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OVERVIEW

LLOYD KAUFMAN
New York University, New York, New York

The first section of this Handbook focuses on conceptual and
methodological issues that pertain broadly to the chapters of
other sections. Many of the chapters of other sections also contain
such material but in a form largely pertinent to the chapters
themselves. The three chapters here are concerned with very

theoretical underpinnings of the methods employed in other
. chapters. Thus this section examines the often unstated reasons
for the methods used in fields as diverse as sensory psychophysics,
_ cognition, and information processing.

The concepts described in the chapters by Falmagne and
by Sperling and Dosher apply across virtually all the “bound-
aries” dividing the sections of this Handbook. Even though
there are real differences between a study of the sensitivity of
a sensory system and of, say, divided attention, scientists in
both these areas often employ the same basic assumptions.
Similarly, chapters in the section on information processing
and those in the section on the perception of pattern and form
are closely related to each other because both areas are strongly
affected by a common set of conceptual tools.

Many of these conceptual tools are related to the problem
of how one is to measure physical stimuli and patterns and
relate those measures to the ways in which the organism trans-
forms and responds selectively to attributes of the stimuli and
patterns. This problem has a long and honorable history in
psychology, and it is dealt with at length in Falmagne’s chapter.
its more precise form it is often referred to as Fechner’s
problem, which can be described as the problem of finding a
way to transform a scale of physical magnitudes so that they
¢ proportionally related to psychological magnitudes. To un-
rstand this problem fully, one must grasp the notion of the
ychometric function, dealt with at length in this first chapter
the Handbook. Falmagne bases his discussion on the theory
measurement and how it may be applied to measuring psy-
ological phenomena. This introduction to measurement theory
uips the reader to understand better the psychophysical
ethods and relationships discussed in later chapters.

out underlying models and processes. For example, a simple

general methods and techniques and, more important, with the

Choices about method usually carry with them assumptions.

forced-choice experiment implies a complex set of processes.
The multiplicity and complexity of the models and assumptions
entailed defy succinct summary. However, Falmagne’s chapter
will carry the reader a long way toward a fuller understanding
of the implications of each choice about method.

The concepts of threshold and of sensitivity are given rigorous
definitions, as are their relations to the now pervasive theory
of signal detection. The latter theory comes to grips with the
fact that all psychophysical tasks have cognitive components,
and the assumptions we make about the guessing strategy
adopted by the subject affect our interpretation of data. Falmagne
provides the reader with a basic understanding of the theory
of signal detection and the assumptions it entails. This portion
of Falmagne’s chapter serves as an introduction to the chapter
by Sperling and Dosher that follows.

Sperling and Dosher provide a very general treatment of
methods and theories designed to deal with the strategies em-
ployed by humans performing perceptual and cognitive tasks.
The choice and sequencing of mental operations by subjects in
the performance of many kinds of tasks may not be directly
observable, but strong inferences can often be drawn using the
methods and models discussed in the chapter. The authors dem-
onstrate that these methods and theories are closely related to
signal detection theory.

The authors choose to examine the application of general
principles of decision optimization and resource allocation to
mental processes occurring within relatively short periods of

. time. Signal detection theory is one application of the concepts

of optimization to sensory-perceptual tasks. The receiver op-
erating characteristic of signal detection theory is shown to be
closely related to the attention operating characteristic and other
performance operating characteristics. The authors also discuss
how operating characteristics can be used to decide ifindependent
resources are being tapped in a complicated task or if a single
resource is being depleted by the several aspects of such a task.
The discussion of concurrent and compound tasks in this chapter
provides information that is essential to full understanding of

_the chapters by Welch and Warren, Gopher and Donchin, Wick- .

ens, and Moray (among others) in this Handbook. Despite the
1-3
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diversity of their substance, these chapters reflect a common
need for basic methods, such as those dealt with here.

The chapter by Sperling and Dosher could have been placed
in the section on human information processing, and this in
fact was the original intention. However, it soon became clear
that their message supplemented that of Falmagne and what
they had to say was equally important to chapters dealing with
topics as diverse as human performance, space perception, and
pattern vision. Therefore, it was placed in this first section.

The chapter by Freeman is quite distinct from the other
two chapters in this section. It does not address specific psy-
chological or perceptual problems. We chose to include this
chapter here because of the central role of the digital computer
as a tool for the perception researcher. We recognize that the
computer has changed the conduct of psychological inquiry,
and it must be given the same type of treatment as is given to
the physics of light in books on visual perception. Nearly all
workers in perception and cognition employ computers and their

THEORY AND METHODS

kgrap}ﬁcs capabilities to producé the stimuli of their experiments.

This chapter is designed to inform the reader about how com-
puters are used to generate stimuli for perception research. It
discusses methods of display and the ways in which lines and
curves are generated, and it introduces the complexities of
transformations and projections of images, all matters of vital
concern to the perceptionist. It is also relevant to more practical
matters, for example, the ability of today’s computers to simulate
scenes, such as those used in flight simulators.

The section of Freeman'’s chapter on stereoscopic displays
is not as detailed as some of the other sections. The reason for
this is that the details of stereoscopic display techniques are
covered in the chapter by Arditi, and the reader wishing more
information is referred to that source. A

In conclusion, it should be noted that there was no single
editor for this section. D. MacLeod, J. Thomas, M. Posner, K.
Boff, H. Sedgwick, and L. Kaufman all contributed to the editorial
process. ~




- PSYCHOPHYSICAL MEASUREMENT AND THEORY
1. PRELIMINARIES

1.1. Outline of This Chapter

G. T. Fechner, the founder of psychophysics, was originally a
professional physicist. At the age of 39, he turned to psychology
and set out to apply the methods of experimental physics to the
measurement of sensory events. To fully understand the details
of Fechner’s idea, as well as some of its difficulties, an excursion
into physical measurement is necessary.

Section 2 contains a detailed description of the procedures
that are the basis for the measurement of fundamental physical
quantities, such as length or mass. The reader interested only
in the applications of psychophysical models will be tempted
to skip this section and may do so without much harm. However,
we urge anyone striving for a solid understanding of the foun-
dations of psychophysical measurement to study Section 2 care-
fully. A comparison between physical and psychophysical mea-
surement is of interest for two major reasons.

First, measurement procedures proposed by Fechner for
psychophysical phenomena result from a straightforward
transposition of those applicable in physics. In both cases, the
procedures are justified by a testable theory, and a detailed
comparison of the two theories is instructive. Second, on the
background of physical measurement, it is much easier to dis-
entangle substantive from philosophical issues, the confusion
of which has been an enduring plague in this field. A number
of authors have contributed to a clarification of the foundations
of psychophysical measurement, and key references are given
in due place. The seminal role of R. D. Luce is recognized here,
however. '

Section 3 contains a description of Fechner’s approach to
psychophysics. The basic notion is that of a probability P,
that stimulus a is perceived as exceeding stimulus & from the
viewpoint of some sensory attribute. The theory justifying
Fechner’s procedure is that this probability only depends on
the difference u(a) — u(b), in which u is some unknown sensory
scale, a candidate for a measure of “sensation.” In symbols, this
gives rise to the equation o

Poy = Flu@ - u®)], )

with F a strictly increasing continuous function. This equation
occupies a central place in psychophysical theory. In fact, it
would be only a mild exaggeration to say that a substantial
part of psychophysical theory consists in comments on Eq. (1).

Section 4 reviews various discrimination models, many of
which turn out to be special cases of Eq. (1). This section contains
a discussion of the so-called law of comparative judgment of
Thurstone, a particular instance of which (case V) is obtained
when the function F in Eq. (1) is the normal integral.

The treatment of psychometric functions given in Section
5 may surprise the knowledgeable reader. It covers in detail a
number of important questions often left to the intuition of the
psychophysicist. Examples of such questions are, What does it
mean to say that two or more psychometric functions are “par-
allel” or that they can be rendered so by a transformation of
the physical scale? What is the relationship between “paral-
lelism” and Eq. (1)? In a two-alternative forced-choice design,
the probability P, is typically estimated by averaging the
frequencies in the two alternatives. What"is the theoretical

impact, if any, of this standard pract1ce, in particular w1th_

respect to Eq. (1)? -

1-

Sections 6 and 7 deal with the Weber functions A, th
methods currently in use to estimate those functions experi
mentally (stochastic approximation, up—down), and a numbe:
of models proposed to explain typical data. Various generali
zations of Weber’s law are considered.

Section 8 is devoted to signal detection theory, which i
presented so as to play down the notion that the subject i
behaving as a statistician applying some optimal decision pro
cedure. The prominent place usually given to this notion i
misleading, in our opinion. However interesting, it is only
case of a general theory justifying a particular analysis of th
so-called receiver operating characteristic (ROC) curves.

As suggested by the title of Section 9, the material ther
is rather mixed, discussing a variety of topics, among whic
are “probability summation,” models for conjoint measuremen
(deterministic and probabilistic), bisection, and so on.

Finally, Section 10 is devoted to the many issues relate
to psychophysical scaling.

Although quite extensive, this chapter does not cover al
the topics that its title could evoke. Two omissions among others
are color theory, which is discussed by Pokorny and Smith
Chapter 8, and by Wyszecki, Chapter 9, and multidimensiona
scaling, which is also discussed by Wyszecki, Chapter 9.

In writing, we had in mind a reader with a minimal back-
ground in mathematics, corresponding to a few calculus courses
and a good course in probability or statistics. Notions such a;
random variables, distributions, and expectations are assume
to be solid items of the reader’s statistical equipment. A one
semester course in algebra may be helpful at some point but i
by no means essential.

It is our firm belief that there has been in psychophysica
theory a great deal more controversy than there was reasonabl
ground for. The attentive reader will notice a deliberate attemp
to minimize the disputes and to give a unified presentation.

1.2. Key. References

A useful complement to this chapter is a monograph by Ges-
cheider (1976). As described in the preface, it is addressed to
advanced undergraduate students with some background in °
statistics. This treatment differs from ours in that it covers a
greater variety of empirical issues but pays less attention to
the details of the mathematical aspects of the theories. Moreover,
no attempt is made to cast psychophysical measurement in the
general framework of measurement theory.

2. CONSTRUCTION OF A PHYSICAL SCALE
FOR LENGTH (AN EXAMPLE OF EXTENSIVE
MEASUREMENT)

2.1. Outline

By extensive measurement, we mean the measurement of fun-
damental physical quantities, such as mass or length, using
qualitative devices. We shall give a concrete example. Consider
a collection of thin rods. The problem at hand is the measurement
of their length, but no rulers or other devices are available. A
natural way of measuring the length of a given rod would involve
the following steps:

1. Pick a particular, fixed rod as a “unit.”
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© 2. Count the maximum number of exact copies of this unit

which can be placed along the rod to be measured without
overlap.

The number so obtained is a measure of the length of the rod.
If exact measurement is required, some refinements must be
introduced. For the essentials, however, this algorithm is the
usual one. The intuition supporting it is so compelling that it
is at first difficult to realize (1) that quite a number of assump-
tions about physical reality are implicitly made and (2) that it
involves a considerable amount of arbitrariness.

2.2. Notation

Our discussion of these issues will be facilitated by the adoption
of a precise notation and terminology. The algorithm previously
outlined can be analyzed into two distinct expenmental pro-
cedures.

For any two rods a, b a comparison procedure is used to
decide which of @, b has the greater length. The rods are placed
alongside each other, in such a way that they coincide at one
end. If they also coincide at the other end, we shall write

a~b.
Figure 1.1 illustrates the notions introduced in this subsection.
The case where b covers a, but is not covered by it, will be
denoted

a<b,

A more compact notation is also useful. Whenever either a < b,
or a ~ b, we write a < b. Thus

a=<dbd

simply means that & covers a (whether or not a covers b).

b b
as<
or a b
e ——
b
ab
et
[+
a, a, a,

8182 an
b : :
ey e
"""" a ,
aa
Figure 1.1, Measurement of length. Comparison and concatenation pro-
Rt Motk o Aol Shetiisp e stet et
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The concatenation procedure for two rods a, b involves plac-
ing a and b end to end along a straight line, forming a new
object, which we denote ab. Using the comparison procedure,
this new object can be placed along some rod ¢ to yield, for
example, ab < c.

When the rods of a sequence ay, as, ..., @, are successively
concatenated in the order: a; with as, then a;az with a3, and
so on, the result is denoted a)a3 ... a,. A convenient abbreviation
will be used to denote the successive concatenations of a with
(exact copies of ) itself. We shall write

n times

Thus, in particular,1 *a = a,2 *a = aa, b(3 * @) = baaa, and
so on. By convention, we shall admit that n ¥ a ~ n * q, for
n = 1,2, .... It will be convenient by extension to also refer to
objects such as ab, aab, ... as rods. In the sequel, the letters x,
¥, 2, ... will refer either to rods in the original sense or to objects -
resulting from some concatenation. Two methods for the mea-
surement of the length of rods are described next.

2.3. First Method

Going back to the measurement algorithm proposed in Section
2.1, consider the task of measuring the length of some rod x.
We pick arbitrarily some (small) rod y as a unit, and we form
the successive concatenatlon of y with itself, until the followmg

situation obtains

nxy<szx<(m+ 1 *y. : @

(In words: x covers n * y but does not cover (n + 1) * y.)

We assign then the number 7 to x as its value on a scale
measuring length, and we proceed similarly with the other rods
in the collection. This method seems reasonable but encounters,
in fact;. a number of difficulties worth serious consideration,
since they also occur in psychophysmal application of the al-
gorithm.

2.4. Difficulties

 First, it is possible that x < y. In this case, we could assign the

number 0 to x, but this would not be very satisfying. For example,

there might be another rod x', such that x ~ 2’ < y, but y < xx'

< 2* y. In other words, both x and x’ would have a scale value

equal to 0, but xx’ would have a scale value equal to 1. A very

counterintuitive result! This shocking situation results from a

general defect of the method,; it is not very precise. When mea-

suring the length of a rod by this method, we may commit an
error, the size of which is smaller than the length of our unit,
which by convention is equal to 1. The reason for this is the

following. For any rod x, let us denote its true length by I(x).

We assume that, for any two rods z, w we have

iff U(z) < Uw) .

zZ=<w

- (We write iff for if and only if.) In the sutuatlon symbolized by

Eq. (2), we obtain
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The natural interpretation of the concatenation procedure
for rods leads to the requirement that the length of a composite
rod zw must be the sum of the length of z and w, that is,

llzw) = U(z) + Uw) .

- In general, for any sequence of rods 23, 29, ..., z, we must
" have

z123 .. 20) = D Uz) .

i=1
In particular

n *2) = nlz) .

4)
Going back to Eq. (3), this gives
nl(y) < lx) < (n + DUy),
which implies, since I(y) = 1 (y is the unit),
n<lx)<n+ 1,
that is,
Ux) = n + v

with 0 < vy < 1. Consequently, when we assign the number n
to x as a'scale value, we are making an error v, the size of which
is smaller than 1. Methods minimizing such an error—making
it as small as one wishes—are not hard to design. One such
method is considered in Section 2.5. :

A second difficulty is that we have a priori no certainty
that the method will work. Even if y < x, how can we be sure
that by successively concatenating y with itself, we shall finally
obtain Eq. (2) for some integer n? In the particular case analyzed
here, considering the empirical interpretation of such expressions
asy < x, n *y, and so on, it seems intuitively obvious that this
will be the case. But where does this intuition come from? The
answer is that we have learned from experience that the “phys-
ical” world around us satisfies a number of constraints, or “laws.”
An instance of such a law of immediate relevance to our dis-
cussion is the following:

Archimedean Axiom. For any rods x,z, we have either x < z,

or there exists a positive integer n such that
nxzsx<(n+ 1) *z.

This axiom is called Archimedean, since it evokes the so-called
Archimedean property of real numbers: for any real numbers
s,t with ¢ > 0, there exists a positive integer n such that s <
nt.

This method is based on the assumption that this law and
various others are empirically true. In the sequel, such laws
will be referred to as axioms. Another example of an axiom,
intuitively consistent with the interpretation of the relation <
as meaning “is covered by,” is the following:

Monotonicity Axiom. For any rods x,x',z,2’, whenever x < z
and x' < z’, then xx’ < 22'.

We stress the importance of this las
form or other, is the centerpiece of m: om systems for
extensive measurement. It would be tedious, and probably not
very enlightening, to justify each step
axiom or axioms on which it is based. It is sufficient for our
purpose to remember that the algorithm described in Section
2.3, or its refinement, to which we turn in a moment, relies on
axioms such as those exemplified here. In general, after a short
reflection on their content, these axioms appear to be consistent
with the reader’s experience of the physical world (so that no
experimental verification is required). We emphasize that this
obvious character of the axioms will not extend into psycho-
physical applications of the algorithm.

2.5. Second Method

The precision of the algorithm described in Section 2.3 can be
improved, provided that “fractions” of the “unit” can be used
for the purpose of measurement. Since the unit is arbitrary,
this means that any rod, no matter how small, can be divided
more or less at will. A weak form of this notion is embodied in
the following axiom. - - :

Solvability Axiom.  For any rod z, there exists a rod w such that
ww < z.

In other terms, for any rod z, the formula ww =< z can always
be solved for some rod w. The method based on this axiom
requires more work than the preceding one and is based on a
rather subtle idea, the details of which are worth careful study.
(As before, our discussion will be heuristic; not all the axioms
will be mentioned explicitly.) As a first step, we construct a
“distinguished” sequence of shorter and shorter rods, as follows.
We choose w; arbitrarily. Next, we pick wg such that wawg <
w1, and so forth. In general, we shall have w,w, < w,-1. Thus
when n becomes large, w, becomes shorter and shorter. In par-
ticular, if n is large enough, we can achieve w, < x and w, <
y, where x and y are, respectively, the rod to be measured and
our “unit.” Using the Archimedean axiom, we also know that

pn(x) * wy, < x < [pplx) + 1] * w, ,

pr(x) * wp, <y < [pa(x) + 1] * wy,
for some positive integers p,(x), p »(x). (The index n in p,(x),
pn(x) is a reminder that these integers depend on the term w,
in the sequence; notice that p ;,(x) does not depend on y, which
is fixed.) Considering the (true) length of the rods involved in
these expressions, we obtain
Upn(x) * wy) < Ux) < Il(palx) + 1) * wy]
Upp(x) * wy) < Uy) < U(pp(x) + 1) = wyl,
which implies, with I(y) = 1,
pn(x) wy) < Ux) < [pa(x) + 11Uwy) ,
pr@) lwy) < 1 < [pplx) + 11wy .

The basic idea is to use these inequalities to approximate the
unknown quantity (x). Given wj, the integers p,(x), p " (x) are

e
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empirically determined (we can “compute” them). A little algebra

involving some of the these inequalities permits the elimination
of the bothersome quantities /(w,); we obtain

Pr(x) lx) < pplx) + 1. (5)

A similar computation of the remaining inequalities yields
Pr(®) < U pax) + 11 . (6)

Combining Egs. (5) and (6) and rearranging terms finally gives
Pa@ph@ + 1] < @) < [pol) + 1Wpa@ , (D
provi&ing two bounds for I(x). Léf us investigate the situation
when n becomes large; as indicated earlier, this means that w,
gets shorter and shorter. In turn, p,(x), p’(x) must increase (a
greater number of concatenations of w, with itself are required

to exceed x or y). In fact, when n — «, we have both p,(x) — =
and p,(x) — . At this stage the consequences of this result on

the two bounds in Eq. (7) are unclear. Fortunately, it can be
shown that under the assumptions (i.e., axioms) underlying

our discussion, the ratio p,(x)/p’(x) converges to some limit

m(x). This means, of course, that the two bounds in Eq. (7) con-

verge to the same limit. That is,

Pn@/pn(®) + 1] - nx) , [pa@ + 1Vppx) = ) ,
implying U(x) = m(x). The outcome is that we can take either
of the two bounds or p,(x)/p},(x) itself as a scale value of ap-
proximately I(x), the approximation becoming increasingly ac-
curate as n gets large. For example, we have

@) = [pa@pp@®)] + Yo @®
with
=[pa@/p,@)] x [ppx) + 117! < y, < pix) .
(We leave it to the reader to check the algebra.)
Taking p,(x)/p n(x) as a scale value for x involves thus an
error vy,, the absolute value of which can be as small as required

by practical or scientific applications.
At this point, the reader probably feels somewhat uneasy

“about the foundations of these methods. A proof of the key
results, such as the convergence of p,(x)/p ,,(x), requires a more

~ precise apparatus than was given here. In particular, a precise

statement of all the axioms would be required. Such technical

treatment of our subject is beyond the scope of this chapter,
however.

Our aims in dlscussmg these algorithms in such minute

detail were as follows. We wanted to illustrate, with a minimum
of formalism, the process by which quahtatlve observations,
which are a typical outcome of an experiment, are progressively

transformed into numerical statements regarding extensive

measurement. This type of measurement is not only the most
important example so far provided by science but also the cor-

- nerstone of various other types of measurement of interest to
~ the psychologist. In particular, Fechner’s enterprise must be

regarded as an attempt to apply, in the context of psychophysical

experiments, such algorithms to the measurement of sensory
phenomena.
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2.6. Representation Problem for Extensive
Measurement

Reflecting on the position adopted so far in this section, it should
be recognized that it is not devoid of obscurities. In particular,
we discussed in detail two methods for the construction of a
scale for lehgth, without ever making exactly clear which prob-
lems such a scale was supposed to solve. At each step of these
constructions it was somehow natural or obvious that this was
the right course to follow. This approach leaves too many ques-
tions unanswered to be satisfying. Examples of puzzling ques-
tions are, What justifies the agreement existing in the scientific,
as well as in the social, community that the scales obtained by
such methods are appropriate? Is the agreement based on prac-
tical reasons, theoretical reasons, or both? Could a different
scale have been used and, if so, under which conditions?

Here we shall take a more critical viewpoint regarding the
methods of scale construction as previously discussed. Our ma-
nipulations involve two empirical procedures: the comparison

‘procedure (symbolized by the relation <), and the concatenation
procedure (symbolized by writing xy for the two rods x, y). A

scale is essentially a device by which the rods are represented
by numbers. This suggests asking: By which notions (operations,

‘relations) of the real number system are we representing the two

procedures? Some hints were given earlier. In Section 2.4 it
was argued that a function / defined on the set of rods and

-representing their true length, should be such that’

x<y iff o)< Uy . )]

¢ In the same context, it was also maintained that a natural
interpretation of the concatenation procedure for rods would
require that the length of xy should be equal to the length of x
added to the length of y. Thus

lay) = ) + Uy . 10

In other words, the comparison procedure is represented by the
‘'ordering relation of the real numbers (<), and the concatenation
is represented by the addition of the real numbers (+). Turning
the question around leads to the following:

2.6.1. Representation Problem. Under which conditions
does there exist a function [, defined on the set of rods and
taking its values in the positive reals, such that Egs. (9) and
(10) are satisfied for all rods x,y? '

A typical answer to this problem is a list, call it A, of con-
ditions or axioms constraining the possible experimental results
obtained from applying the two procedures. An example of such
a list A would contain the monotonicity, Archimedean, and
solvability axioms, plus some other conditions. The solution to
the representation problem would then be given in the form of
a representatlon theorem:

2.6.2. Representation Theorem. If all the axioms in the
list A are satisfied, then there exists a function [ mapping the |
set of rods in the positive real numbers, such that Egs. (9) and
(10) are satisfied for all rods x,y.

One proof of such a theorem is based on the following idea.
We prove the existence of the function [/ by constructing it piece-
wise, so to speak. That is, we define I(x) for every rod x, using
essentially the second method described in Section 2.5. (Intu-
itively, the axioms are shown to imply that in Eq. (8), p,(x)/
Dn(x) converges and that y, — 0. We define i(x) = lim,, .. p,(x)/ -
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p'a(x); thus, in particular, I(y) = 1.) Next, we show that the
function [, as defined, satisfies Eqgs. (9) and (10).

Note that, if some function [ has been found to satisfy Egs.
(9) and (10), then any function " obtained by multiplying ! by
some constant o > 0—that is,

U'x) = ol

for all rods x—also satisfies these formulas.

It is natural to ask whether all functions satisfying Eqs.
(9) and (10) can be generated by this device. This question is
of interest, since it corresponds to the situation commonly en-
countered; all usual scales for length are related by a multi-
plication, for example (approximately),

lem@) = 2.54 linen(x) .

When the axioms of a list A are sufficiently constraining, this
situation obtains. The result is then formalized as follows.

2.6.3. Uniqueness Theorem. ~ Suppose that all the axioms

in a list A are satisfied. Let /, {" be two functions satisfying.

Egs. (9) and (10). Then, necessarily, I(x) = a I"(x) for some

constant o > 0.

2.7. Summary and Remarks

The adoption of a measurement scale by the scientific community

is a complex process, the various aspects of which have to be
distinguished sharply. The formalism introduced in this section,
with its central piece the representation problem, is standard
in measurement theory. Its advantage is to make clear those
aspects of the process which are susceptible to empirical veri-
fication.

Let us summarize. In the case of the measurement of the

length of the rods in a collection, the scale was obtained by a
succession of steps.

1. Two empirical procedures, comparison and concatenation,
were chosen, more or less arbitrarily (no theoretical justi-
fications were given).

2. A representation of each of these procedures by an entity
(relation) of the real number system was adopted. The com-
parison procedure < was represented by the inequality (<)
of the real numbers, and the concatenation was represented
by the addition (+) of the reals.

3. The representation problem was formulated, involving the
search for a positive-valued functmn l satxsfymg for all
rods x,y

iff x=<y

) < Uy

and
Axy) = lx) + Uy)

4. Atheory, thatis, a list A of axioms, was proposed, implying
the existence of the required scale /. This theory can be
verified empirically. In particular, the validity of the mon-
otonicity axiom:

whenever x < yandx’' < y’,thenxx’ = yy' ,

can in principle be checked. . . .
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5. A proof of the existence of the scale ! was sketched, based
on an algorithm (Section 2.5) permitting the constructlon
of the scale within an arbitrarily small error.

