.nd (3) the special role of
gues, is supported by the fact that the estimated exponents of the length continuum~can.bequestioned, specifically the con
the power law for judgments of distance are often close to 1. tention that the estimated exponent of the power law is ap
(Some would question that fact. We postpone criticism at this proximately equal to 1 (Ba.ird, 1970).
point.) AxiomRT5 is consistent with a mechanism in which In our opinion, even though the predictions ofrelation theory
magnitude estimation in any sensory continuumi is obtained may not be fully supported by the data, theycertaitl.ly represent
through computation in the length continl.lum. useful, approximations. If nothing more, relation theory may

be taken as a good summary of the way a sizable part of the
psychophysical community idealizes data, still a serviceable
device.

li('AX, 'Ay) = li(X,Y) .

Note that this last axiom, which will procure the power law,
has the form of Weber's law but applies also todiscriminable
stimuli. These six axioms have a number of consequences for
psychophysical judgments, examples of which follow.

From Axiom RT1 it can be derived that for any sensory
continuum i

10.8. Functional Measurement

For some psychophysicists, the data of magnitude estimation
and production are hopelessly biased by uncontrollable nuisance
effects and such methods should be. abandoned. Such is the
position of Anderson, who advocates an alternative collection
ofprocedures and models which he calls functional measurement
(see Anderson 1974, 1976, 1981, for numerous references).
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Assuming appropriate distributions 'fo~ the variances of the
errors, these models can be tested through standard analysis
of variance techniques. A graphic plot of the· data is also used
to validate a model. In the case of the adding model, for instance,
since rik - rjk = cti - J3j, independent onk, a check of "paral
lelism" canbe"made. This is illustrated in Figure 1.33 for the
size-weight illusion experiment mentioned· above (Anderson,
1970a, 1981).. This analysis favors a model in which subjective
heaViness. (as evaluated by· the ratings) is represented as the
sum of subjective weight and· appearance.

Occasionally, the standard models cannot befitted to the
rating data. A monotonic rescaling of the ratings is then carried
out by numerical techniques. When the fit ofa mode1 is taken
to be acceptable, the estimated values of the parameters ai, ~j

can be plotted against the corresponding physical measure. The
resulting relation is called the psychophysical law for that sen
sory continuum. It is assumed, or hoped, that this relation will
ho~dacross .,. situations varying, the· experimental design, '. the;
instructions, and the model but involving the same sensory
continuum~

Over the years, Anderson and his followers have applied
functional measurement -methods to a large body. of.data· in
psych6physics and elsewhere aridhave 'often succeededin'parsing
out the effects of the factors on the ratings, through one or the
other of the standard. models.
, A; 'number ofcriticisms of Anderson's approach have heen

made however. The major point ofcontention concerns the rating
response used and, in particular, the status of that response
measure with respect to scale type.· The. mathematical form of
the adding and averaging models· is invariant under·· affine .
transformations (Le.,transformations x ~'Yx+ 8). This property
led Andersonto argue that whenone'such model is found to fit
some data,. it can be concluded that the rating response and the
estimated parameters are interval scales. The objections to this
controversial claim are reviewed in Birnbaum (1982).

It is impossible in a few pages to do justice to the diversity of
positionscqncerningthe measurement of sensation and. the·
form of'tne "psychophysical scale,"·that is, the mathematical
funct~on .relating physical intensity to sensation magnitude.
(Fot"'g'~recent'sample;'see Warren, 1981, and the comments
fQllowingthe article.) These positions go from a rejection ofthe
issue (the measurement of sensation is a hopeless enterprise;
,e.g., 'rumarkin, 1981) to a strongly held opinion that given
appropriate ex:perimentalcontrol, a particular.method yields
the desired psychophysical scale (e.g., Anderson, 1981; orB.· S.
Stevens, 1975). A consensus is not in sight; it has been helpful
to distinguish two,classes ofsensible positions.