At this stage, a scale for the measurement of length is -
available which, obviously, is the one commonly used. However,
it must be realized that, in principle, the fact that steps 1-5
have been taken successfully does not guarantee that the re-
sulting scale will be adopted for scientific or other practices.
Other procedures could have been used, leading to a different
scale. (An example will follow.) A consensus of the scientific
community regarding a scale certainly requires the existence
of a sound theoretical foundation, but it is also influenced by
other considerations, such as, Is the scale convenient to construct
and to use? Does it have the property of rendering the equations
of models reasonably simple and intuitive?

Few people realize the extent to which the basic physical
scales are arbitrary. As mentioned earlier, length, for example,
could be measured by procedures essentially different from those
discussed so far in this section, with no other consequences
than that of rendering the writing of some physical laws more
cumbersome and the-actual application of the procedures more
painful. We are not suggesting that mathematical or practical
convenience is to be taken lightly. Clearly, however, neither of
these has a bearing on “physical reality.” It is of some importance
for a psychophysicist to have a clear understanding of such
facts. Ultimately, the measurement of sensation will rely on
an agreement in the psychophysical community, based essen-
tially on considerations of convenience. The alternative pro-
cedure for measuring length to be discussed, illustrates these
remarks. (This example is due to Ellis, 1966.)

The comparison procedure for noncomposite rods is the same
as before, but the concatenation differs. We write

ab ~ x
if the rods a, b, and x can be used to form a right triangle, with
x as its hypotenuse, and a, b as the two other sides. Thus. to
check whether
ab =< cde ,
one forms, successively (see Figure 1.2),
ab ~ x ,

ed ~y,

ey ~ z.

Figure 1.2. Alternative procedures for the measurement of the length of a
collection of rods. We have ab < cde, since x < z with ab ~ x, cd.~ y and

. ..ye ~ z.The rods x,y, and z are hypotenuses of right triangles.
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We define then

ab < cde iff x < z.

It is clear that these procedures cannot give rise to the
same scale as the usual one. Nevertheless, as it turns out, all
the axioms that would be satisfied in the usual case would also
be satisfied here. (The reader may be tempted to check that the
Archimedean, monotonicity, and solvability axioms are verified,
and this may be moderately convincing. The key observation,
however, is that for positive real numbers, addition is isomorphic
to the operation (s,f) — (s + t2)*2) We may thus apply the
representation theorem, and claim that there is some function
fsuch that for all rods x,y,

x =<y

iff flx) < f(y)

and

fey) = flo) + f(y) .
We emphasize that this concatenation is different from the usual
one. We do not have l(xy) = l(x) + I(y), where [ is the usual
scale. (A different notation could have been used to stress the
fact that the two concatenations under consideration involve
distinct empirical operations. We could have written, for example,
f(x’y) = f(x) + f(y).) From the viewpoint of physical reality, f
is as defensible as [ as a possible scale for length. The choice
between [/ and f, or between the two concatenations, is in no
way based on empirical data. It is clear that [ is preferable
because it is easier to construct empirically, and it renders the
writing of physical laws somewhat easier. For a more detailed
discussion of this practically minded, or positivistic, attitude
toward measurement, the reader is referred to Ellis (1966),
where several other empirical examples of extensive measure-
ment will also be found. This raises the question of the relation
between / and f. The answer is simple enough: f(x) = I(x)%
With minor adaptation (the details of which we shall not
enter into here), the analysis of the measurement of length
given in this section in terms of two empirical procedures (com-
parison and concatenation) is also applicable to the measurement
of mass, using a two-pan, equal-arm balance. In this case, the
experimenter has a collection of objects a,b ... and writes ab to
signify that the objects a,b have been placed in the same pan
of the balance. The experimenter also writes cde < ab if the
pan containing c,d, and e does not ‘stabilize itself at a lower

" level than the pan containing a,b. An examination of this sit--

uation indicates that essentially the same axioms will apply.

The examples of extensive measurement given so far in
this section illustrate a type of measurement which is relatively
well understood, one in which a measurement theory (a list A
of axioms) is available, guaranteeing the existence of a repre-
sentation of the empirical structure into the real number system,
with a specified correspondence between the empirical procedures
and some numerical relations. In this case, the scientist may
feel relatively confident of the interpretation of the role played
by a number assigned to an object by a scale, since the inter-
pretation is based on an explicit theory.

Obviously, there are methods that are characteristically
different for generating a measurement scale. For the mea-
surement of mass, an example is provided by the spring balance,
the readings of which could, in principle, be accepted a priori,

' without any theoretical justification. In fact, however, the
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numbers assigned by the spring balance are known, as a con-
sequence of Hooke’s law, to be proportional to those obtained
through the two-pan, equal-arm balance, so that, indirectly, a
measurement theory is available also in the case of the spring
balance.

Whether a measurement theory can be dispensed with al-
together is unclear. Some, such as S. S. Stevens’s followers,
would probably argue that this is the case. What cannot be
disputed is that a measurement theory is a highly desirable
rationale for any measurement scale designed to play an im-
portant role in the scientific formulation of the data.

2.8. Key References

Since Helmholtz (1887), various axiom systems for extensive
measurement have been proposed. The discussion given here,
even though it is only one of many possibilities, is representative
of the mainstream of these theories. Generally, the axiom sys-
tems differ in the emphasis placed on side conditions or in the
details of the representation. In most cases, these axiom systems
deal with a deterministic situation. A probabilistic theory for
extensive measurement has been presented by Falmagne (1980).
A basic reference for this topic is Krantz, Luce, Suppes, and
Tversky (1971) or, more recently, Roberts (1979).

3. FECHNER’S APPROACH TO PSYCHOPHYSICS

3.1. Construction of a Fechnerian Scale

Fechner’s fundamental idea is that a sensory scale can be con-
structed by adapting, to a particular kind of sensory data, the
standard measurement procedure for the measurement of length
in physics. (We assume that, at a minimum, the material in
Section 2.1 is familiar to the reader.) This is by no means obvious,
and we shall proceed carefully.

Suppose that a, b, ¢ ... are numbers representing, in con-
ventional units, values of some physical magnitude, such as
mass (or sound pressure, luminance, etc.). For simplicity, we
shall refer to a, b, c ... as stimuli. Let P, be the probability
that a subject, presented with the pair (a,b) of stimuli in some
experimental paradigm, judges a at least as heavy as b. For the
time being, consider only the data obtained for pairs (a,b) such
that @ = b. Let us assume that there exists a psychophysical
scale, the properties of which govern important aspects of per-
formance in this paradigm. Thus each stimulus a is mapped to
a point u(a) in this scale. We also assume that this mapping is
order preserving (that is, @ < b iff u(a) < u(b)) and that P,y is
strictly increasing with the distance u(a) — w(b) between the
points representing a and b.

The following illustrative device is helpful: identify a and
b in the palr (a,b) as names given to the two endpoints of a
“rod”; a is the right endpoint, b the left endpoint. In fact, to
stress the analogy with extensive measurement, the pairs (a,b)
themselves, in this section, will be referred to as rods. Thus
P, p increases strictly monotonically with the length of the rod
(a,b). We write

(as b) < (C,d) iff Pa,b < PC,d b}
(a,b) ~ (c,d) iff Pop = Pcgq,
(@,b) < (c,d) iff Pap < Peg .
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Figure 1.3. In a discrimination experiment, the two pairs of stumuli (a,b),
(c,d) considered as rods; (a,b) < (c,d).

Figure 1.3 summarizes the situation. We have thus a collection
of rods and a comparison procedure represented by the relation
<. This analogy with the extensive measurement of the length
of rods discussed in Section 2 also suggests a concatenation
procedure. For example, (a,b) concatenated with (b,c) should

have a length equal to that of (a,c). We symbohze this fact by

the formula
@BXbe) ~ (@) .

Thus a comparison of (a,b)(b,c) with (d,é)v is made possible
by a comparison of (a,c) with (d,e). For example, if (a,c) < (d,e),
one concludes that

(a,b)(b,c) < (d,e) .

This, of course, is a special case. Generally, two rods to be
concatenated need not have a common endpoint. A discussion
of the more general situation, although quite straightforward,
involves technical details and will be omitted here.

Let us proceed to construct a scale measuring the length
of the rods (keeping in mind that the “length” of (a,b) is the
distance between the stimuli a,b on some psychophysical scale).
Suppose that we decide to use the method of Section 2.3 to
measure the length of some rod (a,a’). We pick some rod (&,
by) as a unit, together with any number of exact coples of that
rod;

(Bo,b1) ~ (b1,b2) ~ ... ~ (bybis) ~ .

We have thus by definition of the concatenation operation

(bo,b1)(by1,b9) ... (bi-1,b) ~ (bo,b), i = 1,2, ... .
The length n w111 be ass1gned to (a,a’) (n bemg some positive

- integer) if
(bOybn) =< (a,a,) < (bO;bn+1) >

that is, if correspondingly, the probabilities satisfy the inequal-
ities

an,bo = Pa,a’ < an+ 1,60 (11)
The number 7 is thus a measure of the length of the rod (a,a’),
that is, of the distance between a and a’ on the psychophysical
scale. Let us apply this idea in an example. Suppose that the

probabilities for all the pairs of stlmuh ina set {ao, a1, az, ag,
a4} are given'by the matrix

3.2,
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ap a1 Qa3 ag ag
ap| .5 .75 .80 .90 .95
ay b5 .75 .80 .90
12
as S5 75 .80 (12)
as ‘ .5 75
ay ) 5

If we take (ap,a1) as a unit, this method leads us to assign the
values in the matrix below, as measuring the distance between

the points:
Gp a1 a2 a3z ag
apf0 1 2 3 4
ai 0 1 2 3
: 13
as 0 1 2 13)
as 0 1
a4 » 0

We leave it to the reader to verify this in detail. (The values
0-3 follow from a straightforward application of the criterion
represented by Eq. (11). The value 4 would require a refinement
of that criterion.) The five stimuli can thus be represented as
points on a straight line, say, with ag at the point 0, and the.
distance between a; and a;, 1 being constant, equal to 1.

Except for unessential details, this is Fechner’s fundamental
idea.

Remarks

In our deliberate emphasis of the relation between Fechner’s
scaling method and extensive measurement, we were led, for
simplicity’s sake, to make a somewhat unrealistic assumption.
We supposed that any rod (a,b) could be “squeezed” between
two rods (bg,b,) and (bg,b,,+1), in the sense of Eq. (11). In practice,
however, if a,b are far enough apart, the probability P, ; will
be equal to 1 (or 0, if b < a) and will be unaffected by small
changes of the values of a'and b. This means of course that Eq.
(11) cannot hold. A minor modification of the algorithm takes
care of this difficulty, without altering the spirit of the method.

‘We assign the number n to (a,b) if there exists a sequence ag,

ay, ..., Gn+1 Such that

@) a=a<a1<..<a,<b<ap.i.
(i) P, =.75for0<i<n.

The distance ;.1 — a; is often referred to as a just-noticeable
difference (jnd). Unfortunately, this term is used for a variety
of closely related, but different, indices. To eliminate confusion,
we shall reserve the term for one particular such index, which
is defined in Section 7.4.

The Fechnerian method of scale construction described in
Section 3.1 is an adaptation of the algorithm for the measurement
of the length of rods outlined earlier (see the first method in
Section 2.3). We have seen that such an algorithm lacks precision.
In fact, it can be shown that a full psychophysical scale, one
that would assign a scale value to each stimulus, could not be
constructed using this method. A more sophisticated algorithm
must be used, similar to the second method described in Section
2.5. This point was made by Luce and Edwards (1958).

Even assuming that an appropriate refinement of the al-

i+ 1%

‘gorithm is used, there is no guarantee that the method will ™
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holds for some strictly increasing, continuous functions u, F.
Indeed, suppose that :
a - b -
o ——— | .
[(a + b)"“‘]

for all positive real numbers a,b. (As customary, we denote by
® the distribution function of a standard, normal random vari-
able.) It is easy to check that, as defined by Eq. (17), the prob-
abilities P, p satisfy all the conditions of a balanced pychophysical
discrimination system. (This verification is left to the reader.)

This model, however, is incompatible with Eq. (15). The
reason for this is that the (functional) equation

P,y = amn

Py = <I>[(j%b)—%j] = Flu@) - u(®)]

has no solution for the functions u, F. (That is, there are no
functions u, F “solving” this equation; cf. Iverson, 1979). Thus
additional conditions on the choice probabilities are needed, if
Eq. (15) is to hold. Two such conditions are introduced in the
next definition. :

3.5.2. Definition. A psychophysical discrimination system
(I,C,P) is called Fechnerian iff the equation P, = Flu(a) —
u(b)] holds for some strictly increasing continuous functions v,
F.

We say that (I,C,P) satisfies the bicancellation condition
iff whenever P, 3 < Py 3, Py o < Py o and (a,c),(a’,¢’) € C, then
Pa,c s Pa’,c’-

A psychophysical discrimination system (I,C,P) satisfies

the quadruple condition iff

Pa,b < Pa’,b' iff Pa,a' < Pb,b’

whenever all four probabilities are defined. The importance of
the bicancellation condition has been emphasized earlier, in
connection with a similar condition in extensive measurement
(cf. Section 8.2). The relation between the three concepts in
this definition is made clear in the theorem in Section 3.5.3.

3.5.3. Representation and Uniqueness Theorem. Let ¥ be
a balanced psychophysical discrimination system. Then the fol-
lowing three conditions are equivalent:

(i) ¥ is Fechnerian
(ii) ¥ satisfies bicancellation
(iii) ¥ satisfies the quadruple condition.

Moreover, if any of these conditions is satisfied and (u, F),
(4", F*) are two pairs of functions satisfying Eq. (15), then
u'(@) = ou(a) + B and F*(s) = F(s/a) for some constants o >
0 and B.

The relation between the functions x and " in this theorem
is sometimes expressed by stating that “u is an interval scale”
(see Section 10.in this connection).

A full proof of this theorem would take many pages and is
beyond the scope of this chapter. Some parts of this result are
easy to obtain however, for example, the two implications (i)
= (ii) and (i) = (iii). Assume, for example, that (i) holds, and
let u, F be the two functions satisfying Eq. (15). Successively,

Pop < Py iff Flu(@) - u(®)] <Flul@) - u(®)]
A . u(a') 5 u(})’)

i uw@ - ul) <
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iff ul@ -—ula) < w®d -u@®)
iff Flu(@) - u(@)]l<s Flu®d) - u®)]
iff Poo <Ppp ,

establishing the quadruple condition. The second implication,
(i) = (ii), is obtained by a similar method.

Placed on the background of the conditions defining a bal-
anced psychophysical discrimination system, the bicancellation
and the quadruple condition each constitutes a complete solution
to the representation problem in Section 3.3.2. To put it another
way: any model for choice probabilities P, satisfying either
bicancellation or the quadruple condition can be put in the form
of Eq. (15). In principle, these conditions can be tested experi-
mentally. In practice, however, rather delicate statistical issues
arise (cf. Iverson & Falmagne, in press).

The importance given in this chapter to Eq. (15) may surprise
the reader. Actually, this representation has an impact beyond
Fechner’s scaling method. Many current models for choice

‘probabilities are Fechnerian (in the sense of the definition in

Section 3.5.2). As we shall see, these models differ in the specific
assumptions made regarding the mechanisms of choice, which
in turn determine the form of the function F in Eq. (15).

The critical issue remains of the status of the scale u, once
it has been constructed. Does it make sense, as proposed by
Fechner, to consider that such a scale measures the magnitude
of the “sensation” evoked by the stimulus? We shall postpone
this discussion for the moment (see Section 10).

3.6. : Key References

The discussion of Fechner’s scaling methods given here, even
though perfectly compatible with Fechner’s own presentation,
was strongly influenced by the developments of measurement
theory, as given, for example, in Krantz and colleagues (1971)
or Roberts (1979). In this context, Fechner’s problem is a case
of difference measurement. The notions of a representation
problem, representation theorem, and uniqueness theorem are
standard in measurement theory.

This modern viewpoint regarding Fechner’s enterprise is
due to Luce and his collaborators (Luce, 1959a; Luce & Edwards,
1958; Luce & Galanter, 1963). The solution to the representation
problem given here is mostly due to Doignon and Falmagne
(1974; see also Falmagne, 1971, 1974). Related references are
Levine (1971, 1972) and Krantz (1971). Eq. (15) also appears
in the general context of choice theory, where it is dubbed the
strong utility model (Luce & Suppes, 1965). The quadruple con-
dition has been investigated by Marschak (1960) and Debreu
(1960).

As indicated, statistical issues regarding the empirical
testing of axioms such as bicancellation or the quadruple con-
dition are discussed in Iverson and Falmagne (in press).

4. MODELS OF DISCRIMINATION

In Section 3 we considered a forced-choice paradigm, in which
a subject is presented with pairs (a,b) of stimuli (a,b are real
numbers, representing the stimulus values on some physical
scale). The task is to select one of the two stimuli as exceeding

... the other, in terms of some subjective attribute, such as loudness

or perceived weight, depending on the nature of the stimuli.
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The basic theoretical notion was a probability P, that the
subject chooses a over b. It was assumed that P is strictly in-
creasing in a and strictly decreasing in b. A detailed theoretical
analysis was made of the representation
Pyp = Flula) — u(b)] (18)
for these choice probabilities. In this equation, u and F are
assumed to be real-valued, continuous, and strictly increasing
functions, but are otherwise unspecified. Such a model says
little regarding the details of the mechanism of choice. Certainly,
the choice of a stimulus is the final stage of a complex process,
involving physiological and psychological components. All these
aspects are somehow captured by the functions u and F. This
rather abstract viewpoint is open to criticisms, in particular
regarding the interpretation of the functions u and F. Suppose,
for example, that the subject is under time pressure. Say the
choice response must be made within ¢ sec after the presentation
of the stimuli, with ¢ varying across conditions (e.g., ¢t = 1, 3,
10). Assuming that Eq. (18) holds in each condition, will the
value of ¢ affect u, F, both of these functions? Without a more
explicit model, it is difficult to venture a guess. One could ob-
viously assume, for instance, that only F will vary across con-
ditions. However, some may feel uneasy about the (absence of)
rationale for such a position. To take another example, suppose
that the stimuli a,b ... are pure tones, presented on a background
n of noise (say, n is the average sound pressure of a Gaussian
noise). The values of n, if their range is chosen appropriately,
will certainly affect the choice probabilities. Again, however,
the impact of n on u or F is difficult to predict. In turn, one may
argue, this uncertainty regarding the role of z and F in these
_experiments casts some doubt on the interpretation of u as a
“sensation scale” (cf. Section 3).

This section is devoted to a discussion of a number of models
consistent with Eq. (18). This means that a given model is
either a special case of Eq. (18) (its assumptions imply a par-
ticular functional form for the function F') or has a special case
that takes the form of Eq. (18), with F specified.

/ . 1
4.1. Random Utility Models
Let us assume that to each presented stimulus a, corresponds
*arandom variable U, symbolizing the effect of the stimulus on
the subject’s sensory apparatus. We also assume that a appears
at least as intense as some other offered stimulus b if the sampled
value of Uj does not exceed that of Ug; formally
Pa,b = Prob{Ua = Ub} .

The distributions of the random variables U, are unspecified.

In the literature of choice theory, this model is often referred
to as the random utility model (Block & Marschak, 1960; Luce
& Suppes, 1965; Marschak, 1960). Since no assumptions are
made regarding the joint distribution of the random variables
U,, one may ask whether this model sets any constraint on the

data. Actually, it may be shown that if some collection of random

variables U, exists satisfying this model, then (in the case of
a balanced system, cf. Section 3.5) we must have

k 1 ’$ Pop + Ppe + Peg < 2

for all stimuli a, b, and ¢ (Block & Marschak, 1960). This is a

_rather weak condition, but one which can conceivably be rejected

for some data.

of Eq. (20), and writing u(c) = p(c)a, yields

-judgment.

~examples is not essential. Suppose that in Eq. (20) p varies
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This general model is consistent with the Fechnerian E
(18). In other words, under specific assumptions on the joi
distribution of the random variables U, and Uy, Eq. (18) wi
be obtained. An example is given in Section 4.2.

4.2. Thurstone Law of Comparative Judgments

More specifically, suppose that U, and Uj are independent a:
normally distributed, with respective means and variances w(
w(d), o(@)?, o(b)%. Thus U, — Uy is normally distributed, wi
mean p(e) — p(b) and variance o(a)? + o(b)2. We obtain
P,y = Prob{U,

- Uy = 0} a

= o{{wa@ — pdV/c@? + o®)?1"} (20)
where ® is the distribution function of a unit normal random
variable (i.e., a normal random variable with a mean equal to
0 and a variarce equal to 1). Suppose, moreover, that the random
variables have equal variances, say, 0%(c) = o2 for all stimuli
¢. Then dividing by « in both the numerator and the denominator

Pop = Plule) — u®)], (21
a special case of Eq. (18), with F = ®. The models embodied in
Egs. (20) and (21) are usually referred to as cases III and V,
respectively, of Thurstone’s law of comparative judgment
(Thurstone, 1927a, 1927b; a very complete discussion of Thur-
stone’s theory can be found in Bock & Jones, 1968). Thurstone
case V has been given a special interpretation in a psychoacoustic
context and has been applied to an impressive body of data by
Durlach, Braida, and their coworkers (Braida & Durlach, 1972;
Durlach & Braida, 1969; Jesteadt & Bilger, 1974; Jesteadt &
Sims, 1975; Lim, Rabinowitz; Braida, & Durlach, 1977; Pynn
Braida, & Durlach, 1972).

4.3. Dropping the Normality Assumption

Notice that the normality assumption is not critical in the abowv:
discussion. Suppose that in Eq. (19) the random variables Uy,
U, are independent and identically distributed except for a
“shift” parameter. That is, suppose that for any stimulus ¢, Ue
has the same distribution as u(c) + &, where u is a real-valued
function and £ is a fixed random variable. From Eq. (19), we
have with £, £ independent and identically distributed

P,p = Prob{u(a) + & — [u(®) + &1 = 0}

1

Prob{¢' - & < u(a) — u(b)}

Glu(a) — u®]

where G is the distribution function of £ — &. This is a special
case of Eq. (18), generalizing case V of the law of comparative

4.4. Dropping the Constant Variance Assumption

The constant variance assumption used in the two preceding

linearly with o: |




u

A s e

pe) = aole) + B, v (22)

for some constants « > 0 and B. Successiveiy, from Egs. (20)
and (22) .

Pa,b

i

®{alola) — oB))/[o(@)? + o(b)2]"%)

I

@{al(o(@/o®) - 11/[(c(@)/a®)? + 117} (23)
Thus P, only depends on the ratio o(a)/o(b). Defining
u(@) = In ola) ,

we rewrite the ratios o(a)/o(b) in Eq. (23) as differences u(a) —
u(d), obtaining

Pyp = Flula) — u®)], (24)

where
F(s) = ®lale® — 1)(e2 + 1Y) . (25)

It is easy to check that F is strictly increasing. This model is
sometimes referred to as case VI of Thurstone’s law of compar-
ative judgments (Bock & Jones, 1968; S. S. Stevens, 1959, 1966b).
Again, the normality assumption is not essential in the above
derivation.

4.5. A Timing Model

The linearity assumption, Eq. (22), linking mean and standard
deviation of a random variable U, may seem arbitrary. Actually,
the above model arises quite naturally in psychoacoustics. Let
a and b denote the sound pressure levels of two pure tones of
the same frequency, say, 1000 Hz, presented successively and
monaurally. Fairly detailed hypotheses will be made regarding
the neural coding of physical soind intensity. We assume that
a tone of level ¢ applied in the auditory channel gives rise to a
homogeneous Poisson process Ly(c) of neural point events, with
mean \(c). The interarrival times of these events (the interspike
intervals) are thus independent and distributed exponentially,
with expectation A(c) "!. Along lines explored by Luce and Green
(1972, 1974a), suppose that a sample average S, . of these in-
terarrival times is used as the basis for loudness discrimination
(where n denotes the size of the sample). Stimulus a will be
judged at least as loud as stimulus.b if S, ; < S, 5; that is,

Pa,b = Prob{Sn,a = Sn,b} .

Since n can be assumed to be large (n > 100), S, is distributed
very nearly normally, with expectation A\(c)~! and variance
Mc)~%/n. The standard deviation is thus a linear function of the
expectation, as in Eq. (22). We obtain

Pap = ®n"\B)™! - M@ U/INB)2 + Ma)"21%}

(n" (A (@)NB) — 1]/[()\(a)/)\(b))2 + 1%},

a special case of Eq. (23). In particular, Eqs (24) and (25) follow
with u(e) = In \Ma) and a = n"2.
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4.6. An Extreme Value Model and the Strict Utility,
or Logistic, Model

In the psychoacoustic paradigm used earlier, we suppose with
Thompson and Singh (1967) that the neural coding of sound
pressure is based on the combined effect of the stimulus on
many independent, parallel channels. The sensory effect of a
stimulus of level ¢ in channel j, (1 <j < n), is represented by
a random variable X ;.

We assume that n(c) channels are triggered by stimulus c,
the combined effect of which is represented by a random variable
U = max{X1,Xc2, ..s Xc,n(c)} .

In words, the neural code of a stimulus ¢ is the maximum of
the excitation levels in n(c) channels. As a basic equation spec-
ifying the choice probabilities, we have

Pay = Prob{U, = Uy} .