,..1.Cp,tegQry 1. Given· a large.collection of psychophysical
data considered important by the psychophysical'community,
a psychophysical scale should be· adopted that renders simple
or. convenient the numerical·· expression .of these· data· and·of
the models explaining them. In line with such a position, it is
recognized that there·· is typically a degree ·of arbitrariness .in
the choice of a scientific scale and that models .and. data can
usually.be recoded. if amonotonic· rescaling .. is taking place.
Exemplars ofthis positionareLuceandGalanter{1963a),Ellis
(1966),and Falmagne (1974). In this connection, we note that
there is an overwhelming tendency to plot psychophysical data
in logarithmic coordinates and·thafmany models currently in
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Figure 1.33. Anderson'sdata forthe size-weight illusion. Subjectsliftand
judge heaviness of cubical blocks in a 3x Sf gram weight x block size,
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response inlowergraph (bl. (FromM. H. Anderson,Averaging modetapplied
to the size-weight illusion, Perception and Psychophysics, .1970, B.Reprinted
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The Averaging Model

The Multiplying Model

The Adding Model

In a typical application. of functional m~asurement, the
subject is presented with stimuli varying along several dimen
sions or aspects,· in a factorial design, and is required to produce
a·rating value, say, ona 20-category rating scale. In one ex
periment, for example, designed ·to assess the so-called size-
weight illusion, ·subjects were asked to rate the subjective
heavinessofcubical blocks varying in weight and size (Anderson,
1970a). One or more algebraic models are then applied, sym
bolizing different combination rules for the factors. Let rij stand
for the (average) rating in cell (i,j) ofa two-factor design. The
most frequently used models are:
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In a typical application of functional m~asurement, the
subject is presented with stimuli varying along several dimen
sions or aspects, in a factorial design, and is required to produce
a rating value, say, on a 20-category rating scale. In one ex
periment, for example, designed to assess the so-called size
weight illusion, subjects were asked to rate the subjective
heaviness ofcubical blocks varying in weight and size (Anderson,
1970a). One or more algebraic models are then applied, sym
bolizing different combination rules for the factors. Let rij stand
for the (average) rating in cell (i,j) of a two-factor design. The
most frequently used models are:

Assuming appropriate distributions for the variances of the
errors, these models can be tested through standard analysis
of variance techniques. A graphic plot of the data is also used
to validate a model. In the case of the adding model, for instance,
since rik - rjk = Cl.i - 13j, independent on k, a check of "paral
lelism" can be' made. This is illustrated in Figure 1.33 for the
size-weight illusion experiment mentioned above (Anderson,
1970a, 1981). This analysis favors a model in which subjective
heaviness (as evaluated by the ratings) is represented as the
sum of subjective weight and appearance.

Occasionally, the standard models cannot be fitted to the
rating data. A monotonic rescaling of the ratings is then carried
out by numerical techniques. When the fit of a model is taken
to be acceptable, the estimated values of the parameters Cl.i, 13j
can be plotted against the corresponding physical measure. The
resulting relation is called the psychophysical law for that sen
sory continuum. It is assumed, or hoped, that this relation will
hold across situations varying the experimental design,. the
instructions, and the model but involving the same sensory
continuum.

Over the years, Anderson and his followers have applied
functional measurement ·methods to a large body of data in
psychbphysics and elsewhere and have often succeeded in parsing
out the effects of the factors on the ratings, through one or the
other of the standard models.

Ahumber of criticisms of Anderson's approach have been
made however. The major point ofcontention concerns the rating
response used and, in particular, the status of that response
measure with respect to scale type. The mathematical form of
the adding and averaging models is invariant under affine
transformations (Le., transformations x - 'Yx + 8). This property
ledAnderson to argue that when one such model is found to fit
some data, it can be concluded that the rating response and the
estimated parameters are interval scales. The objections to this
controversiaI.claim are reviewed in Birnbaum (1982).
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10.9. ! Measurement of Sensation
i

It is impossible in a few pages to do justice to the diversity of
positions concerning the measurement of sensation and the·
form ot tne "psychophysical scale," that is, the mathematical
function relating physical intensity to sensation magnitude.
(For"g:recent sainple,see Warren, 1981, and the comments
foll<>wingthe article.) These positions go from a rejection ofthe
issu.e (the measurement of sensation is a hopeless enterprise;
e.g., Tumarkin, 1981) to a strongly held opinion that given
appropriate experimental control, a particular method yields
the desired psychophysical scale (e.g., Anderson, 1981; orS. S.
Stevens, 1975). A consensus is not in sight; it has been helpful
to distinguish two,classes of sensible positions.