~It'can be shown that if the random variables X, ; are, with

respect to ¢ and j, independent and identically distributed (thus
only the number of channels n(a); n(b) distinguishes the dis- -
tribution of U, from that of Up) and moreover satisfies some
stability property, then we have approximately for large n(a),
n(b)’ ‘

- n(a)
Pas = S + n®)
= {1 4 e—[ln n(a) - In n(b)]}—l (26)
= Flu(e) — u®)],
with u(c) = In n(c) and

Fis) = 1 + e, @7)

Taken by itself, Eq. (26) defines the strict utility model
(Luce & Suppes, 1965), also called the BTL (Bradley-Terry-
Luce) system, extensively investigated by Bradley (1954a, 1954b,
1955), Bradley and Terry (1952), and Luce (1959a)-(cf. Suppes
& Zinnes, 1963). Eq. (27) is the defining equation of the distri-
bution function of a standard logistic random variable (Johnson
& Kotz, 1970b, Chapter 22). This result, leading to Eq. (26), is
due to Thompson and Singh (1967), based on extensive earlier
work on the so-called extreme value distributions (Fisher &
Tippett, 1928; Frechet, 1927; Gnedenko, 1943; Gumbel, 1958;
von Mises, 1939). For some recent applications of these notions
in choice theory and psychophysics, the reader is referred to
Yellott (1977), and Wandell and Luce (1978), respectively.

4.7. Remarks

The diversity of these examples, which all lead to Eq. (18),
justifies the central place given here to this equation. This di-
versity also carries an important lesson. In each of these ex-
amples, a key role is played for each stimulus ¢, by a basic
random variable U, formalizing the neural coding of the stim-
ulus. The dlscrlmmatlon probablhtles are symbohzed by the
equation
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Pop = Prob{U, = Uy} . (28)
Assuming that such a theoretical device is warranted and that
the particular form of (the distribution function of ) these random
variables is taken seriously, it may seem sensible to assign a
fundamental role to a central location index of these random
variables. This would suggest adopting E(U,)—the expectation
of the random variable U,—as a measure of the magnitude of
the sensation evoked by the stimulus ¢. Notice, however, that
E(U,) does not necessarily coincide with u(c) in Eq. (18). Such
coincidence is obtained in Egs. (20) and (21) but not in (22) and
(23) (where we have u(c) = ln E(U,)) and not, as we shall see,
in our next model.

Thus even though Eq. (18) may play a fundamental role,
the theoretical status of the scale u entering in this equation
is not necessarily clear.

It is natural to ask, Are there reasonable models incom-
patible with Eq. (18)? The example in Section 4.8 provides an
answer.

There is another lesson to be derived from these exampies. '

Comparing the extreme value model Eq. (24) with the law of
comparative judgment, case V, Eq. (20), it must be concluded
that the mechanisms postulated are very different. Nevertheless,
these models are extremely difficult to distinguish from an em-.
pirical viewpoint. The extreme value model predicts that the
choice probabilities will satisfy the equation

P,p = Flu@ - u®)]

where F is the distribution function of a standard logistic random
variable, while in Thurstone case V, the same equation is ob-
tained, except that F is replaced by @, the distribution function
of a standard normal random variable. It turns out that F' and
® are close approximations to each other (see Johnson & Kotz,
1970b, for details on this matter), so close, in fact, that choosing
one model over the other by some empirical test is practically
hopeless.

The reason for this paradox—drastically different as-
sumptions but indistinguishable predictibhs-——is that these
models consist of very elaborate constructions concerning
unobservable choice mechanisms for a relatively scarce data
base. There are simply not enough data to support the edifice.
This is especially true for the extreme value model.

It is certainly tempting to model the unobservable details

~ of the choice mechanisms, and it may even be useful to do so,
since this may provide insightful interpretations of the data
and suggest useful experiments. The lesson is, however, that
such detailed assumptions should probably not be taken too
seriously, except in cases in which the data base is much richer,
relative to the theoretical construction, than was assumed here.

4.8. A Neural Poisson Counting Model

Now let us consider a neural Poisson counting model incom-
patible with the equation P, = Flu(a) — w(b)]. As in the
psychoacoustic example in Section 4.6, suppose that a tone of
-level ¢ generates a homogeneous Poisson process of spike events
Lc), of mean \(c¢). Suppose now, however, that intensity dis-
crimination, rather than being based on the average spike in-
tervals as in Section 4.5, relies on a count of the number of

spikes during a fixed interval 7. Let N, Np be two random
-+ variables representing the number of spikes counted for each

. respectively. (We recall the variance of a Poisson random variable
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of the two stimuli a, b. Thus N,, Nj are two independent Poisson
random variables, with expectations w(a) = Ma)r, u(b) = \(d),

is equal to its expectation.) Assume further that
Pa,b = Prob{N, = N} .

For large A(a)r, N(&)7, the random variables Ng, Nj are nearly
normal (Cramer, 1963, p. 250), yielding approximately

Pop = ®{[u@) — p®l(na@ + wd1" .

This model, which, as far as we know, was proposed originally
by Strackee and van der Gon (1962; see also Luce & Green,
1972, 1974a; McGill & Goldberg, 1968), is incompatible with
Eq. (18); there are no (continuous, monotonic) functions u, ,
and F satisfying the equation '

o{{w@) - w®OVn@ + WO = Flul@ - u®)] .
(29)

The proof bf this fact; based on a result due to Iverson (197 9),
will not be given here.

4.9. Remark on Statistical Testing

The models discussed in this section can be tested empirically
by standard statistical techniques. A likelihood ratio method
is sketched below for the logistic model, the principle of which
is easily extended to other cases. ‘

According to the logistic model defined by Egs. (26) and
(27), the choice probabilities must satisfy the equation

Pap = (1 + e-fat)~1 (30)

with ‘ -

0.5 = ula) — u(d) . @31

Notice that Eq. (31) implies—in fact, is equivélent to-;—the cdn-
dition
86 + Opc + 00 = 0, (32)
for all stimuli a, b, and ¢. In particular,
Gaa» =0,
0pa = —0ap .

There is a good reason for this reparameterization of the model.
The new parameters 84, have to be estimated from the data,
subject to the linear constraint, Eq. (32). This is a standard
situation in statistics, which leads naturally to a likelihood
ratio procedure. Let ., be the number of choices of stimulus
a observed in the course of ngp + np, trials. Let © be the vector
of all the parameters 8,5. Under the usual conditions concerning
the independence of trials, the likelihood of the data is the
product
10 = [1a + efap)mas(l + e%ea)=nte
= i 8 (a’b) - = .. “ i L N

(33)
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The unconstrained maximum likelihood estimates of the pa-
rameters 0,5 are given by

éa.b = In(ngp/npa) . (34)
(This corresponds to estimating the probabilities P, j by their
relative frequencies.) Let /; be the value of the likelihood function
! in Eq. (33), when the parameters 8,; are replaced by their
unconstrained maximum likelihood estimates. Let 5 be the
value of the likelihood function /, when the parameters 9,3 are
| replaced by their maximum likelihood estimates, obtained under
the linear constraint, Eq. (32). A class1ca1 result is that the
| ratio

-2 In(ly/lp)

| is asymptotically (i.e., for a large number of trials) distributed
| as a chi-square random variable with a degree of freedom equal
| to the number of independent parameters remaining in I3 (cf.
| Wilks, 1962, or any standard statistical text).

This procedure can be applied in principle to any ‘model for

binary choices, consistent with the Fechnerian equation

Pop = Flul@) - w(®)], - (35)
| in which the function F is specified exactly. This function being
| strictly increasing, its inverse F ~! exists, and Eq. (35) gives
| immediately

F—I(Pa,b) + F_I(Pb,c) + F_I(Pc,a) =0 ) (36)

| generalizing Eq. (32).
' 4.10. Key References

Some papers of general interest are Luce and Suppes (1965)

and Luce (1977a, 1977b). Even though centered on applications
| in economics, the review paper by McFadden (1976) is a useful
| reference, in which special attention is paid to statistical matters.
| The book by Bock and Jones (1968) contains a very thorough
| discussion of Thurstone’s discrimination models. Gumbel (1958)
' and Galambos (1978) are introductory texts on extreme value
| distributions. Other useful titles are listed below, organized by
| topics.

General Random Utility Models. Marschak (1960); Block
and Marschak (1960); McFadden ard Richter (1970, 1971)
Manski (1977); Falmagne (1978).

Thurstone Law of Comparative Judgment. Thurstone
(1927a, 1927b); Braida and Durlach (1972); Durlach and
Braida (1969); Jesteadt and Bilger (1974); Jesteadt and
Sims (1975); Lim, Rabinowitz, Braida, and Durlach (1977);
Pynn, Braida, and Durlach (1972).

Extreme Value Model. Fisher and Tippett (1928); Frechet
(1927); Gnedenko (1943); Thompson and Singh (1967); von
Mises (1939); Wandell and Luce (1978).

Logistic Model; BTL Systems. Bradley (1954a, 1954b,
1955); Bradley and Terry (1952); Luce (1959a); Suppes and
Zinnes (1963); Yellott (1977). (As indicated by its title, this
paper of Yellott could also be placed in either of the two
above categories.)
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Timing and Counting Models. Luce and Green (1972,
1974a); Strackee and van der Gon (1962); McGill and Gold-
berg (1968).

The complete literature on probabilistic choice theory is huge,
and the above list should not be taken as exhaustive. Only
references of general interest, or having a potential relevance
to psychophysics, were included.

Finally, a generally useful source for facts regarding the
distribution function of commonly encountered random variables
is Johnson and Kotz (1969, 1970a, 1970b).

5. PSYCHOMETRIC FUNCTIONS

Consider, for a fixed stimulus b, the probability py(a) that stim-
ulus a is judged as exceeding b. (Both b and a are in some real
interval representing the physical scale.) A somewhat idealized
graph of a function ps, which is consistent in its main features
with many data, is displayed in Figure 1.5.

Clearly, regarded as a function of two variables, (a,b) —
Py(a) is (except for a change of notations) exactly the choice
probability function (a,b) — P, analyzed in Sections 3 and 4.
As we shall see, however, the change of notation is indicative
of a change of viewpoint, which in turn leads to new theoretical
insights.

Such a function py is traditionally referred to as a psycho-
metric function. This term is also used in a different situation,
when pp(a) denotes the probability of detecting a stimulus a
embedded in some “noisy” background b. In other words, @ and
b may be“different kinds of physical variables. Occasionally,
we encounter the term in an even broader context, when the
empirical measure under investigation is not a probability of
discrimination or detection but of some other variable, such as
a reaction time or a count of a neural spike firing. Our discussion
will cover all these cases.

A central topic of this section will be whether the data
support the assumption that two or more psychometric functions
are “parallel,” that is, can be made to coincide by rigid shifts
along the horizontal axis. The rationale for this question is that
parallelism is a criterion for an important class of model rep-
resented by the equation

Pp ()
o

(8]

]

[
I
|
|
|
1
1
|
1
0.0 :
b

INTENSITY, a (in physical units)
Idealized graph of a psychometric function.

Figure 1.5.
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pe(@) = Fla — g®)] , 37
in which the functions F and g depend on the particular model
considered. In other words, any model satisfying this equation
must predict parallel psychometric functions. The exact cor-
respondence between Eq. (37) and parallelism will be described.
A more general situation will also be investigated, corresponding
to the equation
py@) = Flu(@) — g®)] . (38)
In this case, the psychometric functions are not (necessarily)
parallel but may be rendered so by some appropriate transfor-
mation u of the physical scale. Obviously, Eq. (38) generalizes
~ the Fechnerian equation
Pop = Flul@ — w®)] (39)
discussed at length in Sections 3 and 4. The importance of the
issue of parallelism in psychophysical theory must be understood.
Parallel psychometric functions indicate that the discrimination
(or detection) acuity is uniform on the entire stimulus.scale, a
fact which may lead to adopting this scale as a measure of
sensation magnitude.

Other topics are touched upon in this section. For instance,
in the so-called two-alternative forced-choice (2AFC) design,
the probability P, is often estimated by averaging the fre-
quencies of the responses in the two alternatives. The theoretical

- consequences of this practice will be analyzed. It will be shown,
for example, that it may have the unfortunate consequence of
forcing nonparallelism.

We begin by considering a few empirical examples, leading
to a basic definitian.

5.1. Empirical Examples

5.1.1. Example. In an experiment reported by Engen
(Kling & Riggs, 1971, p. 24), a subject was required to compare,
by inspection, the length of two lines projected successively on
a screen. In the course of the experiment, five lines of lengths
61, 62, 63, 64, and 65 mm were to be compared to a fixed line
of length 63 mm. Thus in the above notations, 6 = 63 mm and
a takes on five values. The pairs (a,b) of stimuli were presented
randomly, with 100 trials per pair. On half of the trials, b was
presented first. The subject was asked whether the perceived
length of the first line exceeded that of the second. No feedback
was given. Denote by f3(a) the relative frequency of the judgment
that the perceived length of a exceeds that of &. The values of
f»(a) are displayed in Figure 1.6. Such data are consistent with
Figure 1.5 and suggest that p, is a smooth function, strictly
increasing on an interval bracketing b and such that py(b) =
.5. The method employed in this experiment is usually referred
to as the method of constant stimuli, and the fixed stimulus &
is called the standard stimulus.

5.1.2. Example. Inan unpublished experiment of Graham
and Hartline (1933; reported in Sirovich & Abramov, 1977),
the frequency of spike firing of a single fiber in the lateral eye
of the horseshoe crab, Limulus, was recorded as a function of
the intensity of a visual stimulus for various monochromatic
lights. The data (frequency of spike firing in the ihitial portion
of the response immediately following the stimulus) are plotted
in Figure 1.7, which is reproduced from Sirovich and Abramov

1.0
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0.4+

0.2

0.0 1L—h' T T T T T

LENGTH (millimeters)

Figure 1.6. Proportion of “longer” judgment as a function of line length
obtained with the method of constant stimuli. (From T. Engen, Psychophysics:
Discrimination and detection, in J. W. Kling & L. A. Riggs (Eds.), Experimental
psychology (3rd ed.). Copyright 1938, 1954, 1971 by Holt, Rinehart & Winston,
Inc.,.CBS College Publishing. Reprinted with permission.)

(1977). The wavelength of the monochromatic light (in nm) is
the parameter. It is clear that the five curves underlying the
data in Figure 1.7 contain essentially the same information as
traditional psychometric functions. Notice a difference, however,
which concerns the ranges of the frequency of firing functions.
As suggested by the data, these are real intervals bounded by,
say, 0 and 80. This is easily taken care of. Any of a number of
transformations would yield ranges bounded by 0 and 1. For
example, with ¥;(a) denoting the frequency of spike firing, for

80
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Figure 1.7. Response versus log intensity (quantum basis) functions from

a single fiber in the lateral eye of the horseshoe crab, Limulus. Stimuli were
monochromatic lights; the wavelength is indicated next to each curve. The
response measure is frequency of spike firing in the initial portion of the
response immediately following light onset. The five fitted curves are identical
except for a shift along the abscissa. (From L. Sirovich & |. Abramov, Pho-
topigments and pseudo-pigments, Vision Research, 17. Copynght 1977 by
Pergamon. Reprinted with permission.)
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" a stimulus b of intensity a, either of the two transformations
below would be adequate:

Yy(a) — ppla) = ¥u(a)/80
or
_ ¥y (a)
Yp@) — ppla) = Y@ + F° (40)

where % is a positive constant. Such transformations would not
affect an important property suggested by the data of Figure
1.7: the frequency of firing functions appear to be parallel, when
plotted as functions of the logarithm of intensity. In fact, this
parallelism would not be altered by any transformation

V(@) — gl¥a)l ,

where g is any continuous, strictly increasing function mapping

- the ranges of the functions ¥, into (0,1). For good reasons,

much is made of this parallelism by Sirovich and Abramov,
who point out that it supports (actually, is essentially eqmvalent
to) the representation

¥y@) = Rlapd)] (41)
where ., R are real-valued functions, with R strictly increasing.
_The product ap.(d) is regarded as measuring the number of light
quanta absorbed by the photoreceptor (cf. Naka & Rushton,
1966a, 1966b, 1966¢). Notice that, with py(a) as in Eq. (40) and
F(s) = R(e®)/[R(e®) + k, Eq. (41) can be rewritten as
Py(a) = F{lna — In[1/pn®)]} ,
a special case of Eq. (38).

In this example, a complete description of the stimulus
involves a pair (b,a), where b denotes the wavelength and a the
intensity. Thus the role of the standard in the example in Section
5.1.1 is played here by one coordinate of the stimulus. In the
sequel, however, background will often be used as a generic
term denoting the index of a psychometric function. For the
sake of consistency, we shall also occasionally speak about the
masking effect of the background even though such language
refers only to particular applications.

5.1.3. Example. Inthe experiment described, Graham and
Hartline also recorded the latency from light onset to first spike
(see Figure 1.8). Most of the comnients made concerning the
example in Section 5.1.2 remain applicable here. To force the

' (average) latency l(a) (where a,b are as in Section 5.1.2) into
our theoretical framework, we can, to take an example among
many, adopt the transformation

k
lp(@) — ppla) = KT L@
where k& > 0 is an appropriately chosen constant.

These examples pave the way to a general definition of a
family of psychometric functions, in which the background (or
index) is assumed to vary in some abstract set I, which may or
may not be a real interval.

w———
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Figure 1.8. Response versus log intensity (quantum basis) functions from
-asingle:fiber in the-lateral eye of the horseshoe crab, Limulus. Stimuli were

monochromatic lights; the wavelength is indicated next to each curve. This
set of records is identical to that of Figure 1.7, except that the response
measure is the latency of the response from light onset to first spike. The
five fitted curves are identical except for a shift along the abscissa. (From L.
Sirovich & 1. Abramov, Photopigments and pseudo-pigments, Vision Research,
17. Copyright 1977 by Pergamon. Reprinted with permission.)

5.2. Psychometric Families—Definition
Unless one is interested in modeling their exact mathematical
shape, psychometric functions are of little interest considered
in isolation. Typically, the psychophysicist wishes to investigate
how the shape of a psychometric function is affected by variation
of the standard or the background. Accordingly, the definition
in Section 5.2.1 is concerned with a family of psychometric
functions. Notice the switch in notation, from ps(a) to ps(x), to
emphasize that b, x may belong to different physical domains.
~ 5.2.1. Definition. LetIbe a set of backgrounds. For each
background b in I, let Cj be a subset of the reals, and let p; be
a real-valued function defined on Cj. Suppose that, for some
b €1, the following axioms are satisfied: :

1. Cpis an open interval.

2. 0<pp<1.

3. The functionx — pp(x) is strictly increasing and continuous
in the variable x.

Then p; is called a psychometric function. The index b of a
psychometric function p, will be referred to as the standard or
the background. A set {py|b € I} of psychometric functions is
called well linked iff

4. For all a, b € I there exists a finite sequence a; = a, ay, ...,
» = b, such that

Cai n Cai+1 # Q, forl <

i<n.

A well-linked set of psychometric functions is called a psy-
chometric family. Some comments on these conditions can be

_ found in Section 5.3.




PSYCHOPHYSICAL MEASUREMENT AND THEORY
5.3. Remarks

Notice that, as defined in Section 5.2, a psychometric function
resembles a distribution function (in the sense of statistics),
but does not necessarily satisfy all the properties of this concept.
Specifically, we do not require in general that a psychometric
function take all the values between 0 and 1. Such property is
not essential in most of our developments. More important, it
would be a source of difficulty with various kinds of data.

The conditions defining a psychometric family should appear
quite acceptable in many empirical situations. Axioms 1 and
2 are straightforward. Axiom 3 states that a psychometric func-
tion is strictly increasing and continuous. (This presupposes
that the possibly constant upper and lower portions have been
deleted.) This seems reasonable. (See, however, Falmagne, 1982.)
The role of axiom 4 should be appreciated. This axiom states
that any two psychometric functions can be linked by a finite
sequence of psychometric functions, such that any two successive
psychometric functions in the sequence have overlapping do-
mains. This requirement is very natural from an empirical and

especially a theoretical standpoint. A particular psychometric:

function provides precise but highly local information regarding
the detectability (or discriminability) of the stimulus in a
neighborhood of the stimulus scale. Axiom 4 ensures that these
local informations can be pieced together to provide an overall
picture of the subject sensitivity, for example, in the formof a
psychophysical scale.

Examples of psychometric families are not difficult to man-
ufacture, for example, by generalizing the models of discrimi-
nation discussed in Section 4.

'5.4. Parallel Psychometric Families.

Two empirical examples of “parallel” psychometric families were
provided in Sections 5.1.2 and 5.1.3. Intuitively, a psychometric
family is parallel if any two psychometric functions can be
made to coincide by a horizontal “rigid” shift of one toward the
other. This suggests that given one psychometric function, say,
Do, any other psychometric function py is completely charac-
terized by the value of one parameter depending on b, which
~we denote by g(b), expressing the length and direction of the
rigid shift (g(b) may be negative). This intuition is basically
sound, but slightly misleading in its details. For instance, one
or both of the psychometric functions p,, pp may be “truncated,”
and if both are, their truncation may be of a different kind, so

that the coincidence after shift may not be complete (see Figure .

1.9): The definition below takes care of this situation and is in
fact consistent with a case in which for two particular psycho-
metric functions pq, ps, no shift would achieve coincidence be-
cause the ranges of p,, pp do not overlap.

The concept of parallelism is of importance since it offers
an easily testable criterion of the fact that the effects of the
stimulus and the background combine “subtractively” (or “ad-
ditively” as the case may be).

5.4.1. Definition. A psychometric family E is called par-
allel iff for any two psychometric functions pg, pp € E,

palpzt(m + 8] = pylpsi(m) + 8] (42)
for all = € (0,1) and & € Re such that both members of the
equation are defined. (We recall that we write f~! for the inverse

p () b Py
pa" (M)

Figure 1.9. Two psychometric functions in a parallel psychometric family.
The figure illustrates the notion of truncation, and the concepts of the definition
in Section 5.4.1 and the theorem in:Section 5.4.2. Notice that g(b) is positive,
and 3 negatlve

functlon of a one-to-one functlon f Re denotes the set of real
numbers.) '
The simple result in Section 5.4.2 will help the reader to
see the correspondence between this definition and Figure 1.9.
5.4.2. Theorem. A psychometric family E is parallel iff
for all pg, ps € E,

palm) — paiw') = psl(w) — psi(w') (43)

Whenever all four terms are defined.

This means in particular that if p,, pp are distribution
functions, they must have the same interquartile range:

pa'(75) — pa'(25) = ps'(.75) - p5'(.25) .
We include the proof of this resu’h‘:, which is very simple. |
Proof. Suppose that .E is ﬁarallei, with
pi'(m) — pgl(n') = 8 pil(w) = pil(v') =
This implies | |
m = polpalm + 8] = pplpslta) + &'

which, since E is parallel, leads easily tod =5
Conversely, suppose that Eq. (43) holds whenever its terms
are defined, but .

’

w = palpa(m) + 8] < pplpsi(m) + 8] =

Suppose also that 8 = 0. This implies that # =< =’ < =". Since
the range of py is an interval, p; (w’) is defined, yielding suc-
cessively

>
Il

paln’) — pgl(m)

pil) — ppiw
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< ppl(n) — pzli(m
= 8 )

a contradiction.
The argument is similar in the case 3 < 0. u

As mentioned earlier, the definition of a parallel psycho-
metric family does not preclude the possibility that the ranges
of some psychometric functions would not overlap. In a special
case where such a situation does not arise, a useful representation
of a psychometric family is available: the psychometric functions
satisfy the equation ;

Pax) = Flx — gla)],

for some functions F, g, where F is strictly increasing and con-

tinuous. This case is analyzed in the definition and theorem in

Sections 5.4.3 and 5.4.4, respectively.

5.4.3. Definition. A psychometric family & =
is called anchored iff there exists a number £ € (0,1) such that:

(i) For all @ € I there is an x satisfying p,(x) = &.
(i) For all x € U, sC,, there is an a € I such that p,(x) = &.

(Werecall that C, denotes the domain of the psychometric func-
tion p,.) In words, conditions (i) and (ii) mean that for every
background a there is a stimulus x and for every stimulus x
there is a background a, such that p,(x) = £&. A number £ € (0,1)
satisfying these conditions will be called an anchor of E.

These conditions are not very demanding. Suppose, for ex-
ample, that the psychometric functions are defined from the
.. choice probabilities P, of a balanced discrimination system
(see Section 3.5.1) by the equation p,(b) = P, ;. It follows easily
then that .5 is an anchor. Indeed, p;1(.5) = ais the identity
function on I.

5.4.4. Theorem. An anchored psychometric family & =
{pala € I} is parallel iff it has a representation

Dax) = Flx — g(a)],

where F is a continuous, strictly increasing function.

For a proof of this result, see Falmagne (1982). It must be
realized that the property of parallelism of a psychometric family
depends critically on the scale used to measure the stimulus
and would not be preserved under nonlinear transformation of
that scale. Consider, for example, an anchored, parallel psy-
chometric family & = {p,|a € I} admitting a representation

Pa(x) = Flx — g(a)]

in the sense of the theorem in Section 5.4.4. Let v be a real-
valued, strictly increasing, and continuous function defined on
the interval of variation of x. Notice that, with ¢ = v(x), the
equation p,(f) = pu(x) defines a new anchored, psychometric
family " = { ps|a € I}. But E” need not be parallel. In fact, it
is easy to show that =" is parallel if and only if v is a function
of the form v(x) = wx + 6, where pw > 0 and 0 is a constant. In
general—that is, when v is not necessarily linear—the trans-
formation of the stimulus scale generates a new psychometric
family E" satisfying a subtractive representation

pa® = Flu® - g@)] . (44)

{Pala €I}

.yielding, with o = F

" Defining G(s)

THEORY AND METHODS

(Thus u = v~1.) This suggests reversing the process. In Section
5.9.1 we ask, Under which conditions on a psychometric family
does there exist a transformation of the stimulus scale which
renders the psychometric functions parallel? Or in other terms,
When does a psychometric family = = { ps} have a subtractive
representation of the form Eq. (44)?

5.5. Subtractive Families

5.5.1. Definition. A psychometric family E = {p,|a € I}
is subtractive or a subtractive family iff there are three real-
valued functions g, u, and F, the latter two being continuous
and strictly increasing, such that

Pa(®) = Flulx) — gla)] (45)
for all @ € I and x € C,. In such a case, we shall occasionally
say that (g,u,F ) is a subtractive representation of E.

A special case of this representation has of course been

encountered before, in the framework of a Fechnerian psycho-

“physical discrimination system (definition in Section 3.5.1). It

makes sense to adopt here a terminology consistent with the
earlier one. Suppose, thus, that the psychometric family = has
in fact been obtained from a psychophysical discrimination sys-
tem (I,C,P), through the equation

pa(d) = Pb,a .

In this situation, = will be referred to as a discrimination family,

which will be called balanced iff (I,C,P) is balanced, that is, iff
pa(d) + ppla) =

Thus when E is a discrimination family, the functions g and u
in Eq. (45) have the same domain. In the special case where
g = u, E will be called Fechnerian, or a Fechner family, and
(u,F) will be labeled a Fechnerian representation of E.

5.6. Remarks

A discrimination family Z = {ps|a € I} can be subtractive
without being Fechnerian. (Say, Eq. (45) is satisfied but u is
not linearly related to g. An example is provided in Section
5.8). If, however, E is a balanced discrimination family, theh
it is subtractive only if it is Fechnerian. Indeed, for all a € I,

Pela) = Flula) = gl@)] =

-1(.5),
u(@) = gla) + o .

= F(s + ), we obtain

pyla) = Flula) — gb)l

G{u(a) — [gb) + al}

Glula) — u®)] .

This indicates that our usage of the term Fechnerian is consistent

. with that in Section 3. (Notice that the above argument only

uses the fact that p,(a) = .5.)
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5.7. A Remark on the Balancing Condition

Notice that if a discrimination family & = { pp} is unbalanced,
it can always be rendered balanced by a normalization such as

po(@ = pp@)/lps(@ + pa(b)] .

More generally, any real-valued continuous function ¥ of
two real variables, strictly increasing in the first variable and
strictly decreasing in the second, satisfying

Oo<¥v<1, (46)

W(s,t) + ¥(ts) = 1 47
achieves a similar normalization. The reader can check that
the family E* = { p;'} defined from the family = by the equation

pb (@ = ¥py(@a),pa(®)]

is indeed a‘balanced discrimination family. However, as dem-
onstrated by the model in Section 5.8, it is not generally the
case that if = is subtractive, then the normalized family 5 is
subtractive. What is true, and easy to show, is that if E is
Fechnerian, then 5" is also Fechnerian.

In some experimental situations, the order of presentation
of the stimuli has an effect on the (probability of the) response.
Such an effect is often of little interest, and the “careful exper-
imenter” sometimes adopts a normalization procedure that suf-
fers from the drawback just mentioned; namely, it does not
necessarily preserve the subtractive character of a psychometric
family. Let us demonstrate this. Denote by nla,(a,b)] the number
of times stimulus a is chosen in the set {a,b} when this set is
presented in the order (a,b). Let N(a,b) be the number of times
{a,b} is presented in the order (a,b). To simplify the argument,
we identify probabilities and relative frequencies, in the sense
that

ps(@) = nla,(a,b)]/N(a,bd) .

The standard normalization is

py (@) {nla,(a,b)] + nla,(b,a)]}/[N(a,b) + N(b,a)]

(Y2)lppl@) + 1 — pu(b)] , (49)
which indeed defines a balanced discrimination family £ =
{ps’},if E = {ps} is a discrimination family. If we assume that
both 5 and E™" are subtractive, then (by the remark in Section
5.6) 5" is Fechnerian, and we must have for some continuous,
strictly increasing functions u, g, F, h, and H,

Dpyla) Flula) - g1,

py(@) = H[h@ - h®)],

which, together with Eq. (49), yields an equation of the form

Flu(a) — g®)] — Flu®) — g(@)] = Klhla) — h()]
(50)

(where the constants %2 and 1 of Eq. (49) have been absorbed
in the function K). An equation such as (50) is often referred

(48). .Consider the family of functions & = {pp|b > 0}, defined by

. see Watson, Chapter 6, and Olzak and Thomas, Chapter 7, in
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to in the mathematical literature as a functional equation, a
term suggesting that the unknowns in the equation are not
numbers, as in elementary algebra, but functions (here F, u,
&, K, and h). The point is that this equation severely restricts
the relation between the functions u, g, and the form of the
function F. In general, the normalization is ill-advised since a
subtractive model will not survive it. In cases in which F is
approximately linear, this normalization may not create diffi-
culties, however.

5.7.1. Definition. In the sequel, any function (p,p’) —
¥(p,p’') defined on the unit square (0,1) x (0,1), real valued,
continuous, strictly increasing in the first variable, strictly de-
creasing in the second variable, and satisfying Egs. (46) and
(47) will be called a balancing function.

5.8. Examples of Subtractive Discrimination
Families

i
]

pya) = g~ (@Vat)

for each a > 0, where m,. > 0 are constants. This expression
is closely related to a model frequently encountered in the vision -
literature (Green & Luce, 1975; Nachmias, 1981; Quick, 1974;

this handbook). It is easily checked that = satisfies all the con-
ditions of an unbalanced discrimination family, which is sub-
tractive, since

Pb(a) = exp[_e—(ﬂ-log a - Mlog b)] ; (51)

Let us balance E. Since for every positive real number s, we
have (denoting as usual by ® the distribution function of-a
standard, normal random variable)

0< ®d(ogs) <1

and
1
d(log s) + P(log ;) =1,

it follows that the function (p,p") — ®[log (p/p")] is a balancing
function. This yields the balanced family £ = {p;*|d > 0},

defined by
o, py(a)
= ‘D{bg[pa(b)]} ’

pil@) = Ol(ab)"Ma™* — B1M)] .

that is

Since ™ is balanced, the assumption that it is subtractive
would lead (using the remark in Section 5.6), to the equation
(ab) Ma"* — "M = & YGlula) — u®)]}, (62)
in which u, G are strictly increasing, continuous functions. It
is not difficult to prove that considered as a functional equation
with unknown functions u, G, Eq. (52) has no solution (see
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* Falmagne, 1982). This shows that balancing a subtractive dis-
crimination family does not necessarily yield a Fechnerian
family.

5.8.1. Ideal Observer Model. Suppose that the background
is a sample of so-called Gaussian noise, with power density b,
presented for T units of time, and that the stimulus itself is
also a sample of Gaussian noise of the same duration, of power
density x = b + v, with v = 0, a constant. Each of the stimuli
and the background is then a stochastic process which, to a
good approximation (see however Levitt, 1972) admits a Fourier
series representation

wT '
> [azcos@mkt/T) + Brsin@wkt/T)]
k=1

where W is the bandwidth, and e, B, are independent, normal
random variables with mean 0, and variance o} depending on
the signal presented. It can be shown (e.g., Green & Swets,
1974) that in such a case the energy in the stimulus and the
background are respectively distributed as'

2 2’
Wxxewr), Woxiewr

where X%ZWT) and x?zqu) are two independent chi-square random
variables with 2WT degrees of freedom. Let us suppose that
some (ideal) subject bases the decision on a comparison of the
energies in the stimulus and the background. More precisely,
we assume that

ps@) = Prob{WxxGwr) = Wbxawr} -
If 2WT is large, each of the two chi-squaré random variables

is appzroximately normally distributed. Since E(x%n)) = n and
var(X(n)) = 2n, we obtain after simplification

i

@) = ®{WT(x — b)/[x2WT + bEWT1"}

® {(WT)™ [(x/b) — 11/[(w/b)2 + 11}

G (logx — logd) ,
with

Gls) = D{WDT)2 (e — Die® + 1" .
Thus {ps} is a subtractive family.

We recall briefly here the examples in Sections 5.1.2 and
5.1.3 concerning the frequency and latency of spike firing of a
single fiber in the lateral eye of the horseshoe crab, Limulus
(Graham & Hartline, 1933; see Sirovich & Abramov, 1977).
With the logarithm of intensity in the abscissa, parallel psy-
chometric functions were observed, which gave support to the
assumption of a representation

ps(@) = Rla w®d)]
for these psychometric functions (R, . > 0 are real-valued func-

tions). Clearly, such representation is equivalent to a subtractive
one, since it can be rewritten

ps(@) R {ellog a-g®l

Flloga - g®)],

'_—_—_——-——-
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with

F(s) = R(e®) and g = — log wd) .

In this case, parallel psychometric functions are obtained
after a suitable transformation—here logarithmic—of the
physical variable measuring the intensity of the stimulation.

A generalization of this idea is considered in Section 5.9.

5.9. Representation of Subtractive Psychometric
Families

5.9.1. Problem. Under which conditions does a psycho-
metric family E = {p,|a € I} have a subtractive representation?
This problem generalizes Fechner’s problem, discussed in Section
3.3. Necessary conditions are not difficult to find; for example,
suppose that E is subtractive, with a representation (g,u,F),
and that

 Pax) S pgx) (53)
P (YD) < pa(y) (54)
ps(y) < pu(y) (55)

are ’simultaneously satisfied. Since the function F in the sub-
tractive representation of E is strictly increasing, this yields

ux) - gla) < ulx) - gl

bu(y') - g@) s u(ly) — gl

w(y) - g®) < u(y) - g®) |
Adding these inequalities, we obtain

ux) — g < ulx) - gb),
or eqﬁii?alently, assuming that x € Cp, ﬁc’ € C},:,

pr(x) < ppx) . (56)
5.9.2 Definition. ' A psychometric family & = {p,|b € I}
satisfies triple cancellation iff Egs. (53), (54), and (55) together
imply (56) for all @, a’, b, b’ € Tandx,y € C, N Cpand x’, 5’ €
Cy N Cy. .

This condition is well known in the measurement literature
(cf. Krantz et al., 1971). The above argument shows, thus, that
a psychometric family has a subtractive representation only if
it satisfies triple cancellation. A set of necessary and sufficient
conditions, based on triple cancellation as a central axiom, was
obtained by Falmagne (1982). A related result can be found in
Narens and Luce (1976).

The scales u and g are usually specified up to a linear
transformation. For example, the following uniqueness result
follows from a slight strengthening of the conditions defining
an anchored psychometric family: if (z,g,F) and (u",g",F") are
two subtractive representations of the same psychometric family,
then

g(t) =Bog’(t) + B1,

u(t) = Bou'(t) + By + B2,
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_ gt = B2
=58,

for some constants Bo > 0, B1, and Bs.
5.10. Key References

The material in this section is based largely on a paper by
Falmagne (1982), which contains a number of additional results.
As far as we know, the term psychometric function is due to
Urban (1907), even though the notion was in use since Fechner
and Wundt. Despite its importance in psychophysical research,
this notion has prompted exceptionally few theoretical inves-
tigations. Three papers by Levine (1971, 1972, 1975) deserve
to be mentioned. His general approach to the analysis of a
family of psychometric functions is similar to that of this section.
Rather than focusing on particular models or processes, general
conditions are sought that guarantee the existence and unique-

ness properties of some abstract (e.g., subtractive) representation. -

His side conditions are somewhat different from ours, however.

In his 1972 paper, Levine analyzes a problem that was not -

considered here, involving a generalization of the notion of a
subtractive representation. In the notation of this section, this
representation is symbolized by the equation

Pax) = Flk(@ux) - g@] .

An introduction to fuhctional equations can be found in Aczél
(1966).

- 6. WEBER FUNCTIONS—PSYCHOPHYSICAL
METHODS

What is the smallest increment of a stimulus, on a physical
continuum, which is detectable by a subject? In other terms,
given a stimulus value equal to @, what is the smallest increment

A(a) such that a + A(a) “just noticeably” exceeds a? This was”

one of the earliest questions raised by psychophysicists. This
minimal increment A(a) is often referred to as the just-noticeable
difference (jnd), or the difference limen. A variant—or rather,
a special case—of this question is, What is the minimum value
of a stimulus which is “just detectable” by a subject? This is
called the absolute threshold.

Various experimental methods for the determination of
A(a) have been designed and are described in this section. Such
questions are by no means straightforward, however, since they
are ambiguous. For example, what is meant by “just noticeably”?
Suppose, for example, that a + A(a) is judged as exceeding a
on 65% of the trials. Does that mean that a + A(a) just noticeably
exceeds a? An empirical criterion is clearly involved here. In
the method of constant stimuli (cf. Section 6.2.2) A(a) is often
taken as a correct determination if @ + A(a) is judged as ex-
ceeding a on 75% of the trials. (We are ignoring statistical
issues for the moment.) The arbitrariness of this choice is trou-
bling. This arbitrariness is less apparent, but just as critical,
in the method “of limits” or in the method “of adjustments” (see
Sections 6.1.1 and 6.1.2). Certainly, one would not want the
general pattern of experimental results to depend critically on
the choice of the criterion. In fact, as pointed out by Luce and
Edwards (1958), there are theoretical difficulties involved in
adopting a unique, fixed criterion. Accordingly, there is a trend
in contemporary psychophysical research toward varying the
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value of the criterion across experimental conditions. We shall
go back to this point later on.
A basic notion of this section is a function A of two variables,

(@m) — Anla)

with m, 0 < m <1, representing the value of the criterion. Thus
in the particular case discussed above, a + A 75(a) is judged as
exceeding a on 75% of the trials. Notice that A,(a) may be
negative for some values of m: it is natural, for example, to
expect that a + Ags(@) < a, at least in some experimental
situations.

There is an obvious relation between the function of one
variable m — A(a) and the psychometric function p,, analyzed
in Section 5. For instance, suppose that p, is a psychometric
function in a discrimination family E (definition in Section
5.2.1), such that p,(a) = .5. As illustrated in Figure 1.10, we
have in such a case

An@) = pgltm) - a . (57)

In this situation, the value p; }(.50) is sometimes referred

to as the point of subjective equality. The function A contains,

thus, exactly the same information as the family = of psycho-

metric functions. The emphasis on this function here is justified,
however. In particular, psychophysicists have found out that
experimental plots of the functions A,; provided very revealing
summaries of their data, and they use such plots routinely.
Correspondingly, this function is of great theoretical interest,
as we shall see in Section 7. An equally important place in our
developments will be taken by the function

> Ea) = pal(m)

(see Figure 1.10). Actually, it can be argued that & is a more
central concept than A: £ can always be defined from the psy-
chometric functions, while A is only defined if the subtraction
ps () — a makes sense, which it does not if a is an object of
a different nature than p; (). For instance, A would not be
defined in a detection situation in which pgl(m) = x would
specify the intensity x of a stimulus detected with a probability
ar, over a background of noise a, where a denotes a waveform
or a spectral density function (i.e., a possibly infinite dimensional

§q(a)

Figure 1.10. The function A in a discrimination family E = {p,} satisfying
pal@) = .5. We have &.(a) = pTa(m) and Ax(a) = &4(a) — a.
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vector). The functions A and £ will be called, respectively, the
Weber function and the sensitivity function.

_ Empirical determinations of function £ or A can be achieved
by a number of methods, a discussion of which is the topic of
this section.

6.1. Traditional Psychophysical Methods
Since the interest of the method of limits and of the method of
adjustments is mostly historical, only a brief description will
be given. For more details, the reader is referred, for example,
to Engen (1971) or Fechner (1860/1966). Each method involves
a subject making successive comparisons of-a stimulus with a
standard or background. (We use the terminology of the pre-
ceding section.) In the determination of the absolute threshold,
the value of the background is considered negligible.

6.1.1. The Method of Limits. The experimenter varies the
value of the stimulus in small ascending or descending steps.
At each step the subject reports whether the stimulus appears

smaller than, equal to, or larger than the background. The

experimenter records the values of the stimulus at which the

subject’s response shifts from one category to another. This -

method is used in applied situations, such as audiology, to provide
a quick estimate of the point of subjective equality, pg 1(.50).
As pointed out by Levitt (1970), this method has serious defects
from the viewpoint of efficiency (the observations may be poorly
placed) and validity (the estimates may be substantially biased)
(see Anderson, McCarthy, & Tukey, 1946; Brown & Cane, 1959).

6.1.2." The Method of Adjustments. The method of ad-
justments is similar to the method of limits. The subject adjusts
the value of the stimulus, which can be varied continuously
(e.g., by turning a dial), and sets it to apparent equality with
the standard. Repeated applications of this procedure yield an
empirical distribution of stimulus values, the variability of which
is used to compute or estimate the jnd.

6.1.3. The Method of Constant Stimuli. The method of
constant stimuli, which has been encountered earlier (Section
5.1.1), purports to estimate experimentally a number of suitably
located points of some psychometric function p,. If a particular
mathematical expression is assumed for the psychometric func-
tions (derived, for instance, from a mathematical model), then
this expression is fitted to the experimental points. (Typically,
the mathematical expression of p, is only specified up to the
values of some parameters, which have to be estimated from
the data.) Finally, an estimate of the jnd is provided, for example,
by Eq. (67). v

In the past, a different estimate of the jnd has frequently
been used, which corresponds to the equation

jnd(@) = (2)[A7s(a) — Azs(@)] . (58)

The main objection to this procedure is that it is implicitly
based on an assumption of symmetry between negative and
positive differences, which is closely related to the balancing
condition discussed in Section 5. The difficulties with such as-
sumptions have been analyzed in Section 5.7.

If no specific mathematical model is assumed but the psy-
chometric function appears to be approximately linear, say,
between the values .20 and .80, then a straight line can be
fitted to the experimental points in that interval, replacing the
mathematical form used above. '

*F—-—l—-_—
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In general, each of these three methods suffers from one
or more of the following defects:

1. Absence of control on the criterion (Sections 6.1.1 and 6.1.2).

2. Notheoretical justification for important aspects of the pro-
cedure (Sections 6.1.1 and 6.1.2).

3. The estimates may be biased (Sections 6.1.1 and 6.1.2).

4. Costs; a large amount of data is often wasted (all three
methods).

In computerized laboratories, sophisticated versions of the
method in Section 6.1.3 are used routinely, which we now de-
scribe. These methods are applicable when the exact mathe-
matical form of the psychometric functions is unknown.

6.2. Adaptive Methods

Consider the problem of finding a point £ in the domain of a
psychometric function p,, such that p,(§) = m, where w is chosen
arbitrarily in the range of p,. Notice that the location of £ depends
on both @ and m; £ is thus a function of the two variables a and
7. Actually, £ is the sensitivity function introduced earlier,
with &x(a) = pgi(w) (Figure 1.10). In the rest of this section,
we assume that the background a is fixed. We thus occasionally
simplify our notation and write &, = p~(m).

It must be realized that the problem of estimating &, with
an acceptable degree of accuracy from the data is not trivial,
since the exact mathematical form of the psychometric function
may be unknown. A number of practical methods are described
below. They differ from the methods decribed in Section 6.1 in
that the course of the experiment depends critically on the
data: the stimulus presented on trial n depends on the subject’s
responses on one or more of the preceding trials:. At present,
none of these methods taken by itself is completely free of defects.
Asindicated in Section 6.3, however, a suitable combination of
methods provides an estimation procedure which seems to be
reasonable for empirical applications.

From a theoretical standpoint, the sequence of stimulus-
response pairs will be regarded as a stochastic process (Parzen,
1962). For the time being, we assume that the process is sta-
tionary. The following notations will be used. The stimulus
presented at trial n will be denoted by X, a random variable.
The subject’s responses will be coded:

1 If a is not judged as exceeding X;
0 Otherwise

Thus 0,1 are the values of a random variable, which we denote
by Z,. We have by definition

PI‘Ob{Zn = llxn} = pa(xn) .

- In the methods described below, the succession of stimuli is

governed by an equation of the form

Xpi1 = Xy + 6(mn,Z,,Z, 1,Xp0-1,.0.) (59)
in which 8 is a function that may vary with the probability =
assigned to the target value £.(a), the trial number n, the sub-
ject’s response on that trial, and possibly some stimulus—response
pairs on earlier trials.

6.2.1. Stochastic Approximation. Fix m, 0 <7 <1 and
choose a point x; arbitrarily, somewhere in the neighborhood
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of £:(a), the point to be estimated. (Since £,(a) is unknown, an
educated guess has to be made. The accuracy of this guess is
not crucial.) Present the pair (x;,a) to the subject. Determine
a second point xg by the following rule:

0

c
=7

3 if Zy

x1 +

if Zy

xl—g(l—ﬂ) 1;

where ¢ > 0 is some constant, the choice of which is of impor-
tance, as we shall see. Thus x3 is a value of the random variable
Xo. We have X; = x; by convention. The above rule can be
rewritten compactly as

X2=X1—‘;‘[Z1_—’W].

Next, we determine successively xg,xq, ..., Xny o using the
rule ~ » : o . PRI

X1 = X, —%’(Zn‘—»'n') & 60)

This yields
, ¢ '
o(m,n,Z,) = —(w - Z,),
n

_ in the notation of Eq. (59). The sequence of random variables
{X,} is known as a Robbins-Monro process. It ¢an be shown
that as n gets large, X, tends to a normal random variable,
with expectation equal to £&; and a vanishing variance. This
result holds under general differentiability assumptions re-
garding the psychometric function p (which seem quite reason-
able in the present context) and provided that the constant ¢

is chosen appropriately. Foridetails the reader is referred-te

Robbins and Monro (1951) or Wasan (1969). In practice, an
estimate of &, is provided by a sample value of X, for some
large n. This method is a substantial improvement over the
preceding ones. It is not very economical, however, since a large
number of trials are needed, only the last one of which is actually
used. Moreover, if the number of trials is not large, the estimate
of & is biased, the size and direction of the bias depending on
the curvature of the psychometric function at the point to be
estimated. One difficulty is that the convergence of ¢/n is slow,
from the viewpoint of the scale of a psychophysical experiment.
As suggested by Kesten (1958) and Pavel (Note 1), the conver-

gence of the estimation process can be speeded up significantly -

by modifying the constant ¢ in Eq. (60) as a function of the
subject’s responses on trials preceding trial n. For example, the
value of ¢/n in Eq. (60) could fail to decrease in the case of a
‘succession of identical responses. (We refer to this modification
of the method as accelerated stochastic approximation.) Finally,
it must be remembered that there are often practical limitations
to the resolution of the apparatus used to generate the stimuli.
In psychoacoustics, for instance, the minimum difference between
distinct stimuli is often of the order of 0.25 dB or more. Even
assuming that an accelerated stochastic approximation method
is used, these limitations may suffice to render the estimate
unacceptable. Stochastic approximation has nevertheless its
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use as an early component of an adaptive estimation procedure
(see Section 6.3). ‘

6.2.2. Up-Down, or Staircase, Method. This method is

_ probably the most popular one. The essential difference with

the stochastic approximation method is that on each trial the
value of the stimulus is changed by a constant amount, either
positively or negatively. In other terms, in Eq. (59),
|0(m,20,Z,-1,X0 1, )] = |Xper — Xy

is constant for all trials n, the direction of the change depending
on the probability m, on'the subject’s responses, and so on. The
increments by which the stimulus is either increased or decreased
are referred to as steps. A sequence of steps in one direction, in
a realization of this process, is called a run. This is illustrated
in Figure 1.11, in which the value of the stimulus presented at
the first trial is set arbitrarily equal to 0 and the step size is
equal to 1. There are eight runs, corresponding to trials 1-2,
2-5, 5-7, and so on. Three variants of the method will be de-
scribed. »

6.2.2.1. Simple Up-Down Method. In the simple up-down
method, the problem is to estimate &5. As in Section 6.2.1, an

“educated guess is made for the initial value X; of the stimulus.

The successive remaining values are then obtained by the rule

X1 = Xp + 31 - 2Z,) . (61)
In words, 3 is the step size, and the stimulus is increased by 3
in the case of a negative response (Z, = 0) and decreased by
in the case of a positive one (Z,, = 1). In Figure 1.11, the succes-
sion of responses is “no, yes, yes, yes, no, ... ” and so on. The
choice of the step size is obviously important and will be com-
mented on in a moment. Since
Prob{Z, = 1|X,} = pa(X,) ,

it is apparent that Eq. (61) defines a discrete parameter Markov
chain {X,} with state space {x; + nd|n = 1,2, ... }. The states
are recurrent, with a finite mean recurrent time, which implies
(see, e.g., Parzen, 1962, p. 252) that the distribution of X, con-
verges as n — . In particular, taking expectations and limits
in Eq. (61) and denoting the expectations by E, we obtain after
rearranging,

0 = ImE(X,,) - EimEX,) = 51 ~ limE(Z,] .
n—w ; n—w noe

4
f;)\ +
E 2 -+ +
3 . _ + -+
g 0_. ..... I R R R I P e ™iraenaan
£ .- -
a2f -
A

-4 T T T T

0 5 10 15 20

TRIAL NUMBER
Figure 1.11. Exemplary data for the simple up-down method. The initial
value is arbitrarily set at 0. The step size is equal to 1. There are eight runs,
corresponding to trials 1-2, 2-5, 5-7, and so on.
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Using the fact that p, is a bounded, continuous function, this
gives successively, with obvious notation,

5

i

lim E(Z,) = lim Prob{Z, = 1}

lirnc@c E[Prob{Z,|X,}] = limE[p,(X,)]

1l

E(ps(X2)] = pu[E(X)] ,

in which the approximation holds if we assume either that the
psychometric function p, is approximately linear in the region
of concentration of the mass of X« or that the distribution of
X is approximately symmetric. (Indeed, in this last case, the
expectation of X« is confounded with its median M(X.), and for
any strictly increasing function £, we have M[ f(X)] = fIMX)].)
In principle, the value £5 = E(X) can be estimated by the
statistic

k.
z Xn+i ’
i=1

T

for n sufficiently large. As pointed out by Wetherill (1963), a
practical estimate of £ 5 is provided by averaging the peaks and
the valleysin all the runs. As an illustration, the data of Figure
1 11 would yield for this estimate the value

%(0+1—2+0—1+3——1+2+1)=3/8.