1. Gr:riegory 1. Given a large collection of psychophysical
data considered important by the psychophysical'community,
a psychophysical scale should be adopted that renders simple
or convenient the numerical expression of these dataand of
the models explaining them. In line with such a position, it is
recognized that there is typically a degree of arbitrariness in
the choice of a scientific scale and that models and data can
usually be recoded if a. monotonic rescaling is taking place.
Exemplars ofthis position are.Luce and Galanter (1963a), EUis
(1966), and Falmagne (1974). In this connection, we note that
there is an overwhelming tendency to plot psychophysical data
in logarithmic coordinates and that many models currently in
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The field of scaling' is· among those covered regularly in the
Annual Review ofPsychology; for example,Ekman andSjoberg
(1965), Zinnes (1969), Cliff(1973),Carroll and Arabie (1980).
The last paper reviews the developments in multidimensional
scaling techniques.

The notion of the type of a measurement scale is analyzed
in basic measurement pap~rs or books (Ellis, 1966; Krantz et
aI., 1971; Roberts, 1979;Suppes& Zinnes,1963).

Techniques, data, and philosophy of direct scaling aredis..
cussed in great detail in the. books by Marks (1974J.orS. S.
Stevens (1975).

in which Aisa scale..dependentconstallt. In the t,echnical jargon,
those mathematicalform.ulashaving a form invariant of the
unitsofthe scales are called meaningful. As noted by Falmagne.
and Narens (1983), the strong liking ofscientists for meaningful
formulas to represent laws. is probably due to a combination of
practIcal and theoretical reasons. From a practical viewpoint,
the· adoption of nonmeaningful formulas would almost certainly
introduce chaos into scientific communication. From a theoretical
"Viewpoint, Ine~ingfUlne~s appearsto lead to coherent systems
of.units (cf., Luce, 1959(0)). Our example involvingEq. (152,!
may suggest that these· mat~ersarerelativelytrivial and that,
with somecare,considerfltiQ.p-s o~lmeaningfulness are easy to
apply. Actually, .this ds only true. in the case of.very. simple
ma.thematicalforms. . ._ "

The·spaceavailablehere onlyp~rmitsus.to alert ·the reader
to this question, a.· full discussion df which would take. many
rathert.echnical pages. For an.·.. introduction ·to .. the issue of
meaningfulness,see"SuppesandZinnes (1963),Roberts (1979),
or Falmagne and Narens (1983). Applicationsin psychophysics
caI;l he found in Luce (1959b).

10.t1. Key Refe·rences

(153)P . _F(a +.1.83)
a,b -b + 1.83 . ,

P · __ F(a+A)a,b - . b + >...

in which a and bare stimulus intensities .expressed in some
units of a standard ratio scale (say, sound pressure, weight, or
length), F is a strictly increasing continuousfunction, and 1.83
is a constant. Equation (152) can be objected to on the grounds
thatit conveys little information if the particular units ofthe
variables a and b are not mentioned. One mightask,Why not
mention the units? It turns outthat all the scientific laws of
importance satisfy the property that.they can be quoted without
mentioning the units of the scales. Curiously, this is a statement
of fact, not a regulation. To illustrate, according to Coulomb's
law, "The force in a homogeneous isotropic medium of infinite
extent betweentwo point chargesis proportionalto the product
oftheir magnitude, divided by the square ofthedistance between
them" (Gray, 1957).

Note that this statement of Cou~omb's·law remains true
no matter which.· units· are· adopted for the· scaiesentering in
the formulationofthelaw.Thisstatem.el1~is thus unambiguous~
Numerous similar examples could be given in physics andother
fields .. By contrast, the form ofEq. (152).isnotinvariantwith
admissible transformations ofthe scales.··A·better formulation
for the lawfulness. that Eq. (152) was attempting to capture
would be

10.10. A Note on Meaningful Psychophysical laws

One might suppose that the choice of a mathematical formula
to represent some data, say, in the form of a scientific law, is
solely a matter ofgoodnessoffit. Ofcourse, routine precautions
must be taken whenevaluatingthefit, such as accounting for.
the number. ofparameters. This· can often be done by standard
statistical methods,·such·as likelihood· ratio or·minimum chi
square. Granted a proper statistical analysis, the best-fitting
formula or model should bechosen,or so it may seem.