It is easy to verify that this method amounts to considering the
midpoint of every second run as an estimate of £ 5 and then to
compute the average of these midpoints. Thus in Figure 1.11

1
Z(—.5 -5+ 1+ 15 = 38.

These estimates are sometimes referred to as the midrun es-
timates. An even number of runs should be used, to reduce a
bias in the estimation. The bias is then small, provided that to
a reasonable approximation the psychometric function or the
distribution of X,, satisfies the conditions indicated above. This
procedure based on the midrun estimates is known to be fairly
efficient. In fact for a small number of trials (n < 30), it is more
efficient than a maximum likelihood estimate (Wetherill, Chen,
& Vasudeva, 1966). There are various problems with this pro-
| cedure, only some of which will be mentioned here (see Levitt,
1970.)

One problem concerns the choice of the step size 3, the
| value of which should be small compared to the “spread” of the
| psychometric function. As a rule of thumb, a good choice is to
| set dequal to the slope of the psychometric function at the point
| to be estimated. (If we assume that the psychometric function
is approximately linear in some neighborhood of the target
value, then this value of  can be shown to minimize the variance
of the asymptotic distribution of the stimuli presented. See
Wetherill, 1963.) Since both locations and spread are typically
unknown at the early stage of experimentation, this recom-
mendation is only of heuristic use. A frequently employed, rea-
sonable procedure is to start the first few (say, 10) trials of each
experimental session with a large step size, which is then de-
creased for the useful part of the data. ‘

e
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Another source of difficulty is that the subject may become
aware of the systematic character of the stimulus changes. In
turn, this may induce a strategy of anticipation of these changes
that may be responsible for a bias in the responses. This is
easily taken care of by “interleaving” two or more staircase
processes (involving different estimates) within each experi-
mental session. This remark also applies, obviously, to the sto-
chastic approximation procedure.

It is clear that, as described here, the staircase procedure
is only of limited use, since it only permits the estimation of
the point & 5.

6.2.2.2, [Estimate of & Following Derman (1957), the
simple up-down procedure can be adapted to provide, at least
in principle, an estimate of &, for any choice of w. The idea is
simple enough. From a given psychometric function p,, let us
define a new psychometric function p; by

Pa® = ap,@) ,

where o is a multiplicative constant, .5 < a < 1, the role of
which will be made clear in a moment. An apphcatlon of the
simple up-down method to p, will yield a stimulus value &
satisfying -

ape(® = pa® = .5

“Thus

pPa(® =~ 120,

and for én& m, .5 < w < 1, an appropriate choice of a will yield
an estimate of £;. In the style of Egs. (59) and (61) this amounts
to setting

X,i1 =X, +8010 - 22,Y,),
where Y is a random variable taking value 1 with probability

Yo and value 0 with probability 1 — Yew, and independent of
the random variables X,,’s. We have thus, clearly,

ap.(X,) = PZ(Xn) = PTOb{ZnY'n' = 1}.
A similar method is used in the case of the determination of a

point &, with 0 < 7 < .5. For example, we define a psychometrlc
function

Pa® = (1 — )psx) + a,
with

O<a='5—ﬂ<.5.
1 — 7w

Again, applying the simple up-down procedure to p; yields the
required estimate of &;. An objection to Derman’s method is
that the slope of py is smaller than the slope of p,, a fact which
may reduce the efficiency of the procedure.

6.2.2.3. Transformed Up-DownMethod. Theimpact of this
objection is less critical in the so-called transformed up-down
method, where the function p;, is defined differently, for example,
by one of the following expressions:
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Pa@ = pe(@)*; n=234, . (62
Pal®) =1~ [1 - p(T"; n=234,. (63
Pa@=[1 = ps()]p.(x) + pa(x) . (64)

Such transformations have been used by a number of authors
(see Levitt, 1970, for some references). As an illustration, we
discuss the case n = 2 in Eq. (62). We consider the psychometric
function ps(x) = pa(x)%. As in the simple up-down procedure,
we search for an estimate of a point £ satisfying

5 = pa(® = pu(®?,
that is, _
Pa(® = V5 = .707 .

The case n = 2 in Eq. (62) is thus useful when this particular
point of the psychometric function is of interest. The relevant
_stochastic process is defined as follows. Pick x; as usual. Set
x5 = x1ifZ; = landxg = x; — 8ifZ, = 0. Forn = 3,4, ...
we use the rule

Xni1 = X, + e(zn»zn-lyxn~1) s

in which the function 8 is defined by. .

ifZ, = 0

: R -8 ifZn, = Znpg =1
0Zn,Zn-1,Xno1) = ~

(ZnZn-1,Xn-1) and X, = X..1;

‘ 0 in all other cases .

An example of realization of such a process is pictured in Figure
1.12(a). The point &5 of Da, Which is also the point £y3 of p,,

(arbitrary units)
IS

TRIAL NUMBER

Figure 1.12. (a) Exemplary data for the transformed up-down methods, £q.
(62). The conventions regarding initial value and step size are as in Figure

1.11:x; = 0and 8 = 1. (b) Recoding of the data of (a), eliminating consecutive:
~ repetitions of identical stimulus values. Six runs are obtained, corresponding

to trials 1-3, 3—=7, 7-10, and so on.
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can be estimated by the midrun procedure. A slight adaptation
of our definition of a run must be introduced however. For the
data of Figure 1.12(a) a strict application of this definition leads
to a count of four runs between trials 1 and 10, while we mean
to have only two runs: 1-5, 5-10, with respective midpoints
—1 and 0. The clearest approach is to begin by recoding the
data, so as to eliminate the repetitions of a stimulus on con-
secutive trials. The function of this recoding is made transparent
by a comparison of Figures 1.12(a) and 1.12(b). The exact def-
inition given below is somewhat involved however. Let {x,} be
arealization of the process {X,,}. Consider the largest subsequence
{2, of {x,}, such that x,; # xp;,, fori = 1,2, ... Definex; =
%n; for i = 1, 2, .... The sequence {x;} will be called the recod-
ing of {x,}. An illustration of such recoding is given in Figure
1.12(b), starting from the data of Figure 1.12(a). By eliminating
the repetitions, the number of trials has been reduced to 19.
There are six runs: 1-3, 3—7, 11-15, and so on, with respective
midpoints -1, 0, 0, and so on.

6:2.3. Remark, Theassumption that the stochastic process
(X,,,Z,) is stationary is critical for the procedures discussed in

“this section to be applicable. In some situations, the experimenter

may have reasons to believe that this assumption is not war- .
ranted: An examination of the data generated by the up-down
procedure may then reveal a systematic drift over time. If this
happens, not only is the adaptive procedure useless for the

.. ‘estimation of &, but the very notion of psychometric function

is of dubious value.
6.3. A Recommended Adaptive Procedure

In practice, it is advisable to adopt a combination of the methods

- described in Section 6.2. We recommend the following procedure.

To estimate a point & satisfying ps(€x) =

Step1. Choose X; = x3, the first stimulus to be presented,
in a (conjectured) neighborhood of &.

Step 2. Determine the values of the following stimuli by
accelerated stochastic approximation; for example, apply
Eq. (60), modified by having ¢/n remaining constant in the
course of a succession of identical responses. Pursue this
procedure up to the limit of resolution of the stimulus con-
tinuum (e.g, 0.25 dB in psychoacoustic).

Step 3. Suppose that this limit is reached at trial n. On
that trial, switch to a suitable up-down procedure, such as
in Sections 6.2.2.2 or 6.2.2.3. Use the midrun estimates on
the data from trial n onward to compute an estimate of &r.

An example of application of this procedure is given in k
Figure 1.13 and Table 1.1 for some simulated data. This combined
procedure avoids most of the criticisms elicited by other methods

~ discussed in this section. We must point out, however, that it

has not been investigated systematically, either from a math-
ematical or a practical standpoint. The last word is by no means
said on the question of designing an optimal adaptive procedure,
as indicated by recent activity in this field (Pavel, Note 1; Vor-
berg, Note 2).

6.4. Key References

A basic paper by Levitt (1970) contains a discussion of adaptive -
procedures geared toward psychophysical applications. A fairly
complete mathematical treatment is available in the monograph
by Wasan (1969).
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STIMULUS LEVEL

TRIAL NUMBER

Figure 1.13. Simulated application of the adaptive procedure to estimate
£.75. The vertical dotted line separates the two modes of the procedure. See
the Table 1.1 for details.

7. WEBER’S LAW, GENERALIZATIONS AND
ALTERNATIVES

The central concept of Section 5 concerned a probability
DPa(&) = = for which a stimulus of intensity £ is detected over a
background denoted by a. In Section 6, the intensity &, rather
than the probability mw, was taken as the independent variable,

Table 1.1. Simulation of the Adaptive Procedure Recommended in
Section 6.3, to Estimate & 75.

Stim-

Trial ulus Response

Number Value (Z,) Y5 Computation of 2,41
1 .0 0 — 0 - 80 - .15 =6
2 6 0 — 6 — 80 - .75) = 12
3 12 0 — 12 - 8(0 - .75) = 18
4 18 1 — 18 - 841 - .75) = 175
5 17.5 1 — 175 - 84HQ - .75 = 17
6 17 1 — 17 - @41 - .75) = 165
7 16.5 1 — 165 - (8/4)(1 - .75).= 16
8 16 0 — 16 — (8/8)(0 — .75) = 16.75
9 16.75 0 —  16.75 - (8/8)0 — .75) = 17.5
10 17.5 1 —. 175 — (8101 - .75) = 173
11 17.25 1 — 1725 + 251 - 2) = 17
12 17 1 — 17 + 251 - 2) = 16.75
13 16.75 1 0 16.75 + .25(1 — 0) = 17
14 17 0 1 17 + 251 - 0) = 17.25
15 17.25 0 1 1725 + 251 - 0) = 175
16 17.5 1 1 175 + 25(1 -2) = 17.25
17 17.25 1 0 1725 + .25(1 - 0) = 175
18 175 1 0 175 + .25(1 - 0) = 17.75
19 17.75 1. 1. 17.75- + 251 —-2) = 175
20 17.50 1 1 175 + 251 -2) = 1725

From trial 1 to 10, accelerated stochastic approximation is used, withx; = 0
and ¢ = 8. (The successive values of the stimulus are obtained from Eq.
(60), except that c/n does not vary in the course of repetitions of a response.)
From trial 11 on, method 6.2.2.2 is used, with o = .5/.75. The values of
Y 75 are obtained by random sampling with Prob {Y ;5 = 1} = a. The
midrun estimate of £ 75 would be obtained by averaging 17, 16.75, 17.5;
and so on.

—-—-——-——_—_
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and several practical procedures were discussed for the empirical
determination of &, for given w and a. In general, the value of
¢ will depend on both 7 and g; in other terms, £ is a function of
the two variables a and . Mathematically, the function £ con-
tains exactly the same information as the psychometric functions
of Section 5. The long-standing interest of psychophysicists in
this function is well grounded, however. As we shall see, the
knowledge of £ gives a more ready access to the underlying
sensory scale, a primary focus of interest for the psychophysicist.
This is true at least for the most popular class of models for
psychometric function data. :

We consider here a number of models or properties for the
function £ and its close relative, the Weber function A, the most
celebrated of which is the so-called Weber’s law.

We begin with a definition recasting these two functions
in the general framework of this chapter.

7.1. Basic Notions
- -7.1.1. Definition. Let E = {p,|a € I} be a psychometric

family (i.e., a family of psychometric functions satisfying certain
hypotheses; see the definition in Section 5.2). The sensitivity

" function of E is a function ¢ defined for all backgrounds (or

standards) a and all probabilities w in the range of a psychometric
function p,, by the equation

tx(@) = pzim .

(Asusual, we write £ ~! for the inverse of a one-to-one function -
1) In words, &,(a) is the intensity of the stimulus yielding
a response probability =, for the background q; that is,
Palén(a@)] = m. We recall that the index a in the notation p, of
a psychometric function need not always represent a real num-
ber. An example is that of a detection paradigm in which the
index may denote a background noise, which in some situations
may be represented by a spectral density function, that is, an
infinite dimensional vector. (Thus p,(x) is the probability that
the stimulus of intensity x is detected over the background a.)
Let us assume that E is anchored at .5 (cf. Section 5.4.3; thus
.5 is a possible value for all the psychometric functions in the
family). Then the Weber function of E is a function A of two
variables a and =, defined by

Ar@ = Egxla) — &5a) .

" This was illustrated in Figure 1.10, in the particular case in

which a denotes a real number (say, a physical intensity) and
£s(@) = a. :
It is important to distinguish in our notation the concept
of A from that of A;. The latter is a function of one variable,
namely, the background, or standard. In other words, in the
notation A 75, the probability .75 is implicitly assumed to be
fixed. Occasionally, it will nevertheless be convenient, by abuse
of language, to refer to the functions A as the Weber functions
of 5. A similar convention will apply to the functions &, which
will be called the sensitivity functions of =. Psychophysicists
often analyze their data in terms of one or more functions

a - Aga)a ,

in a situation in which division by a is legitimate. Such a function
will be called the w-Weber fraction of =, or, more simply, when
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no ambiguity can arise, a Weber fraction. Notice that since, in

a case where p,(a) = .5 for all intensities a, we have by definition
Ar(@) _ &l@)

a a

any property of a Weber fraction will be almost exactly reflected
in the corresponding function £,(a)/a.

7.1.2. Remark. The change of notation, from pg(w) to
£:(a), symbolizes an important shift of focus in our analysis.
The quantity m, the probability of the response, ceases to be
the variable of interest and becomes the parameter. Typically,
at most a couple of values of = are considered in experimental
plots of Weber functions or sensitivity functions. By contrast,
the effect on Ag(a) or £;(a) of the variable a is investigated in
minute detail. This is in line with a long tradition in psycho-
physical research in which the sensory scales uncovered by the
analysis of the data are deemed of central importance. This
point is critical and should be discussed in some detail.-

Suppose, for example, that some psychometric family & =

{pa}is subtractive, in the sense of the definition in Section 5.5.1.
This means that the followmg representatlon holds for the re-
sponse probabilities:

Da(x) = F [u(x) - g(a)] (65)
inwhichu a.ndF are continuous a.nd strictly increasing functions.
The psychophysicist using such a model typically interprets
the functions u, g as representing a rescaling of the physical
variables by the sensory mechanisms. As such, these functions'
are far more important than the function F, which, it is feared,
may be plagued by nuisance variables of the: “cognitive” type
(response bias, motivation, etc.).

Let us transform Eq. (65) in terms of the sensitivity function
£. Setting p,(x) = wand F~! = h, we obtain {,(a) = x, which
together with Eq. (65) yields

Exla) = ulgl@) + h(w] . (66)

Consequently, if the variable = in Eq. (66) is kept constant,
the resulting equation in one variable only involves the functions
u, g, which for reasons given are the interesting ones.

Such is the strategy of the psychophysicist. It relies heavily
on a few assumptions. One is that the sensitivity functions &,
can be determined empirically with enough accuracy. A number

of methods designed for this purpose have been discussed in .

the preceding section. Another, more critical assumption is that
the rescaling functions u, g in Egs. (65) and (66) are unaffected
by nuisance (i.e., nonsensory) variables. As far as we know,
there is little experimental evidence suggesting that this as-
sumption may be invalid.

As a by-product of our discussion, we have, in any event,

the following theorem.

7.1.3. Theorem. Let £ be the sensitivity function of a

psychometric family & = {ps|d € I}. Then E is subtractive

(that is, Eq. (65) holds) iff there exist three functions A, u, and

g, with u and A strictly increasing and continuous, such that
Ed@) = ulg@ + h(] .

Indeed, we have shown that Eq. (65) implies Eq. (66), and
it is clear that the reverse implication also holds. As suggested
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by this theorem, all the results obtained in Section 5 regarding
psychometric functions could be translated in terms of sensitivity
functions or, when they are defined, in terms of Weber functions.
Following are a few additiona] examples, which may be skipped

at first reading without much loss of continuity. (We omit the
proofs of these results, which are easy to obtain.)

7.1.4. Theorem. Let E = {p,|a ¢ I} be a psychometric
family, with sensitivity function & Then the following two con-
ditions are equivalent:

1. E is a parallel family in the sense of the definition in Section
5.5.1. : :
2. &xla) — &Ep(a) = &4(b) — &x(b), for all w, w', and a, b such
that both members are defined.

This result follows readily from the definitions, as well as from
the theorem in Section 5.4.2.

7.1.5. Theorem. If E = {p,la € I} is an anchored psy-
chometric family (in the sense of the definition in Section 5.4.3)
with a sensitivity function £, then = is parallel iff there exist
two functions g, 2 with A strictly increasing and continuous,
such that the equation

Eq(a) = gla) + h(m) (67
holds whenever ¢(a) is defined. In particular, g is defined on
I . B

This implies that in the situation described in the theorem,
the Weber functlons a — Ar(a) do not vary with a since

(a) h(m) —= h(5)

for all background a. As suggested by a comparison of Sections
7.1.4 and 7.1.5, the functions g, & do not necessarily exist if the
assumption of anchoring is removed.

We consider next the effect of the balancing condition (from
the definition in Section 5.5.1)

- pa(d) -+ ppla) =

on the sens1t1v1ty function of a discrimination family.

7.1.6. Theorem. A discrimination family & = {pp|b € I }
is balanced iff its sensitivity function & satisfies

f-tn@] = a

whenever the left member of this equation is defined.

These few results should suffice to familiarize the reader
with the notions of the definition in Section 7.1.1. Further results
along these lines can be found in Falmagne (1982).

7.2. Linear Psychometric Families—Weber’s Law

So far, no assumptions were made regarding the structure of
the set I of backgrounds of a psychometric family {pq|a € I}.
Such properties as parallelism or subtractivity could be discussed
while assuming that the elements a € I were just labels for the
psychometric functions p, in the family. Of particular importance
in this section is the situation in which I is actually a (subset
of a) vector space over the real numbers. For example, a € I
may denote a spectral density function or, in the case of a dis-
crimination family (see Section 5.5.1), a real number repre-
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‘senting a physical intensity. What is critical here is that the
multiplication

Aa

of a real vector a by a positive real number A makes sense.
From an empirical standpoint, the multiplication Aa means
that the intensity of the background has been multiplied by
the factor A. (In the case of a spectral density function, a denotes
a real-valued function and Aa symbolizes the fact that all the
intensities of the background have been multiplied by the same
constant \.) When such a situation arises, properties can be
investigated in the data, which are both strong and of central
interest for psychophysical research.’

7.2.1. Definition. A psychometric family 5 = {pp[b € I}
is called linear iff the index set I is a (subset of a) vector space
over the real numbers.

A special case of a linear psychometric family arises when
the indices of the psychometric function denote physical inten-
sities. This case was referred to in Sectlon 55.1lasa discrimi-
nation family.

We recall that in a psychometric family E = {ps|b € I},

the notation Cj, for any b € I, refers to the domain of the psy-

chometric function pp, which is an open interval (see Section
5.2.1). The psychometric family E will be called positive iff each
interval Cj is positive. (This is a typical case for physical in-
tensities.) Most results in the remainder of this section will be
obtained in the framework of linear, positive psychometric
families.

The definition in Section 7.2.2 will also be useful in con-
nection with Weber’s law and more general forms of this law.

7.2.2. Definition. Let V be a vector space over the real
numbers. Let T be a subset of V. Let f be a real-valued function
on T. Then f is said to be homogeneous of degree B (on T) iff for
any real number \ # 0, whenever a, A\a € T, then

foa) = \Pfa) .

7.2.3. Definition. A linear, positive psychometric family
= {pp|b € I} satisfies Weber’s law iff

 Pa@® = pra(Ax) (68)

whenever both members of Eq. (68) are defined, with 0 < \ <
0, In other words, E satisfies Weber’s law iff the function p,
(@,%) > p,(x) is homogeneous of degree 0. Occasionally, Eq. (68)
will be referred to as Weber’s law.

7.24. Remark. Intwo respects, this definition of Weber’s
law departs from tradition. Weber’s law is usually stated in the
special case in which the backgrounds are real numbers. For
example, in the context of auditory detection of a stimulus
embedded in noise, Weber’s law would imply that the probability
of a correct detection would not vary when both the stimulus
and the noise are increased in intensity by the same number
| of decibels. We believe, however, that this prediction would
| apply for a fairly large set of spectral density functions specifying
| - the noise. Such an assumption is made explicit in Section 7.2.3.
| - Another difference is that Weber’s law is most often expressed
| in terms of the Weber functions A,. The equivalence is made
| clear in the theorem in Section 7.2.6. We have two reasons for

_—-———
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adopting Eq. (68) as the defining condition of Weber’s law, rather
than the more customary form

A,n.()\a) = )\-A‘rr(a) .

One is that Eq. (68) is more general; this equation makes sense
in situations in which the Weber functions are not always defined.
(The Weber function A, was defined in Section 7.1.1 from the
sengsitivity function £ 5. There may be cases in which £ 5 is not
obtainable.) Another is to stress the fact that in view of the
binomial variability of the relative frequencies providing the
basic data for Eq. (68), it is more readily amenable to statistical
testing. In practice, however, evaluations of Weber’s law are
mostly based on investigating the empirical behavior of the
Weber functions.

Some strengthening of our conditions will be useful for this
and later results.

7.2.5. Definition. A linear psychometric family = =
{p»|b € I}is called solvable iff for all @ € I and all x € C,, the
equatlon .

pxa(ux) = Ppq(x)

is solvable in p for every \ and is solvable in \ for every p. We
say that E has a Weberian domain iff for any A > 0, p\o(A\x) is
defined whenever p,(x) is defined.

These strengthenings of our assumptions will occasionally
be convenient but are hardly innocuous. The reader is invited
to reflect on the empirical impact of these two conditions. Both
of them practically entail that neither of the two physical do-
mains spanned by the function p is bounded, obviously not a
realistic assumption. Neither of these conditions is essential,
but they certainly render our developments much easier. In
any event, they will be used sparingly in the sequel.

In the theorem in Section 7.2.6, a central result of this
section, we consider an important generalization of Weber’s
law, symbolized by the equation

pka(Aﬁx) = Pa(x).:

and we establish the equivalence between this equation and
some constraints on sensitivity function and Weber function
data. We show that our definition of Weber’s law is equivalent
to the traditional one. The interpretation of the exponent B is

’ discussed in Section 7.3.1.

7.2.6. Theorem. LetE = {py|b€I}bea hnear positive,
solvable psychometric family, with sensitivity function £ Then
the following three conditions are equivalent:

1. Every_ sensitivity function &, is homogeneous of degree
B>0:

Exha) = )\Bgﬂ(a) .

2. There is a constant g > 0 such that

2raPr) = pu(@ ,

whenever both members of this equation are defined, with
0<\A<w,

3. There exists a function F' and a constant 8 > 0 such that

Pa@) = Flaix"™) .




PSYCHOPHYSICAL MEASUREMENT AND THEORY

Moreover, if & is anchored at .5, then each condition 1-3 is
equivalent to the assumptions that any Weber function A; is
homogeneous of degree B > 0. In particular, Weber’s law holds
iff

Ar(ha) =

A Ag(a) (69)

that is, the Weber functions A, are homogeneous of degree 1.
Proof. (1) implies (2). Suppose that py(x) =. 7, pra\Px) =
7', Then &,(a) = x, and successively

tvha) = Mz = Nea) = &0 ,

since E is solvable, and w = n’ follows by the strict monotonicity
of £;(\a) in the variable m.

(2) implies (3) Setting Ay = K, a constant, we obtain \ =

(K/x)'8, yielding

Pa@ = praP®) = prmupE) = Fax™ ,

* with the function F defined by F(s) = }JKUBS(K ). In fact, (2) and

(3) are equivalent since obviously o
- F(alx'™® = Final(\Px)'e

(3) implies (1).
this is clear since, with ~~ =

m = pa®®) = p@
we have

g0 = A\ = AP .
If the Weber function is defined, it follows by substitution that
the sensitivity functions are homogeneous of degree g > 0 iff
the Weber functions A also satisfy this condition. Finally, the
equivalence between Weber’s law and Eq. (69) is obtained from
the case B = 1 of the equivalence between (1) and (2). ]

7.3. Remarks
We shall see that the homogeneity equation

E\a) = e (a)

plays an important role in the analysis of data, as a substitute
to Weber’s law. (This equation is often referred to as the near-
miss to Weber’s Law, cf. McGill & Goldberg, 1968.) The inter-
pretation of the exponent B in this equation must be considered
carefully. There seems to be a tendency in the psychophysical
community to take this exponent as representing a critical aspect
of the neural coding of physical intensity. For a number of rea-
sons, this position is open to challenge. One difficulty is indicated
below. Suppose that E is a discrimination family satisfying this
condition, together with £5(a) = a, for all intensities a. This
implies that the Weber functions are also homogeneous of degree

B:

A0a) = \PAL(a) . (70)

In view of the equivalence between (2) and (3), o
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But we have also

I

As(N@) = £:0a) — £500a) = APe (@) ~ \a

MNla@ + a - a,
which together with Eq. (70) implies
APA(@) = \PlAL@) + a] — Aa,
that is,r
alP =N = 0.
Since @ > 0, we must conclude that § = 1. Thus in the case of

a discrimination family satisfying p,(a) = .5, the assumption
that the Weber functions are homogeneous of degree g implies

- 'in fact Weber’s law..

The crux of the argumeﬁt here is that the condition
pa(a)=5 . o
or the more 'gez}érél balance condition
Pa(d) + ppla) = 1,

which implies it, results from a symmetry of the experimental
paradigm which is not necessarily of a sensory nature. We shall
go back to this point later in this section.

A special case of the theorem in Section 7.2.6 is of historical
interest. If Weber’s law holds, then 8 = 1 in Eq. (70) and by
virtue of Conditien (3) in Section 7.2.6, the choice probabilities
take the form

pa(x) = F(a/x) = F[g_(IOg x - log a)] ,
yielding

pPax) = Glogx — loga) , (71)
with G(s) = F(e™®), a strictly increasing, continuous function.
Equation (71) has sometimes been given the interpretation that
“the sensation grows as the logarithm of the excitation,” a
statement which has been named Fechner’s law. Such inter-
pretation has been at the center of a long controversy and should
not be dismissed or accepted casually. It relies in part on some
empirical evidence, Weber’s law. (How well Weber’s law is sup-
ported by the data is considered in Section 7.4.) It also relies
on the somewhat arbitrary choice of a particular mathematical
representation of such data, namely Eq. (7 1). Finally, it involves
using a philosophically charged label such as “sensation.” Each
of these factors has contributed its share to the polemical aspects
of the debate, a brief account of which can be found in a later
section of this chapter (see Section 10.9).

7.4. Examination of the Data '

As an empirical prediction, Weber’s law holds reasonably well
for sensory continua such as loudness discrimination of Gaussian
noises, loudness discrimination of pure tones, lifted weights,
and visual brightness. As mentioned in Section 7.3, the analysis
of the data is sometimes based on the just-noticeable-difference
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(jnd) function, which can be computed from the sensitivity
functions by the equation

jnd(@) = [E75(a) = Ea25(@))2 .
The experimenter checks whether the ratio
jnd(a)/a (72)

remains constant, while a varies on a chosen subset of the phys-
ical scale. (Thus a takes values in the positive reals.) We have
elected to base our developments on the sensitivity function,
rather than on the jnd function. For various reasons, which the
reader will discover gradually, the sensitivity function is the
appropriate notion to use as the cornerstone of the theory. Notice
in this connection that Eq. (72) is constant if the functions

a — ta)a ;

are constant. More generally, the jnd function is homogeneous -

of degree B if the sensitivity functions ¢, are homogeneous of
degree B. It is clear that the reverse implication does not nec-
essarily hold. Any one of the psychophysical methods discussed
in Section 6 can be employed for the empirical determination
of the sensitivity function. Even though these methods differ
drastically from an experimental viewpoint, many believe that
the overall pattern of empirical results is not seriously affected
by which method has been used. This opinion is not universal,
however, and we shall be cautious in this respect. (Luce and
Green, 1974a, for example, analyze the data of six studies of
the Weber fraction A,(a)/a for tone intensities, with considerable
discrepancy in the results.)

The experimental evidence favoring Weber’s law is ex-
emplified in Figure 1.14. For some sensory continua, the Weber
fraction Ar(a)/a, with a € Re., (the set of positive real numbers),
remains indeed constant over a substantial portion of the domain
(2-3 log units, for audition and vision), thus supporting Weber’s
law. A more comprehensive description of the data would em-
phasize the fact that the Weber fraction is initially decreasing.
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In fact, for audition and smell, it never increases. Finally, a
conjecture which is validated by the data for all five continua
in Figure 1.14 is that the Weber fraction is “convex” (i.e., it
never “curves downward”). A precise definition of the convexity
of a function is given in the definition in Section 7.4.1. The
reader should remember these aspects of the data, which will
lead to a theoretical analysis in Section 7.5.

The initial decrease of the Weber fraction is sometimes
attributed to an absolute threshold of perception, while the late
rise of the fraction in some cases is attributed to the sensory
mechanisms reaching the limit of their operational range.
However legitimate such interpretations might be, they do not
necessarily justify an analysis of an empirical Weber fraction
into fragments, each requiring a separate model. In this section,
only models attempting a comprehensive description of the data
are considered.

7.4.1. Definition. Let fbe a real-valued function defined
on a real interval (s,?). Then f is called convex iff

S+ (L= Nyl S M@+ @ = M)

whenever s <x <t,s <y <t and 0 <\ < 1. The function fis
strictly convex iff the above inequality is strict. If —fis convex
(respectively, strictly convex), then fis said to be concave (re-
spectively, strictly concave).

Any linear function is both convex and concave. Examples

. of strictly convex functions are x — e*, x — %2 for —0 < x <

. The following results are easy consequences of the definition:
any convex function is continuous; if g is an increasing, convex
function and f is convex, then the composition s — g[ f(s)] is
convex (in particular, ef is convex, in fact, strictly convex); if
the second derivative f” of f exists, then fis convex iff f” = 0.
A geometrical interpretation of convexity is that any segment
of a straight line joining two points of the graph of a convex
function f lies above or on the graph of f (see Figure 1.15).

It is clear that the Weber fractions depicted in Figure 1.14
are convex in the sense of the definition in Section 7.3.1. A case

can be made that these functions are actually strictly convex.

NORMAL I ZED WEBER FRACTION (A(a)/a)

®=Vision: mu=605

® = Audition: ~ =1000

4 =Cutaneous pressure
v=Smell: India rubber
#=Taste: NaCl solution

SENSATION LEVEL (decibels)
Figure 1.14. Weber fraction data, for various sensory continua. The abscissa is in decibels, sensation
level. The Weber fractions have been normalized so as to be unity at threshold. (From R. D. Luce, R. R.
Bush, & E. Galanter (Eds.), Hgndbook of mathematical psychology. Copyright 1963 by John Wiley &

Sons, Inc. Reprinted with permission.)
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Figure 1.15.  Geometrical interpretation of the convexity of a real valued
function f: Ax + (1 — Nyl < N f(X) + (1 = Nf(y).

The failures of Weber’s law illustrated in Figure 1.14 prompted
psychophysicists to propose various alternatives. .

7.5. Alternatives to Weber’s Law

One generalization of Weber’s law has been encountered earlier
which, in terms of the sensitivity function, is symbolized by
the equation : : ,

txa) = NP (73)
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for 0 < N\ < » and with B > 0, a constant independent of .
When the Weber function is defined, this is equivalent to

A-0a) = \PAL(a) . (74)
This prediction, which is often referred to as the near-miss to
Weber’s law (McGill & Goldberg, 1968), has been supported
experimentally in some situations (Jesteadt, Wier, & Green,
1977; see Figure 1.16). Notice that the data in Figure 1.16

require the exponent 8 in Eq. (74) to be smaller than 1; the
Weber fraction

A (\a)a = A\P-1A_ ()

must be decreasing. It cannot be assumed, however, that the
near-miss to Weber’s law holds generally, across experimental
paradigms and sensory continua. For one thing, this law would
fail to explain most of the data displayed in Figure 1.13. For
another, it was pointed out earlier (see Section 7.3) that in the
case where B # 1, Eqs. (73) and (74) necessarily imply the
existence of some asymmetry in the paradigm: the psychometric.
functions cannot satisfy the condition, p,(a) = .5. This condition,
however, is sometimes inherent to the experimental paradigm
(e.g., in a situation in visual psychophysics, where the stimuli
to be compared are two spots of light symmetrically positioned

Paitg

NI

LOGARITHM OF THE WEBER FRACTION
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Figure 1.16. Values of the logarithm of the Weber fraction, averaged across subjects and replications,
for various intensities and frequencies of pure tones. The abscissa is in decibels, sensation level. The
vertical bars indicate = 3 standard errors. A bar is omitted when its size is exceeded by that of the symbol.
The same linear function has been fitted to the eight sets of data. (From W. Jesteadt, C. C. Wier, & D. M.
Green, Intensity discrimination as a function of frequency, Journal of the Acoustical Society of America,

1977, 61. Reprinted with permission.)
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with respect to a fixation point). It is also possible to ensure
that this condition holds by a “normalization” of the data. As
argued in Section 5.7, we are certainly not advocating such
tampering with the data. The fact is, however, that such nor-
malizations are fairly frequent. In such cases, it is clear that
Eq. (74) describes the data only if § = 1 (that is, Weber’s law
holds) or, possibly, if B is a function of . This, however, is not
what is intended by the near-miss to Weber’s law, at least as
we understand it.

In any event, the above discussion suggests a further gen-
eralization of Weber’s law, which is embodied in the equation

Exha) = ™ @), (75)

in which B is a function of = satisfying 8(.5) = 1. (This ensures
Po(a) = .5.) The consequences of that assumption deserve some
attention. It can be shown in particular that if the balancing
condition is satisfied, then the function § must satisfy

BmBl — w) = 1. | (76)

As far as we know, this condition or, even more generally, the
effect of the choice probability m on the estimated value of the
exponent B in Eq. (75) has never been investigated from an
experimental viewpoint. Other substitutes to Weber’s law are
of interest. As in the case of the near-miss to Weber’s law, each
of the examples below is a special case of the representation

En(@ = ulgl@ + h(m],
as can be checked without difficulty.

Let the sensitivity function £ of a discrimination family be
defined by the equation

t.00a) = MP[e(@) - K] + K, 77

where K is a positive constant. In the style of the theorem in
Section 7.2.6, this is equivalent to the representation

pax) = Fla(x — K)"# (78)

for the choice probabilities (we assume x > K). Provided that
B > 1 and &4(a) > K, the function

A = Ex(Na)A

is convex on the positive real numbers, with a minimum at the
point

= [KIB — D(Eqla) — K)I"® .

Thus the Weber fractions are also convex in the same conditions,
a fact worth noticing in connection with our discussion of the
data displayed in Figure 1.14. It is clear that this model gen-
eralizes the near-miss to Weber’s law. The constant K may be
interpreted as a measure of a threshold value.

In the case where E is a discrimination family, we also
consider the representation

@) = [h(m) + 5a°17 (79)

for the sensitivity functions, involving a strictly increasing,
continuous function % and three positive constants B, g’, and
3. This leads immediately to the representation
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Pa® = F(P - 8a®) , (80)
with F = A~1, for the choice probabilities. This model has been
discussed by several authors (see, for example, Parker &
Schneider, 1980). It is not consistent with Weber’s law. However,
for appropriately chosen values of the parameters, it would
predict the main features (monotonicity, convexity) of data such
as that pictured in Figure 1.14.

The late increase of the Weber fraction is often interpreted
as resulting from a saturation of the sensory or neuronal mech-
anisms. In turn, this leads to the postulate that the sensory
scale, for example, the function u in Eq. (65), is bounded. An
example along these lines is given below. It is assumed that
the sensitivity functions satisfy the equation

£n0) = K{A@f@/l - A@f@®, (8D
with
f@) = & + K,

and B, B', K, K’ > 0, constants. Using simple algebra, we obtain
for the response probabilities the form
pa® = GPEP + KBf@],

or equivalently, as a difference model,

Palx) = F{ln[xB/(xB + KB - Inf@)},
with F(ln s) = G(s). Thus
ux) = InlBd + K) < 0 .

Again, such a model is capable of accommodating typical Weber
fraction data (cf. Alpern, Rushton, & Tori, 1970a, 1970b, 1970c).

Other models have been proposed, which differ only in details
from one or the other of those discussed in this section. They
are not reviewed here, Our purpose in this subsection is not to
single out one particular mathematical expression as the ap-
propriate model for the sensitivity function. In fact, it is quite
conceivable that the choice of a suitable model (that would
provide a good fit to the data, from a statistical viewpoint) may
depend not only on the sensory continuum envisaged but also
on rather specific details of the experimental paradigm. Ac-
cordingly, an effort has been made by some psychophysicists
to focus the theoretical developments on aspects of the data
that may perhaps be robust to minor changes of the experimental
procedure (cf. Falmagne, 1977; Iverson, 1983). The results are
too specialized to be included here.

7.6. Key References

Weber fraction data are compiled, for example, in Boring,
Langfeld, and Weld (1948, p. 268) and Holway and Pratt (1936,
p. 337) for various sensory continua. Luce and Green (1974a;
see also Green, 1978, p. 257) review a number of experimental
studies of the discrimination of the difference in the amplitudes
of a sinusoidal tone. The data are plotted in terms of the Weber
fraction. See also the Chapters in Sections II and III of this
handbook. In a recent monograph, Laming (1983) gave a the-
oretical analysis of Weber functions, based on a large collection
of data. (Unfortunately, this work came to our attention in the
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final stage of the writing of this chapter, and no discussion of
its content could be included.)

8. SIGNAL DETECTION THEORY

Any psychophysical task has cognitive components, which covers
a variety of factors, such as response bias, guessing strategy,
motivation, and so on. Thus far in our approach to psychophysical
theory, we have implicitly assumed that such factors could be
bypassed or controlled by careful experimental design. In fact,
we have ignored them. This position is not without its weak-
nesses. An example will make this clear.

Consider a task in which a subject is required to detect a
stimulus embedded in a noisy background. On 50% of the trials
the noise is presented alone. Across conditions, the intensity of
the stimulus is varied, providing the basic data for a psychometric
function. Two kinds of error can be made in such a task, which
. is often referred to as the yes-no paradigm: (1) the subject may:.

fail to report a stimulus presented (this is called a miss) and
-(2) the subject may report a detection on a noise-alone trial
(this is called a false alarm, or a false positive). A correct detection
. will be referred to as a hit. The remaining case is a correct
rejection.

A guessing strategy is available to the subject in this sit-
uation: when not quite sure that the stimulus was presented
on a trial, the subject may nevertheless claim to have detected

'it. Such strategy would succeed in a situation in which a miss
- is much more heavily penalized than a false alarm. For example,
suppose that the system of rewards and penalties is the one
displayed in Table 1.2, where the numbers represent monetary
values. Thus each correct detection brings 3 monetary units
(ms): each miss costs 3 ws, and so on. Such a table is often
referred to as a payoff matrix. It is reasonable to suppose that
the particular payoff matrix shown above would favor a guessing
strategy over a conservative one. (For instance, if the subject
reports a detection on every trial, whether or not the stimulus
was presented, the average gain per trial is 2 ps, while the

opposite strategy of responding “no detection” on every trial”

results in an average gain of 0 ps.) Obviously, another payoff
matrix may evoke a completely different strategy. A naive ex-
perimenter may be tempted to believe that if a constant payoff
matrix is used across conditions varying in stimulus intensity,
the subject strategy will not change, a fact which can be tested
by checking that the proportion of false alarms remains constant.
Unfortunately, a subject’s interpretation of a payoff matrix is
largely personal, and this interpretation may change drastically

from one condition to another. Needless to say, these remarks -

also apply when no explicit payoff matrix is used, but the subject
strategy is induced by verbal instructions. The problem at hand
is thus that of disentangling the purely sensory aspects of the
task from those resulting from the subject’s strategy.

Table 1.2. System of Rewards and Penalties in Which
Numbers Represent Monetary Values

Responses
Stimulus Yes No
Yes 3 -3
Hit Miss
No -1 3
False Alarm Correct Rejection
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This section is devoted to a particular solution to this prob-
lem, which is usually discussed under the label signal detection
theory, even though its applicability extends far beyond the
detection of signals. OQur presentation is far from exhaustive.
It should however be sufficient to acquaint the reader with the
most commonly used notions and techniques of signal detection
theory. For an extensive treatment of this topic, see Green and
Swets (1974).

8.1. Receiver Operating Characteristic (ROC)
Graphs and Curves

For simplicity, we shall ignore statistical variability for the
moment and identify response frequencies and probabilities.

Let us suppose that for a given stimulus intensity, three
payoff matrices have been used, labeled 6, 83, and 83, inducing
three different guessing strategies. Let s and n denote the stim-
ulus and the noise, respectively. Let ps(8;) and p,(8),i = 1, 2,
3, be the hit and false alarm probabilities. For concreteness,
some hypothetical data follow:

pn(ei) . ps(ez)

01 10 35
82 40 75
03 65 90

A useful graphic representation of such data is often used by -
psychophysicists, in which each pair of response probabilities
[pn(87),ps(8)] is pictured as a point in the unit square (see Figure
1.17, but ignore the three curves for the moment). There is a
consensus in psychophysics that by appropriately choosing the
payoff matrix, most types of strategies can be induced in the
subject, ranging from the most conservative ones (if the slightest
doubt arises, say “no detection”) to the most daring guessing.
(High false alarm rates, however, are exceptional.) It is also
reasonable to suppose that any change in a payoff matrix that
would increase the probability of a false alarm would also in-
crease (continuously) the probability of a hit. (This assumption
is supported by much data.) In other words, this means: that
the three points in Figure 1.17 belong to the graph of a continuous
function p mapping the interval [0,1] into itself. We have thus

P[Pn(e)] = Ps(e)‘a

in which 0 ranges in a large set of payoff matrices ©.

8.1.1. Definition. Let © be a collection of payoff matrices;
for each 6 € O, let p,(0) and p,(8) be the probabilities of a false
alarm and of a hit, respectively. Then the set of points

{[pn(e),ps(e)]le € 0},

in the unit square is called a receiver operating characteristic
(ROC) graph (of (n,s)). When an ROC graph is the graph of a
continuous function p mapping the closed interval [0,1] into
itself, it will be called an ROC curve. The function p will be
referred to as the ROC function.

Three examples of ROC curves are displayed in Figure
1.17, in which the functions are increasing. It is reasonable to
suppose that any change in a payoff matrix that would increase
the probability of a false alarm would also increase (or at least
not decrease) the probability of a hit. This assumption is sup-
ported by much data. Incidentally, the acronym ROC is borrowed
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pn(e),

Figure 1.17. Three ROC curves and one ROC graph containing three points.

from signal detection theory in telecommunication (references
are given in Section 8.11). ‘

The basic idea of this representation is that the strategy
is varying along the ROC curves, while the discriminability is
varying across the ROC curves. In this framework, the three

.- ROC curves p, p1, and pg in Figure 1.17 correspond to increasingly

detectable stimuli. A particularly illuminating interpretation
of the information captured by an ROC curve is offered by the
model described in Section 8.2.

8.2. A Random Variable Model for ROC Curves

Suppose that to each stimulus s corresponds a random variable
U, representing the activation evoked by that stimulus in some
critical neural location. Similarly, let U, be the activation ran-

dom variable corresponding to the noise. The random variables. .

U; and U, are assumed to be independent. As before, let ps(6)
and p,(8) be the hit and false alarm probabilities, corresponding

- to a payoff matrix 6. We assume that on every trial (whether

or not the stimulus is presented) a positive response occurs if
the momentary (or sample) value of U or U, exceeds a criterion
g, the value of which is determined by the payoff matrix 6. In
symbols: ; '

Ps(8) = Prob{U, > Ag} (82

and

pn(8) = Prob{U, > \g} . _ (83)
Such a model is in the spirit of the random utility, or Thurstone-
type models discussed earlier in this chapter (see Sections 4.2

to 4.8). In the context of ROC curves, it.entails a few interesting
results. Suppose that '

Pn(8) > pn(8")

for some payoff matrices 6 and '. Using, successively, Egs. (83)
and (82), this implies

A < Ay,

THEORY AND METHODS
yielding
Ds(8) = ps(8") .

This means that the ROC function p,(8) — ps(6) must be non-
decreasing, a prediction which, as indicated earlier, is consistent
with much data. Another basic result is that the area under
the ROC curve (the integral of the ROC function from 0 to 1)
is equal to the probability that U, exceeds Uy:

Prob{U, > U,} .

The argument is spelled out below. Using the fact that the
random variables in question are independent, we have

Prob{U,>U,} = f * Prob{U,>\|U, = \}dProb{U, <\}

= f * Prob{U,>\}dProb{U,<\}. 84)

According to this model, the response probabilities p,(8) =
Prob{U; < \g} and p,(8) = Prob{U,, < \g} depend on the payoff
matrix 0 only through the number \g. There is thus no ambiguity
in writing ps(\) for ps(8) and p,(\) for p,(8), with A = Ag. Con-
sequently, using p to denote the ROC function, Eq. (84) yields

Prob{U, > U,}

F P VAL = pa(V)]

- f * olpa (W ]1dpa (V)

—x

f ~ olpa(M1dpa (V)
Changing variables, from X to p,(\) = p, we obtain finally

Prob{U, > U,} = f “o(p) dp | (85)
R T : 0,

as asserted.

In the framework of this model, the area below the ROC
curve appears as a reasonable measure of the detectability of
the stimulus. In practice, it will often be the case that only a
few points of the ROC curve have been determined experimen-
tally.‘The evaluation of the area below the ROC curve may
thus be prone to serious errors. One way out of this difficulty
is to make specific assumptions concerning the distributions of
the random variables U, and U,,. Such assumptions would de-

- termine (up to the values of a couple of parameters) the exact

analytical form of the ROC curve. If the assumptions are valid,
a few suitably placed points of the ROC curve will suffice to
estimate the parameters of the ROC curve experimentally, and
the area under the ROC curve can then be evaluated by inte-
gration.

8.3. Remarks:

One may be suspicious of such a method and object that the
estimated value of the area will be model bound. This objection
is not as strong as it may appear. Notice in this connection that
Eq. (85) was.obtained without making any assumption regarding
the distribution of the random variables U, and U,,. In fact, the
shape of these distributions is arbitrary. For instance, let us
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assume that Egs. (82), (83), and (85) hold for some random
variables Us, U, For any strictly increasing continuous function
g, we have

ps(e) = Prob{g(U,) > g(\g)} = Prob{U; > A\§}

and

pn(8) = Prob{g(U,) > g\g} = Prob{U, > \j},
with U5 = g(Us) and U}, = g(U,) and My = g(\g). It is clear
that the representation of the response probabilities provided
by the random variables U and U, is equivalent to that ob-
tained with U; and U,,. In particular, the predicted ROC curve
is not changed by the transformation.

Later on in this section, we will make precise hypotheses
regarding the distributions of the random variables entering
into Egs. (82), (83), and (85). When evaluating these hypotheses,
the reader should keep in mind the above remark pointing out
the relative arbitrariness of the distributions of U, and U,,.

It must be realized that the random variable model discussed
here does not necessarily describe a rational strategy. Depending
on how optimality is defined and on more specific assumptions
on the random variables U, and U, the decision rule embodied
in Egs. (82) and (83) may or may not be optimal.

To illustrate this point, let 7 be the probability of a stimulus
trial and suppose that for some criterion value A,

Prob{U, > N\ }1 — @) > Prob{U; > N}w . (86)
A special case of this assumption is pictured in Figure 1.18,
which is by no means unrealistic. Nevertheless, it leads to a

somewhat undesirable conclusion. Namely, when reacting to

an activation value exceeding \,, the subject reports a detection,
even though the likelihood of a stimulus trial is then smaller
than that of a noise trial. Such a conclusion easily follows from
the above inequality. Indeed, denoting by S, as before, the stim-

ulation at a given trial (thus S = sor S = n), Eq. (86) holds if

and only if (iff) successively

Prob{Ug > \,|S = n}Prob{S n} >

Prob{Us > X\,|S s}Prob{S = s}

iff
Prob{S = n, Ug > A}/Prob{Us > A,} >

Prob{S = s, Us > \,}/Prob{Us > X}

DENSITY

Figure 1.18. Two normal densities of U and U, for which Eq. (86) holds,
withm =1 - o = 5.

In words, this last inequality means that the conditional prob-
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iff
‘Prob{S =

n|Us > A} > Prob{S = s|Us > \,} .

ability of a noise trial, when observing the event Ug > \,, is
greater than that of a stimulus trial. However, according to the
model, the subject will report a detection. A definition of opt:
mality suggested by that argument would require that such
situation does not arise; that is,

Prob{Us > A = Prob{U, > A1 - =),

for all criterion values \. This definition does not take into
account the monetary gains or losses resulting from the strategy.
Other definitions of optimality are conceivable, one of which
will be considered shortly.

8.4. Axioms of the Random Variable Model

For convenient reference, the assumptions of the model are
summarized in the following three axioms.

Axiom SD1. To each stimulus s and noise n correspond inde-
pendent random variables, respectively, U; and U,. The pre-
sentation of s evokes a sample value of the random variable
U,. Similarly, the presentation of n evokes a sample value of
the random variable U,.

Axiom SD2. For any payoff matrix 6 € O, the hit and false
alarm probabilities satisfy the equation for S = s,n,

ps(® = Prob{Ug > \g} .
Occasionally, we shall also assume:
Axiom SD3. The random variables U and U, have densities

fiand fo, with f, > 0 .

8.5. ROC Analysis and Likelihood Radio

The slope of the ROC curve is susceptible to an interesting
interpretation. Let us assume that Axioms SD1-SD3 hold. Thus
the random variables U and U, have densities f; and f,, re- .
spectively, with f,, > 0. Writing, as before, p for the ROC function,
we have successively

dProb{U, > Ao}
dProb{U, > A}

dplpn(8))/ dpn(6)

dll - Prob{U, < Ag}]
d[l - Prob{U, = Ao}l

—fs (}\9)
"fn ()\6)

_ () ,
T falhg) @D

In other terms, the slope of the ROC curve evaluated at .the
point p,(8) is equal to the ratio of the densities at that point.
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Notice for further reference the monotonicity relation between
the ratio fi(Ag)/f(\g) and the slope of the ROC curve. Since as
a consequence of Eq. (83), Ay decreases as p,(8) increases, a

decrease in the slope of the ROC function in some interval-

corresponds to an increase in the ratio f;(\g)/f»(Xg), in the cor-
responding interval of the variable \y. Typical data strongly
support the assumption of concave ROC functions—that is,
ROC functions with nonincreasing slopes. This suggests that
the ratio f;(\)/f,(\) should be an increasing function of . We
shall go back to this point.