Actually, the above scheme is not completely accurate, and
considerationsofa completely different nature may enter into
theselectionofa formula. Inparticular,depending on the type
ofthe scale or scalesinvolved,a given formula mayor not be
a sensible choice. Suppose, for example, that in an application
ofthe2AFC paradigm, the binary choice probabilIties are rep
resented by.the equation

use have their variables in. decibel units or could easily be
recast in such terms. From this viewpoint, the Fechnerian log
arithmic scale would yet appear-notwithstanding all the at
tacks-as a reasonable choice for the psychophysical scale.

One objection to this admittedly utilitarian position is that
there is no foreseeable agreement regarding what constitutes
the bulk·of important psychophysical data.

2. Category 2. .. The psychophysicists in this second cat
egory. consider some particular data to be of primal value in
uncovering the psychophysical law. The basic idea is that stim
ulus intensitieshavea numerical representation inthe subject's
organism, which can be accessed directly ifthe right response
is elicited from the subject inthe right paradigm. In the same
vein, the logarithmic scale is rejected by observing, for example,
tha.tpairs of stimuliwhich are equidistant on the .logarithmic
scale do not appearto be equidistant subjectively or by showing
that this scale· differs. from that· obtained by the.selected· direct
~ethod. Many examples of tenants of such a ,position may be

.. foundamong.Stevens .followers .. The ··belief in the. existence,
within the organism, of a numerical r~presentationofsensory
intensities may perhaps .. strike a philosopher as a severe.·case
ofreification..However, the surprising· consistency·.of the .results

" reported by.differentlaboratoriesllsing the ·same direct method
prevents. acasual·.·dismissal of the notion. As. if some analog
device were available to them, the subjects areindeed able to
make sense of descriptions ofstimuli, such as "half as loud" or
"twice .as .bright,". or to provide regular m.agnitude estimation
or rating.data.

The difficulty for the advocates ofa particular direct method
is, "again, ·.thatthere .is no agreement in the ... psychophysical
community regarding the· choice·ofsucl1amethod.~his.is both
understandable and justified,·since-the regularity andconsis
tency ofthe data.·· generated· byanydir~ctmethod (however
surprisingtheymay·be) ·are.not·such that these data could
provide the foundation fora scientific scale.

In ouropinion,thechoiceofa psychophysical scale is in
part a m~tterof scientific strategy, with unavoidable political
overtones. What should be accomplished with such a scale? It'
is easily conceivable thatno scale could usefully serve the dual
purpose of (1}determiningaconvenientnumerical notation
ofscientific psychophysical facts and models and (2) providing
a medium of communica.tionwitha naive public onprac
tical .questions involviIigsubjective impressions' ofserisory
intensities.

10.11. Key References

P _ F(a + A)
a,b - b + A

The field of scaling· is among those.covered regularly in the
Annual Review ofPsychology; for example, Ekman and Sjoberg
(1965), Zinnes (1969), Cliff (1973), Carroll and Arabie (1980).
The last paper reviews the developments in multidimensional
scaling techniques.

The notion of the type of a measurement scale is analyzed
in basic measurement papers or books (Ellis, 1966; Krantz et
al., 1971; Roberts, 1979; Suppes& Zinnes, 1963).

Techniques, data, and philosophy of direct scaling are dis
cussed in great detail in the books by Marks (1974) or S. S.
Stevens (1975).
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in which Ais a scale-dependent constant. In the technical jargon,
those mathematical formulas having a form invariant of the
units ofthe scales are called meaningful. As noted by Falmagne .
and Narens (1983), the strong liking of scientists for meaningful
formulas to represent laws is probably due to a combination of
practical and theoretical reasons. From a practical viewpoint,
the adoption of nonmeaningful formulas would almost certainly
introduce chaos into scientific communication. From a theoretical
viewpoint, meaningfulne~s appearstolead to coherent systems
of units (cf.,. Luce, 1959(0». Our example involving Eq. (152)
may suggest that these matters are relatively trivial and that,
with some care, considerfitipps o~ meaningfulness are easy to
apply. Actually, this is only tru~ in the case of very simple
mathematical forms.