In statistical decision theory, a ratio of densities, such as
the one appearing in Eq. (87), is often called a likelihood ratio.
In fact, with a slight strengthening of our assumptions, the
random variable model discussed here is consistent with a fun-
damental rule used in statistical decision theory. To the Axioms
SD1-SD3, we shall add the following:

Axiom SD4. The likelihood ratio
l(:{c) = fs(x)/fn‘(x)

is a strictly increasing functlon of x.

cated above: the slope of the ROC curve must be strictly de-
‘creasing. (That is, in terms of the definition in Section 7.4.1,
the ROC function must be strictly concave.) Another consequence
is of interest, since it suggests a drastically different interpre-
tation of the model. By Axiom SD4, the likelihood function [ is

_ strictly increasing, which implies (see Section 8.3)

Ps(8)

Prob{U, > A}

I

Prob{l(U,) > I(\g)}

Prob{ £,(UsJfa(Us) > 109} -

" By a similar argument, we also dbtain

Pa(®) = Prob{£(UnVfa(Uy) > INg)} -

The last two equations profnpt a domparison of the subject’s i

strategy with that of a statistician engaged in a decision task
and applying an optimal decision procedure. The successive
steps of the procedure are reviewed in Figure 1.19, which is
self-explanatory. The statistician receiving a signal of value x

.must decide in some optimal fashion whether this signal is a

sample of U; or a sample of U,,. We will suppose that the decision
procedure maximizes the expected value of the gain, as deter-
mined by the payoff matrix 6. Let y(8)ss and y(8),,, be the gains
resulting from a hit and a correct rejection, respectively; let
¥(0),s and ¥(8)s, be the costs attached to a false alarm and a
miss. Let 7 be the probability that a stimulus is presented on
any trial. The expected value G(8,m) of the gain is easily computed
from the tree diagram in Figure 1.20, which displays the possible
paths and their probabilities. We obtain:

GO,m) = m{ps®yss(8) — [1 — ps(0))yns(0)}

+ A = M1 = pr®l¥nn(8) — pr(B)ysn (0D},

THEORY AND METHODS

Stimulus s
is presented

A

Evocation of a sample
value x of the random
variable Ug

!

Computation of the likelihood ratio
2x) = ts(x)/fa(x)

l .

Yes No

L) > 2(xe)?

\ A

Report ] Report no
detection detection

: .‘-\1 - Figure 1.19.  Successive stages of the decision process elicited by the pre-
One implication of assumptions SD1-SD4 has been indi-

sentation of the stimulus, in case of the likelihood ratio model. The diagram
is identical in the case of the presentation of the noise n, except that U; is
replaced by U,,.

which we rewrite

. GO, = wlys(® + vas(®ps(®) — pa(8)Be] , (88)

with

Be = (1 — WYsn®) + Ynn(®)/7lyss(® + vrs(®)] . (89)

Us; ©

1-p,(6)

-Bns (8
-Tsn ()

Pn (©)

1-p, (6

Bnn ()

Figure 1.20. Tree diagram of the possible paths in the yes-no paradigm
with their probabilities and thetr outcomes. See text for the definition of
symbols.
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The statistician decision procedure concerns the response prob-
abilities py(8) and pn(6), which can be manipulated via the
quantity Ag in the equations

ps(8) = Prob{Ug > \g}
and
pr(8) = Prob{U, > Ag} .

Since m[yss(8) + vns(8)]is constant, a value of \y maximizes the
expected gains G(8,w) in Eq. (88) iff it maximizes

Prob{U; > Ao} — Prob{U, > \g}By .
It follows that the required value of Ay must satisfy

fs(g) — fa\g)Bg = O,

thatis

0 _

e = o T B

We conclude that the subject strategy is optimal in the sense

of a maximization of the expected gain if the response proba-

bilities satisfy the two equations

ps(8) = Prob{U, > ["1(By)}

pn(8) = Prob{U, > l"l(Be)} ’
with By defined by Eq. (89).

If precise assumptions are made concerning the distributions
of the random variables U and U, it can then be checked
whether the subject’s strategy is optimal in the above sense,
by evaluating the fit of the above equation to the data. This
comparison of the subject’s strategy with that of a statistician
engaged in a decision-making task was discussed in some detail,
since it is an inherent part of the common wisdom in this field.
It must be clear, however, that the analysis of the data in terms
of ROC curves is a useful device to disentangle sensory from
cognitive components of the task, whether or not the subject’s
strategy happens to be optimal.

This analysis is also valuable, or at least relevant, in cases
of experimental procedures or paradigms somewhat different
from those envisaged so far in this section. Two examples are
discussed in Sections 8.6 and 8.7.

8.6. ROC Analysis and the Forced-Choice Paradigm

In the two-alternative forced-choice (2AFC) paradigm, the sub-
ject’s task is to decide on every trial which of two locations, or
two intervals of time, contains the stimulus. Even though the
effect on performance of guessing strategies is minimized in
such paradigms, an ROC analysis will be useful. In particular,
the connections between the predictions in the yes-no and the
2AFC paradigms are of interest.

For concreteness, we consider as before an auditory detection
situation. On every trial, the subject is presented with two
successive intervals of time, of equal duration, one of which
containing the stimulus (a click, say) embedded in noise, the
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other containing only the noise. There are thus two types of
trials, depending on whether the stimulus was in the first or
the second interval. We shall denote these two cases by (s,n)
and (n,s), respectively. Let p; , and pg 5 be the corresponding
probabilities of a correct response, and let pg 5, and p; s be the
error probabilities. By design, we must have

Pi,sn + P2,sn = 1

and

Pins + P2ns = 1,

since the subject is forced to choose one of the two intervals on
every trial. For the time being, let us suppose that the two
probabilities of a correct response are equal,

Pisn = D2,ns -
This assumption, which is not always realistic and can be rejected
for some data, will be relaxed in a moment. From a purely
sensory viewpoint, the 2AFC paradigm differs but little from
the yes-no paradigm, and it makes sense to apply the same

‘theoretical analysis. Let us assume that

DPi,sn = Prob{U; > U,} = P2.ns » - (90)
in which U, and U, are independent random variables with
the same interpretations as in Section 8.2. If we assume that
U, and U, are cqntinuo_us, we have

Prob{U; = U,} = 0,
which implies for the probabilities of errors,

P2,sn = 1 - Pisn = Prob{U, > U,} = Pi,ns -
The idea is that each of the two intervals provides a sample of
one of the random variables U; and U, and the subject’s response
is based on a comparison of these samples. In the case of an
(s,n) trial, for instance, if x; and x5 are sample values of U and
U, respectively, the subject will choose interval 1 (the correct
one) if x; > xa.

Notice that, under Axiom SD4, we have

Prob{U, > Uu} = Prob{fi(UsVfa(Uy) > fi(Up)ifalUp} .

This means that the above interpretation of the subject’s decision
process as based on a comparison of samples of U; and U, is
equivalent to another, in which the subject would behave as a
statistician and compare likelihood ratios.

- In any event, the conclusion to be derived from Egs. (85)
and (90) is that the probability of a correct response in the
2AFC paradigm, under the assumption that p; s, = p2ns, is
equal to the area under the ROC curve in the corresponding
yes-no paradigm. ‘ :

As indicated, the assumption that pi s, = p2s, may be
unrealistic. We shall briefly examine here the possibility that
the subjeet may be biased toward one of the two intervals. A
systematic way of inducing such bias would be to assign different
probabilities to the events (s,n) and (n,s). Our random variable
model for the 2AFC paradigm can be generalized as follows.
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Let © be a set of bias-inducing conditions; let py s»(8) and p1 »s(6)
be the two probabilities of choosing the first interval, in condition
8, for the two cases (s,n) and (n,s). We assume that the effect of
a given condition 8 € © is to transform the distribution of the
random variable corresponding to the second interval. Specif-
ically, we assume that the following two equations hold:

P1,sn(8) = Prob{U; > g4(U,)}
Pl,ns(9) = PTOb{Un > gﬂ(Us)} s
where gp is a strictly increasing, continuous function. With

obvious notation, the two remmmng probabilities are computed
from the equations

pl,sn(e) + p2,sn(e) 1,

P, ns(0) + P2, as® =1,

wh1ch are inherent to the 2AFC paradigm. Let us suppose for
a moment that the set of points

[Pi,ns(e)apl,sn(e)] s

generated by varying 6 € ©, is an ROC curve. Under fairly

general properties on the set of transformations {gy|0 € 6}, it.

follows then that this ROC curve must be symmetric with respect
to the negative diagonal of the unit square (see Figure 1.21).
One such property is that if gy is a strictly increasing transfor-
mation, then there must be some condition 6’ € © corresponding
to the “opposite” transformation, gg! = g¢'. Indeed, we have
then

1 — p1,sn(8) = Prob{gy(U,) > U}

Prob{U, > g5(U,)}

Prob{U, > go(Us)}:

= pl,ns(e’) 2

pl,sn

P

1,ns

Figure 1.21. Hypothetical ROC curve symmetric with respect to the negative

diagonal of the unit square, in the 2AFC paradigm. We have p1s(8') =
1 - p1,5n(9).

G=0,..,
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and

pl,sn(el) Prob{U; > ge'(Un)}

Prob{U; > g3}(U,)}

Prob{gs(Us) > U,}

=1 = p1,as(8) .
The two equations,
1 = p1,sa(0) = p1,ns(0") ,
P1sn(0) = 1 — P1,ns(8)

express the symmetry property of the ROC curve mentioned

~above. This situation is illustrated in Figure 1.21.

8.7. -ROC Analysis of Rating-Scale Data

In the same experimental situation, consider a procedure in
which, rather than giving a yes-no detection response on every
trial, the subject is required to quantify the certainty that the
stimulus was presented. Suppose, for example, that a six-category
rating scale is used, ranging from 0 (certainty that the stimulus
was not presented) to 5 (certainty that the stimulus was pre-
sented). Some hypothetical but plausible data are given in Table

- 1.3. Let Rs and R, be two random variables corresponding to

the ratings in the two types of trials. (For example, Prob{R; =

.3} is the probability of observing a rating of 3 on a trial when

the stimulus was presented.) Since the experimental situation
is unchanged except for the subject’s responses, it makes sense
to suppose that the same underlying activation random variables
U, and U, are responsible for the ratings. The following model
seems reasonable: an observed rating will exceed a value i
4) only if the activation random variable exceeds a
criterion \;, the value of which depends on the rating value
considered. In symbols, ’ ‘

Prob{R, > i}

Prob{Us > A} ,

Prob{R, > i} = Prob{U, > N\j} .

Observe that the right members of these two equations strongly
resemble those in Axiom SD2 of the yes-no procedure. This
suggests an ROC analysis of the data. It is as if each possible
value of the rating (with the exception of the maximal one)
would implicitly define a particular payoff matrix and a recoding
of the rating data into two yes-no classes. In Table 1.3, the
value i = 3 leads to the recoding

4,5
1, 2’ 3)

write “yes” if i =
write “no” if i

Table 1.3. Hypothetical Rating Data in a Signal Detection Task

Rating Value
0 1 2 3 4 5
Noise trials .10 15 .35 .20 .15 .05

Stimulus trials .05 .10 .30 .20 .25 .10
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ps(i)

Pn( i)
Figure 1.22. ROC graph obtained for the rating scale data.

with
proportion of false alarms 05 + .15 = .20
proportion of hits 10 + .25 = .35.
The results of this recoding for Table 1.3 are:
Proportion of Ratings Exceeding i
i 0 1 2 3 4
n .90 .15 40 .20 .05
s .95 .85 .55 .35 .10

The corresponding ROC graph is displayed in Figure 1.22. In
general, the probabilities of hits and false alarms corresponding
to each rating value i up to (but not including) the maximal
one are given by the equations

Prob{R, > i}

ps(@

I

(@ Prob{R, > i} ,
with the ROC function p,(i) — ps(i).

. An obvious advantage of this method is its efficiency. The
subject is required to make more sophisticated responses than
in the yes-no procedure, which results in a substantial economy
in the collection of data. This was illustrated in our example,
in which only one condition, rather than five, had to be run to
obtain a five-point ROC graph.

On the negative side, it must be noted that the points of
an experimental ROC graph are not independent, which may
create difficulties in fitting and evaluating a model.

Finally, data collected by the rating-scale procedure, but
analyzed by methods different from those discussed here, may
provide a sharp test of some models. We return to this point in
Section 8.10.

8.8. Gaussian Assumption

In principle, an ROC analysis is feasible without making any
assumptions on the distributions of the random variables Ug
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and U, (cf. Bramber, 1975). However, the application is greatly
facilitated if such assumptions are made. We discuss here the
case of Gaussian distributions.

8.8.1. Yes-No Paradigm. In the yes-no paradigm with a
payoff matrix 6, we shall assume that

ps(8) = Prob{U; > g}

® (u) , (91)
s

d (u) , 92)
On

in which our notations are as in Section 8.2, ps, wn, and o, o,
denote the means and standard deviations of the random vari-
ables U and U, and @ is the distribution function of a standard
normal random variable, that is,

o 1 z 22
@) \/i?f_me dx .

From Egs. (91) and (92), it is apparent that the ROC curve
is determined by four parameters: the means and the standard
deviations of the random variables U, and U,,. (In fact, we shall
see that only two parameters are necessary.) From a practical
viewpoint it will be convenient to rewrite Eqgs. (91) and (92) in
terms of the so-called z-scores. With

Pn(6) Prob{U, > \g}

z(0) = @ [p,(®)] ,

2,0) = @ [p,(0)],

and dropping 0 in the notations, we obtain

Bs — A
Os

Z2s =

Bn — A
on

Zp =

Eliminating \ in these equations and solving for z;, yields

Ks — Hn
o )

2s = zponplos +

93)

In other terms, when the hit and false alarm probabilities are

. transformed into z-scores, the ROC curve is transformed into

a straight line with slope o,/0; and intercept (us — w,)os.
Using linear regression, these two parameters can be estimated
from the response frequencies of the data. Notice that the ROC
curve only specifies two of the four parameters pg, pn, o5, and
o,. For example, we can assume without loss of generality, that
k, = 0 and o, = 1. The area under the ROC curve can be
computed from the equations

Il

Prob{U; > U,} Prob{U; - U, > 0}

Ms — Mn
= (D[m} . (94)

It is easy to show that this model satisfies Axiom SD4 only if
os = o, (If we equate the two densities of U and U, and take
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logarithms, a quadratic equation obtains, which has a unique
solution only if o5 = o,.) We shall investigate this particular
case in some detail.

8.8.2. Equal Variance Assumption. Suppose that

ogs = 0, = 1.

Equation (93), which specifies the transformed ROC curve, be-
comes

Zs = zp + (Us — Pa)

Thus in the special case where U, and U, are independent
Gaussian random variables with equal variance, the transformed
ROC curves are parallel straight lines with a slope equal to 1.
Only one parameter remains in the model, which is the difference
s — Mn. When this model is used, a standard measure of the
detectability of the stimulus is

a = (s — I-Ln)/\/ﬁ B

" This choice has some intuitive appeal, since d’ is proportional
to the difference between the means of the two activation dis-
tributions. Moreover, d’ is closely related to the other measure,
the area under the ROC curve. Indeed, from Eq. (94) we have

Prob{U, > U,} = &(d") .

_Occasionally, it is convenient to plot the empirical ROC graphs
and the theoretical ROC curves on “double-probability” paper
(a two-dimensional Cartesian representation in which the co-
ordinates are in units of the normal integral; see Figure 1.23).

8.9. Threshold Theory

A rather different interpretation of an ROC analysis of yes-no
detection data is possible, in which the basic, underlying notions

are not activation random variables but detection states. A-
number of such models have been proposed, which differ in

particular by the number of (unobservable) states postulated
or by the exact relation linking the states to the response prob-

z- SCORES

PROBABILITIES
z - SCORES

Tt . T rrrrorr 11 1

.02 .10 .30 .50 .70 .90 .98

PROBABILITIES

Figure 1.23. In the equal variance case, three ROC curves plotted on “double
probability’” paper, corresponding to the cases d’ = 1, 2, 3.
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abilities or other observable quantities (e.g., response latencies,
ratings). We shall discuss a simple example, due to Luce (1960,
1963a, 1963b).

We will assume that the presentation of the stimulus or
the noise elicits one of two sensory states in the subject: either
a neural threshold has been exceeded or it has not. The event
that the threshold is exceeded may lead to a “yes” response (the
subject reports a detection) but not necessarily so. We also assume
that a given payoff matrix 8 may induce one of two opposite
response strategies: (1) a conservative strategy, in which the
subject never says “yes” when the threshold has not been ex-
ceeded; when the threshold has been exceeded, the subject only
says “yes” with a probability By, depending on the payoff matrix,
and (2) a guessing strategy, in which the subject always says
“yes” when the threshold has been exceeded; when the threshold
has not been exceeded, the subject says “yes” with a probability
ag, depending on the payoff matrix. This means that the collection

0 of payoff matrices is partitioned into two classes: (1) ©,, the

* set of payoff matrices inducing a conservative strategy, and (2)
- ..Og,the set of payoff matrices inducing a guessing strategy. The
“event that the threshold has been exceeded will be denoted

D = 1; the complementary event will be denoted D = 0. Thus
in'the framewdrk of a probabilistic model, D is a random variable
taking values 0,1, As before, the letter S denotes the stimulation;
we have two cases: S = s (the stimulus is presented) and S =
n (only the noise is presented) The probability that the stim-
ulation determines a neural event exceeding the threshold
(D = 1) only depends on S and will be denoted g(S). Notice that
we have introduced four numerical parameters: two for the
response probabilities, Bg and ag, and two for the probabilities
of the states, g(s) and g(n). In the framework of an ROC analysis,
however, two of these parameters will be eliminated in the
equations, leaving only g(s) and g(n) to be estimated from the
data. Finally, we denote by Y and Ny the two events of a “yes”
and a “no” response, respectively.

8.9.1. ‘Axioms for the Threshold Theory. We provide a
compact summary of these assumptions in the form of two ax-
Joms. : 4 ‘

Sfate Axiom T1.

Prob{D 1| } = q(S) for S =

(The probablhty that the threshold is exceeded is equal to q(s) A
if the stimulus is presented and to g(n) if the noise is presented,

~ these probabilities being independent of the payoff matrix.)

Response Axiom T2. For anyv payoff matrix 6,

(1 — D)ag + D
BeD

if 6 € O,

Prob{YeIS D} = { ifeco
[+3]

independent of S.

(The probability of a “yes” response to a stimulation only depends
on the payoff matrix 6 and whether the threshold has been
exceeded. If 6 is in O, it is equal to 1 or ag, depending on
whether D = 1 or D = 0, respectively. If 6 is in ©,, this probability
is equal Bg or 0, again depending on whether D = 1 orD = 0.)

8.9.2. Form of the ROC Curve. As shown by a simple
calculation, these axioms predict an ROC curve made of two
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8€ 8y

ps(8) .

Pn(6)
Figure 1.24.  An example of an ROC curve in the two-state threshold model.

The upper limb of the curve corresponds to Eq. (96), 8 € 8g; the lower limb.,

corrésponds to Eq. (97), 8 € 6.

segments of a straight line (see Figure 1.24). The upper limb
describes the guessing strategy and contains the corner (1,1)
of the unit square. The points of that segment are generated
by varying 6 in ©,. The lower limb describes the conservative
strategy, contains the point (0,0), and is generated by varying
6 in O.. Let us demonstrate this:

With our usual notations, ps(8) and p,(8) for the two prob-
abilities of a “yes” response, we have

ps(®) = Prob{Yy|S}
= Prob{Yy|D = 1,S} Prob{D = 1|8}
+ Prob{Yy|D = 0,8} Prob{D OIS} .
Usmg Axiom T1, this yields it
ps(®) = Prob{Yy|D = 1,8}q(S) +
Prob{YelD =,’0}[1 - q(8)N . (95)
8.9.2.1. Caseaé O, Us1ngAxiomT2, Eq. (95) specializes
into . , : ’
ps(®) = q(s) + apll — Vq(s)] ,‘
pn(®) = q(n) + all — g(n)] .

Eliminating og in"these two equations, dropping 6 in the no-
‘tations, and solving for p;, we obtain

Ds = pall — q®V[1l - q(n)]
+ [g®) — gV - q(m)],

(96)

a linear function containing the point (1,1). Thus as 6 variesin
O, the point of the ROC moves along a segment of a straight
line specified by Eq. (96). Notice that in this case, we have q(n)
< p,.

- 'shown that in some empirical situations the probability g(n

" data characteristically favor an ROC function with a smoot

- made in this respect. (The only “response axiom” is T2, whic
. concerns itself specifically with the response probabilities i
- the yes-no paradigm.) If rating-scale data are to be predicte

~ show by a counterexample that the argument against the two
* state theory based on the curvature of the ROC curve implie
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8.9.2.2. Case § € O,. From Eq. (95) and Axiom Té, we

obtain

Ds (0) Beq (s) ’

Pn(0) Beg(n) .

Eliminating B¢ and dropping 6 in the notation yields

Ps = Paq()g(n) ,

the equation of a straight line going through the origin. Here
we have p, < g(n).

Equations (96) and (97) together specify the class of ROC
curves predicted by Luce’s two-state threshold theory. This pre
diction has been shown to hold reasonably well for some dats
(cf. Luce, 1963a). In other cases, however, the theory is not so
successful. For example, Nachmias and Steinman (1963) have

that the threshold is exceeded on noise trials (as estimated from
the data) has to vary with signal strength. Such a fact is obviously
difficult to accommodate in the framework of the two-stat
threshold theory

8.10. Rating Data and the Threshold Theory

It is natural to inquire about the predictions of the threshol
theory concerning data obtained by the rating-scale procedure
Some authors have been quick to point out that rating-scal

curvature, a fact which may appear to be inconsistent with th
two segments of straight lines predicted by the threshold theory
(Broadbent & Gregory, 1963; Nachmias & Steinman, 1963
Swets, 1961; Watson, Rilling, & Bourbon, 1964). Actually, a
stated above and in the cited papers of Luce, the theory is no
relevant to rating data, and no inferences can legitimately b

by the theory, a new axiom is required, and there are variou
candidates, one of which is briefly considered here. Our reason
for including such discussion in this chapter are twofold: (1) t

by the data does not apply and (2) to demonstrate the general -
vulnerability of two-state theories to a particular type of analys1s
of the data.

We make the reasonable assumption that the rating given
by the subject on a trial only depends on the sensory state
evoked by the stimulation. However, the exact value of the
rating is not determined by the state. To each of the two sensory
states, corresponding to the events D = 1, D = 0, corresponds
a rating random variable, with distribution function G1, Go, |
respectively. In other terms, with R; and R, as in Eq. (88), we |
have the following axiom: ’

Axiom T3. ForS =s,nand D = 0, 1,
Prob{Rg = i|D} = Gp(® ,

independent of S.

Let us derive the prediction for the ROC curve. For S = s, n,
we have
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Prob{Rs < i} = Prob{Rg < i|D = 1}Prob{D = 1|S}
+ Prob{Rg < i|D = 0}Prob{D = 0|5}
= G1)q(S) + GoG)1 — g(S)] .

Specializing this equation for the two cases S = sand S = n,
we obtain

Prob{R; < i} (98)

q(s)G1() + [1 - g(®]1G® ,

Prob{R, < i} = q(n)G1() + 11 — qmIGo(® . (99)

Eliminating G1(i) in these two equations and solving for
Prob{R; > i} yields the following prediction for the ROC curve:

Prob{R; > i} = Prob{R, > i}q(s)/g(n)

- [1 = Golgls) — gm)lg(n) . (100)

Notice that the ROC function defined by Eq. (100) depends on '
- Go. This implies that the corresponding ROC curve is not nec-

essarily made of two segments of straight lines. In fact, a cursory
investigation suggests that for an appropriate choice of the
distribution function Gy, this equation may provide an acceptable
fit to ROC data obtained from the rating-scale procedure.

On the other hand, it is doubtful that this particular version

" of the two-state theory is viable, since it makes extremely strong

predictions concerning some other aspect of rating data. Using
an argument of Falmagne (1968), Vorberg (Note 3) points out
that the observed distributions of ratings should conform to a
very constraining fixed-point property, stemming from the fact
that, as indicated by Egs. (98), (99), the distribution of ratings
for any stimulus s (or noise n) is a “mixture” of the two latent
distributions G; and Gy, in proportions g(s) and 1 — g(s) (or
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g(n) and 1 — g(n)). This property is easily stated in words.

Consider the empirical histograms of ratings obtained for s and
n in some situation. Suppose that these two histograms “cross”
each other at some value j (say, the proportions of ratings j are
not significantly different). Then the histogram of ratings ob-
tained for any other stimulus s’ should have, except for statistical
errors, the same proportion of ratings j (see Figure 1.25). The
argument is as follows. Let kg, &5, g0, and g; be the densities
of R, R, Go, and G, respectively. Thus these densities idealize
the histograms mentioned above. Taking derivatives in Egs.
(98) and (99) gives

(101)

k() = q()g1d + [1 — q(9)]go®d

Il

and

kn (i) (102)

ging1(d + 1 - q(n)]go(i) .

Suppose that for some rating value j, we have

‘ : k() = Rka(j) .
From Egs. (101) and (102) it follows necessarily that
gD = go() = k() = ko(p .

Consequently, if s’ is some other stimulus, we must have

k() = q6Ng1() + [T = q(sNgo(h)

g1(»)

k() = ka())

as predicted.

Histogram of ratings for n

Histogram of ratings for s

|

RELATIVE FREQUENCIES

i

RATING VALUES
Figure 1.25. The fixed point property of the two-state threshold model applied to hypothetical rating
scale data. The two histograms “cross” at the point indicated by the arrow, corresponding to rating j; any
other histogram (say, of s’) should go through the same point.
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8.11. Key References
The notions of signal detection theory discussed in this section
were selected, from a vast literature, as being the most central
from the viewpoint of the analysis of psychophysical data. This
theory, a very detailed account of which can be found in Green
and Swets (1974), originated from an adaptation by W. P. Tanner
and his coworkers at the University of Michigan, of a number
of optimal procedures for the detection of signal in noise (Pe-
terson, Birdsall, & Fox, 1954; van Meter & Middleton, 1954).
In turn, these procedures are based on statistical decision theory
(Neyman & Pearson, 1933; Wald, 1947, 1950). As emphasized
by our presentation, in which the role of optimality is played
down, signal detection theory has also a valid claim to the
parentage of the law of comparative judgments (Thurstone
1927a, 1927b).