The space available here only p~rmitsus to alert the reader
to this question, a full discussion of which would take many
rather technical pages. For an introduction to the issue of
meaningfulness, seeSuppes and Zinnes (1963),Roberts (1979),
or Falmagne and Narens (1983). Applications in psychophysics
can befound inLuce (1959b).

in which a and b are stimulus intensities expressed in some
units of a standard ratio scale (say, sound pressure, weight, or
length),F is a strictly increasing continuous function, and 1.83
is a constant. Equation (152) can be objected to on the grounds
that it conveys little information if the particular units of the
variables a and b are not mentioned. One might ask, Why not
mention the units? It turns out that all the scientific laws of
importance satisfy the property that they can be quoted without
mentioning the units of the scales. Curiously, this is a statement
of fact, not a regulation. To illustrate, according to Coulomb's
law, "The force in a homogeneous isotropic medium of infinite
extent between two point charges is proportional to the product
oftheir magnitude, divided by the square ofthe distance between
them" (Gray, 1957).

Note that this statement of Coulomb's law remains true
no matter which unitsare .adopted for the scales entering in
the fO:rmulation ofthe law. This statement is thus unambiguous.
Numerous similar examples could be given in physics and other
fields. By contrast, the form of Eq. (152) is not invariant with
admissible transformations ofthe scales. A better formulation
for the lawfulness that Eq. (152) was attempting to capture
would be
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One might suppose that the choice of a mathematical formula
to represent some data, say, in the form of a scientific law, is
solely a matter ofgoodness offit. Ofcourse, routine precautions
must be taken when evaluating the fit, such as accounting for.
the number of parameters. This can often be done by standard
statistical methods, such as likelihood ratio or minimum chi
square. Granted a proper statistical analysis, the best-fitting
formula or model should be chosen, or so it may seem.

Actually, the above scheme is not completely accurate, and
considerations of a completely different nature may enter into
the selection of a formula. In particular, depending on the type
of the scale or scales involved, a given formula mayor not be
a sensible choice. Suppose, for example, that in an application
of the 2AFC paradigm, the binary choice probabilIties are rep
resented by the equation

10.10. A Note on Meaningful Psychophysical laws

use have their variables in decibel units or could easily be
recast in su.ch terms. From this viewpoint, the Fechnerian log
arithmic scale would yet appear-notwithstanding all the at
tacks-as a reasonable choice for the psychophysical scale.

One objection to this admittedly utilitarian position is that
there is no foreseeable agreement regarding what constitutes
the bulk of important psychophysical data.

2. Category 2. The psychophysicists in this second cat
egory consider some. particular data to be of primal value in
uncovering the psychophysical law. The basic idea is that stim
ulus intensities have a numerical representation in the subject's
organism, which can be accessed directly if the right response
is elicited from the subject in the right paradigm. In the same
vein, the logarithmic scale is rejected by observing, for example,
that pairs of stimuli which are equidistant on the .logarithmic
scale do not appear to be equidistant subjectively or by showing
that this scale differs from that obtained by the selected direct
method. Many examples of tenants of such a position may be

. found among Stevens followers. The belief in the existence,
within the organism, of a numerical representation ofsensory
intensities may perhaps strike a philosopher as a severe case
of reification. However, the surprising consistency of the results
reported by different laboratories using the same direct method
prevents a casual dismissal of the notion. As if some analog
device were available to them, the subjects are indeed able to
make sense of descriptions of stimuli, such as "half as loud" or
"twice as bright," or to provide regular magnitude estimation
or rating data.

The difficulty for the advocates ofa particular direct method
iS,again, that there is no agreement· in the psychophysical
community regarding the choice of such a method. This is both
understandable and justified, since the regularity and consis
tency of the data generated by any direct method (however
surprising they may be) are. not such that these data could
provide the foundation for a scientific scale.

In our opinion, the choice of a psychophysical scale is in
part a matter of scientific strategy, withunavoidable political
overtones. What should be accomplished with such a scale? It
is easily conceivable that no scale could usefully serve the dual
purpose. of (1) determining a convenient numerical notation
of scientific psychophysical facts and models and (2) providing
a medium of communication with a naive public on prac
tiCal questions involving subjective impressions· of sensory
intensities.
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