The applications of signal detection theory were first in
psychophysics (e.g., Tanner & Swets, 1953, 1954a, 1954b) but

were very quickly extended to other fields. The extraordinary

success of the theory is evidenced by the number and variety
of the papers in which it is used in some form or other. Today,
applications can be found, for instance, in learning, memory,
medical diagnosis, personality, reaction time, and skills (vigi-
lance). A large sample of the early-papers is collected in Swets
(1964). Green and Swets (1974), the basic reference on this
topic, contains a very extensive bibliography. As indicated in
the text; various forms of the theory are obtained depending
on specific assumptions made on the distributions of the random
variables U and U,. A discussion of these special cases is pro-
vided in Egan (1975). A number of versions of the threshold
theory are examined in Krantz (1969).

For applications of the basic notions of signal detection
theory to other paradigms, see Sperling and Dosher, Chap-
ter 2.

9. PSYCHOPHYSICS WITH SEVERAL VARIABLES
’OR CHANNIELS

We consider here a number of paradigms and models designed
to analyze how a subject integrates the information flowing
from different sensory inputs. Examples of how this may arise
have been encountered earlier in this chapter. For instance, in
the yes-no paradigm discussed in Section 8, the subject had to
detect a stimulus s embedded in a masking noise n. The subject’s
responses were regarded as resulting from some operation com-
bining, on the sensory side, the effect of both s and n on the
organism and, on the cognitive side, factors affecting decision
making.

Another example, which this section treats in some detail,
is offered by an auditory detection situation in which a stimulus
is presented binaurally. The intensity in the two auditory chan-
nels may be manipulated independently, and the resulting per-
formance may be investigated. This section is devoted to a gen-
eral study of such situations, various cases of which will be
given. Our purpose is not to provide an extensive survey. Rather,
our selection of examples aims at familiarizing the reader with
a collection of useful tools.

The word channel is of standard usage in psychophysics.
As far as we know, however, no satisfying, generally accepted
definition has been given for this term, even though several
have been proposed. Depending on the context, two channels
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may mean that two sensory modalities are involved, or two
neurophysiological locations, or two psychophysical variables,
or even the same psychophysical variable but with different
intensities. For the time being, we urge the reader to use the
term intuitively and to check any ambitious drive toward rigor
or consistency.
9.1. A General Model for Two-Channel Detection
9.1.1. Detection of Binaural Stimuli. In a version of the
yes-no paradigm, the stimulus is a binaural, 1000-Hz tone (a,x)
embedded in a masking noise (n,n’). The letters a, x denote the
intensities of the stimulus in the left and right auditory channels,
respectively; n and n’ stand for the intensities of the noise in
the two channels. As in the standard yes-no paradigm, the
noise is presented alone on some proportion of the trials. Tq
evaluate a possible response bias, the experimenter varies the
payoff matrix across conditions. (See Section 8 for a discussion
of payoff matrices.) Let us denote by ps(8) and p,,/(8) the two
probabilities of a “yes” response on a stimulus trial and on a
noise trial, respectively, with a payoff matrix 6. (Qur notation
is slightly misleading. A more explicit but much heavier notation
for these response probabilities would be pgy,nn'(8), Poo,nn’(8).)
This paradigm can obviously be transposed to other ex-
perimental situations (e.g., binocular perception as in Arditi,
Chapter 23). From a theoretical viewpoint, the problem is to
provide an explanation for the typical data: the presentation
of the stimulation through two channels results in an improve-
ment of detection performance.

9.1.2.  The Model. In a natural extension of the signal
detection model discussed in Section 8.2, we assume that the
presentation of -a stimulus of intensity a in the left auditory
channel evokes some activity in a specific neural location, the
level of which is represented by a random variable Uj 4. Cor-
respondingly, the presentation of x in the other channel generates
a sample of a random variable Uz . On noise trials, samples
are taken from two “noise” random variables V; , and Vg .
We assume that (U 4,Us ;) and (Vy,,Vy, ,,) are pairs of inde-

pendent random variables. Ona trlal where the stimulus (a,x)
is presented, the information available to the organism is thus
a sample of the pair of random variables (U; 4,Us,.). We suppose
that U; ; and Ug , are combined or pooled in some way, resulting
in a random variable Q... The subject reports a detection if Qg
exceeds a criterion \g, the value of which depends on the payoff
matrix 0. In other terms, we assume that there is some function

. F of two variables, the form of which is left unspecified for the

moment, such that
an =, F(Ul,a:UZ,x) .

The subject reports a detection if

“Qax > N\g .

(See Figure 1.26.) Similar assumptions hold for the noise trials,
with the same function F operating on the pair of random vari-
ables (V3 5,Va,,). The model is thus specified by the two equa-
tions

Pax(®) = Prob{F(Uyq,Us.) > \o} , (103)

pnn'(e) PI‘Ob{F(V]_,sz,n') > )\e} .

(104) |
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a is presented
in left channel

X is presented
in right channel

Jy Y

Ui, u 2x

Combination of the
two channels

F(Usa, Uz

Yes No

F( UI,a' Uz,x) ’)e ?

\

Report

Report
detection

no detection

Figure 1.26. A general random variable model for the pooling of information
from two sensory channels. Special cases of the model correspond to spec-
ifications of the function F.

It is clear that the data collected by varying the péyoﬁ' matrix

6 are amenable to a receiver operating characteristic (ROC)
analysis (cf. Section 8). Applying the argument used in Section
8.2, we obtain as a measure of the area under the ROC curve,
which, you will recall from Section 8.2, is a measure of per-
formances independent of the effects of response criterion,
Prob{F(Uy,4,Us ;) > F(Vy,, Vo)t . (105)
Several particular cases of this model, which is also discussed
by Olzak and Thomas in Chapter 7, are considered. These cases

correspond to special ‘forms of the function F in Egs. (103),
(104), and (105).

9.2. Probability Summation

Probability summation covers a class of models in which the
improvement of performance resulting from having the stim-
ulation delivered to two or more channels is attributed to chance
alone. For an analogy, consider a group of n = 2 observers,
watching the same visual display. Suppose that the probability
p of detecting a faint stimulus is the same for all observers and
that the group reports a detection if at least one of the n observers
claims to have detected the stimulus. Assuming that the ob-
servers’ responses are independent, the detection probability
of the group is

1-Q-p*=p.

' The application of this idea in psychophysics can be traced back -

to Pirenne (1943) and plays an important role in current theo-
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rizing, especially in visual perception. We shall limit our dis-
cussion to a two-channel situation. (For the case of a large
number of channels, see Watson, Chapter 6, and Olzak and
Thomas, Chapter 7.)

In the framework of the general model discussed in Section
9.1.2, this notion leads to the assumption that the subject reports

“a detection if at least one of the two activation random variables

exceeds the criterion A\g. (Sometimes, different criteria are pos-
tulated for the two channels. This assumption seems to be more
general. See, however, Section 9.3.) This means that the function
F has the form

F(s,) = max{s,d ,

in which max stands for the maximum in the set of numbers
{s,t}. (Thus max{s,t} = s iff s = ¢) Using the assumption of
independence of the random variables, we obtain for the stimulus
trials,

Paxl®) = Probmax{Ups, Uz} > M}

1 — Prob{hg = max{Uy4,Us.}}

1 — Prob{hg = Uy, Ag = Uy}

= 1 — Prob{Ag = Uy,}Prob{\g > Us,} . (106)
Similarly, for the noise trials,
" Pan'(8) = 1 — Prob{Vy, < M\g}Prob{Vy, < N} . (107

‘A basic assumption is implicit in Eqgs. (106) and (107), a
clear statement of which is critical at this point. '

9.2.1.. Weak Criterion Invariance. Within a yes-no para-
digm involving a stimulus (a,x) and a noise (n,n’), the criterion
value Ag only depends on the payoff matrix 6. (This value is
thus the same on stimulus trials and on noise trials.) This as-
sumption is inherent to an ROC analysis and practically ines-

“capable.

At this level of generality, it is not clear that the predictions
of the model are sufficiently constraining to be rejected by
available data. The negatwe evidence, some of which is reviewed

'by 1Bwlake and Fox (1973), is mostly circumstantial, by which-

we mean that it has no direct bearing on the predictions formally
derivable from the assumptions. However, for (implicitly) fixed
8, Eq.(106) has been checked by various authors. Some refine-
ments of the assumptions, considered below, lead to useful em-
pirical tests.

9.2.2. Strong Criterion Invariance. Consider the following

strengthening of the criterion invariance. The criterion value

\g only depends on the payoff matrix 8. In particular, for a given
payoff matrix, this value is constant over conditions varying
the intensities of the stimulus (a,x) and of the noise (n,n’).

. This assumption is frequently made (explicitly or not). It
lends itself to a straightforward empirical test. For example,
consider an application of Eq. (106) to a situation in which two
payoff matrices 8; and 82 have been used, together with four
values of the variable a and six values of the variable x. The
data consist of 2 X 4 X 6 = 48 empirical frequencies of “yes”
responses, to be explained with 2 x 4 + 2 X 6 = 20 parameters.
This leads to a standard chi-square (or likelihood ratio) test,
with 48 — 20 = 28 degrees of freedom. In the framework of
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the strong criterion invariance, this is essentially a test of the
independence of the random variables Uy, and Ug .. To the
best of our knowledge, no such test has been performed.

Noticé that signal detection theory is not used or even
needed here (the data only concern Eq. (106)). In fact, signal
detection theory was introduced explicitly to deal with situations
in which an assumption such as the strong criterion invariance
does not hold.

A rejection of this model could thus be attributed either to
a failure of the strong criterion invariance or to a failure of the
assumption of independence of the random variables. Dropping
the strong criterion invariance, the model can be strengthened
in a different way, by making specific assumptions regarding
the distributions of the random variables. Obviously, there are
numerous possibilities, each of which leads to a specific form
of the ROC curves. We shall not enter here the details of such
assumptions.

9.3. Remarks

As indicated above, the probability summation model defined
by Egs. (106) and (107) takes different forms dependmg on specific
assumptions regarding the distributions of the activation random

variables. The arbitrariness of the choice of the distributions

should not be a cause of excessive concern (cf. Section 8.3).
Indeed, suppose that a particular version of the model involves

the four random variables Uy 4, Ug x, V1,5, and Vg ,'. Nothing -
changes in the predictions if these random variables are subjected

to a strictly increasing transformation, provided that this
transformation is the same for all variables. For example, let
g be an arbitrary, strictly increasing function. Starting from
Eq. (105), with F as the maximum function, we have

Prob{max{Uy 4, Us s} > max{Vy,, Vo, }}
= Prob{g(max{U;,,Usz.}) > gmax{Vy,, Vs D}

= Prob{max{g(Uy,), g(Uz )} > max{g(Vy,),g(Va)}} .

(108) -

Thus the prediction for the area under the ROC curve is un-
affected by the transformation g. Notice that this relative “ro-

bustness” of the prediction with regard to the particular form

“of the distributions cannot be extended to other combination
rules, that is, when the function F is different from the maximum
function. Two examples of such combination rules will be briefly
considered in Section 9.4.

As specified by Egs. (106) and (107), probability summation .

assumes that the same criterion Ay is used for both channels.
According to Eq. (106), for instance, a “yes” response occurs
following the presentation of a stimulus (a,x) if

either Uy, > Ng or Ug,: > Ag . (109)
Occasionally (e.g., Nachmias, 1981), a model is used in which
Egs. (106) and (107) are replaced by the forms

Pax(8) = 1 — Prob{Uy 4 < Ng1}Prob{Us . < Ngo} , (110)

(111)

DPnn'(8) = 1 — Prob{Vy , < Ny 1}Prob{Va, < N\g2} .

Thus for a given payoff matrix 0, the criteria Ag,; and \g 2 cor-
responding to each channel may be different. The extra gen-

" by the model, the above equivalence does not necessarily hold.

1-
erality is only apparent, however. This must be understood
follows. Let O be the set of all payoff matrices. To each pay
matrix 6 in © correspond two criteria Ag; and Ny . In oth
terms, there are two functions 8 — \g 1, 8 — Mg 2, each of whi
maps O onto a real interval. It is reasonable to suppose th
even though these functions may be different, they genera
the same order on the set O of payoff matrices. That is, for a
two 6 and 0’ in ©, we must have

N1 < Mgy iff )\e,? < N2
By a simple mathematical argument, this means that there

exists a continuous, strictly increasing function g, such that
8(\g,2) = Ng,1. But then Eq. (110) implies

Pax(® = 1 — Prob{U;, < Ng1}Prob{g(Usz.) < g(hg2)

I

1 - Prob.{Ul,a = Ra,l}PTOb{g(Ug,x) < )‘6,1} '

Similarly Eq. (111) yields

Prn’(®) = 1 — PTOb{Vi,n < )\O,I}PrOb{g(VZn') = 7\9,1} .
Thus after transforming U, . into g(Usz ,) and Vg, into g(Vs ),
the criteria are identical for both channels. We conclude that
the two models are equivalent. Obviously, the distributions of?
the random variables U , and V3, may be modified by the
transformation g. For example, if both Uy , and Vg , are normal,
8(Uy,,) and g(V3 /) are normal only if g is a linear function.
This means that if particular forms of distributions are imposed

The notion of probability summation is often formalized differ-
ently (e.g., Nachmias, 1981), in terms of a two-state threshold
model in the spirit of Luce (1960, 1963a, 1963b) which we dis-
cussed in Section 8.9. This model is defined by the two equations

Pa® = 1= (L= pr)1 = o1 = v®  (112)

pnn’(e) 1 -0 - pl,n)(l - pZ,n’)[l b 'Y(e)] . (113)
and is sometimes referred to as the high-threshold model. In
Eq. (112) p1,c and pg . are two parameters specifying the prob-
abilities, when stimulus (a,x) is presented, that the thresholds|
are exceeded in channels 1 and 2, respectively. A “yes” response
is given if the threshold is exceeded in at least one of the two,
channels. A “yes” response may also result from a guess, in a|
case in which neither of the two thresholds is exceeded. The|
probability of this positive guess is v(8), the value of which may|
vary with the payoff matrix. A similar interpretation holds for,
Eq. (113), which corresponds to the noise trials and mtroducess
two additional parameters p1 », and pg »'.

The apparent popularity of this model is difficult to Justlfy
since it makes the inescapable but unlikely prediction that the
ROC curves in the binaural situation are straight lines. For|
visual contrast detection data, this model was rejected con-
vincingly by Nachmias (1981) in the framework of partlcular
assumptions on the parameters p1 4, P2, x, P1,5, and p2,n'- .

Further discussion regarding probability summation models;
can be found in Watson, Chapter 6, and Olzak and Thomas,
Chapter 7.
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"9.4. Two Additive Combination Rules

For the same two-channel paradigm, we consider here two other
possibilities for the form of the function F of the general model
defined by Egs. (103) and (104).

9.4.1. An Additive, Equal Variance, Gaussian Model. We
agsume that F' is a binary addition, namely

F(sgt) = s + ¢t .

The area under the two-channel ROC curve, expressed by Eq.
(105), becomes

Prob{Us, + Us, > Vi, + Vo). (114)
Let p10, b2,z K15, and wg o be the expectations of the respective
random variables, and suppose that their common variance is
equal to 1. Assume moreover that all four random variables
are normally distributed. From Eq. (114) we obtain

Prob{Uie + Ugz — Vin — Vo > 0}

= ®Ol(p1e + P2 — Win — Mon)2] = B(dig) .
The last equation defines a detectability index d 2, for the two-
channel situation, consistent with that introduced in Section
8.3 for the one-channel situation. Let d and d’ be the detect-
ability indices in the 2 one-channel situations. That is,

I

: PrOb{Ul,a > Via} D10 = P-l,n)/\/é-] ’

o(dy) ,

Prob{Us, > Va,} = ®llng, — pan V2]

= ®(d3) .
By simple algebra, it follows that
(d{ + d&yve ,

dig = (115)

a prediction which can be tested bs' methods discussed in Section
8. IR

9.4.2. Integration Model. Let f,, be the joint density of

U, and Us, ;, and let £, be the joint density of Vi , and Va';
let f1,4, f2,% fi,n, @nd fo ' be the densities of Uy g, Uz, Vi,
and Vy ', respectively (e.g., Green & Swets, 1974). As in Section
8.5, we suppose that the subject behaves as a statistician and
bases the decision on the computation of likelihood ratios. In
other terms, we assume that the function F has the form

fax (S,t)
fan' (5,8

e fl,a(S)f2,x(t)/f1,n(s)f2,n’(t) »

F(s,p) = ,
116)

by the independence of the random variables. Thus when a -
stimulus (a,x) is presented, the subject reports a detection if

f10(U1,0) o, (U Vi n(Us ) fom(Us) > o -
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The same decison rule holds for the noise trials, based on a
sample of (V1,,, V3 /). Green and Swets (1974, p. 271) show that
if all four random variables are Gaussian, and in addition

Var(Ul,a) Var( Vl,n) ’

Var(Usy) = Var(Van) ,

then
diz = [@D? + (@pA*™ . (117)
Applications of this model to visual perception data are discussed

in Kristofferson and Dember (1958) and Green and Swets (1974).
Another combination rule

dig = di
1s éiso considered there.
9.5. Additive Conjoint Measurement

A central notion in a number of models in this chapter is that
the sensory system of the subject, when confronted with a mul-
tidimensional stimulus, performs a simple arithmetical oper-
ation (e.g., addition, multiplication, subtraction). Often, this
operation is at the kernel of a process modeling other aspects
of the subject’s performance (e.g., probabilistic or cognitive),
~such as in the models introduced in Section 9.4. The analysis
of such operations, to the extent that they can model aspects
of scientific data, is the concern of measurement theory, a case
of which was discussed in Section 2. This subsection is devoted
to a discussion of an important special case, in which the effect
on the organism of a two-dimensional stimulus (a,x) is captured
by an addition of two numbers, f(a) + g(x).
Consider a two-alternative forced-choice (2AFC) paradigm.
On each trial, the subject:is presented with two stimuli (a,x)
and (b, ). For concreteness, suppose that as earlier in this section,
these are pure tones presented binaurally. Thus a and b are
the intensities of the tone in the left auditory channel, and x
and y are the intensities in the right auditory channel. The
subject is-asked-which of (a;x) and (b,y) seems loudest. If (a,x) -
is chosen, the experimenter writes - R

by < ax ,

as the data for the trial. It is assumed that the effect of component
a of stimulus (a,x) can be represented by some number, denoted
by f(a). Similarly, the effect of component x is represented by
a number g(x). These numbers can be interpreted as measuring
the intensities of the activations evoked by the stimulus at
some neural locations. The model, however, is noncommittal
in that respect. The basic assumption is that

by < ax iff  f(&) + gy < fla + gv) . (118)
This model is in the spirit of those discussed in Section 9.4,
except that, somewhat unrealistically, it is deterministic: the
presentation of (a,x) always evokes the same number f(a) +
g(x). (By comparison, in the model of Section 9.4.1, each pre-
sentation of (a,x) determines a sample of a random variable
Uy + Us..) This implies that each presentation of a pair of
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stimuli (a,x) and (b,y) results in the same choice by the subject,
a prediction which may be reasonable for some carefully selected
set of stimuli but would certainly not be acceptable in general.
It is not assumed that the numbers f(a), f(b), g(x), and so on,
are accessible to direct investigation. It may not be immediately
clear that this model imposes strong constraints on the data,
but it does. Suppose indeed that the experimenter observes

bz <ay and ¢y < bx.

According to the model, this can arise only if
fb) + gl@ < fla) + g(y)

and | |
floy + gly) < fB) + glx) .

Adding these two inequalities and canceling appropriately yields
flo) + 8@ < f@) + g,

which in turn predicts that’

cz < ax .

Summarizing this argument, we see that the model epeciﬁed
by Eq. (118) holds only if

Whenever bz < ay and ¢y < bx, then cz < ax .

In the measurement literature, this is known as the double-
cancellation condition. It is illustrated thus

In addition, a pair of independence conditions are easﬂy shown
to be necessary:

1. ax <bx iff
2. ax<ay iff

ay < by.
bx < by. .

(The verification of the necessity is left to the reader.) The
double-cancellation condition and the two independence con-
ditions are the key axioms of a model that, measurement theory
tells us, implies the existence of the two scales fand g satisfying
Eq. (118). We will not go into the details of this model, which
are quite technical (see, e.g., Roberts, 1979; or Krantz et al.,
1971). It suffices to remember that if the data are to be explained
“by the additive model specified by Eq. (118), then the double-
cancellation condition and the two mdependence conditions must
be satisfied.
An illustration of an experimental test of these conditions,
in binaural perception, can be found in a paper by Levelt, Rie-
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mersma, and Bunt (1972). However, Levelt and colleagues’ pos-
itive conclusions have recently (and rightly, in the opinion of
this writer) been criticized by Gigerenzer and Strube (1983).
The appeal of measurement models of this kind is that they
offer, at least in principle, the possibility of getting at the es-
sential determinants of the subject’s performance, from a psy-
chophysical viewpoint: the scale or scales transforming the
physical input or inputs, the basic operation or operations per-
formed by the sensory system. A serious weakness of such models
is that they are ill-equipped to deal with data variability, which
characteristically results from psychophysical experimentation.
In Sections 9.6 and 9.7 we discuss some probabilistic versions
of the additive conjoint measurement model considered here.

9.6. Random Conjoint Measurement

We begin with a slight modification of the binaural loudness ‘
paradigm.

9.6.1. Matching Task. As in the 2AFC paradigm, the

-subject is first presented with a binaural stimulus (a,x), followed

by another stimulus (b,y). The task is to modify the intensity
of b (for example, by turning a dial) until, by successive ap-
proximations, the two stimuli appear equally loud. This final
value of b is recorded. Typically, this value varies across tnals
(for fixed a, x, and y).

9.6.2. The Model. Let us write ny(a), a random variable,

for the final value of b yielding a match. This notation seems

appropriate since this value depends on g, x, and y. (The reason

. for the asymmetry in the notation—x, y as indices and a in

parentheses—will become clear in a moment.) In the deter-
ministic framework of additive conjoint measurement, (a x) -

‘should appear as loud as (b, yiff

fla) + glx) = fb) + gy,

or, equivalently, -

) = g = g0 + o) .

If bisreplaced by the random variable ny(a), it seems reasonable
to balance the above equation by adding an error term in the
right member wh1ch glves

flUy@] = g - gy + fl@ + exym) (119)

- 'The error term egy(a) is assumed to be a random variable with
- a (uniquely defined) median equal to 0. This model is in the

spirit of the additive conjoint measurement model discussed in
this section but may be applied to noisy data. :

Since the scales f and g are unknown, one may ask, How
is Eq. (119) constraining the data? Or, in other terms, under
which conditions (necessary or sufficient) do scales fand g exist
satisfying Eq. (119)? It turns out that Eq. (119) imposes strong,
highly testable constraints on the medians of the random vari-
ables U,(a). A simple argument demonstrating this fact is given
in Section 9.6.3.

9.6.3. Some Necessary Key Conditions. If T is a random
variable having a unique median v, we write M(T) = v. The
following fact will be useful: if 4 is any real, strictly increasing
function, then MIA(T)] = AIM(T)]. (This follows immediately
from the definition of the unique median of T.) For simplicity,
we shall adopt the abbreviation
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Myy(@) = MU,y (a)]

| for the median of the matching random variable Uy,(a). Taking
edians on both sides of Eq. (119) yields

M{f[ny(a)]} = f{M[Uzy(a)}} = g(x) - g(y) + f(a)

r, equivalently,

my(@ = f gl - gy + f@I, (120)
in which £~! is the inverse of the scale /. From this equation,
i the following condition is easily derived.

9.6.3.1. Cancellation Rule.

My (@) = mylm,,(a)] ,

whenever all three medians are defined. :
This condition, which is illustrated in Figure 1.27, is the
| counterpart in this probabilistic framework of the double-can-
cellation condition encountered in additive conjoint measure-
ment. It has an elegant, compact expression but appears some-
what abstract at first. A good grasp of this condition requires
careful study. To begin with, notice that it only concerns the
“observable” medians of the matching random variables (the
unknown scales f and g have been eliminated). Let us show
| how the cancellation rule follows from Eq. (120). Successively,

l

Flmeyimy @) = g@) - g(3) + fimy(@)]

g — g + f{f gy

- g@ + flal}

gx) — gy + gly) — gl& + fla

flmz(a)] .

| We conclude that

fimey(my (@]} = flme(a)] ,

5 a m,(a) meg(a) = mg[m,, ()]
%Figure 1.27. Cancellation rule. The three distributions of the figure are
those of U,(a), Uyy [my;(a)] and Uy,(a). The three curves are the “isoloudness
,v:urves" of (a; x), [myz(a), x] and (a, y).) (See also section 9.6.4.) (From J. C.
Falmagne, Random conjoint measurement and loudness summation, Psy-
chological Review, 83. Copyright 1976 by American Psychological Asso-
ciation. Reprinted with permission.)
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Maw[Mmyy(a)] = mxy[mzw(a)] mzw(@) a

mxy(a)

Figure 1.28. Commutativity rule. The conventions are similar to those of
Figure 1.27. The four distributions are those of Uyy(a), Uzw(a), Uxy [mzw(a)l,
and U,y [my(a)]. The four curves are the “isoloudness curves” of (a, x), (a,
2), [mzwla), x], and [mya), wl.) (From J. C. Falmagne, Random' conjoint
measurement and‘loudness-summation, Psychological Review, 83. Copyright
1976 by American Psychological Association. Reprinted with permission.)

which is equivalent to the cancellation rule, since fis a one-to-
one function. A further understanding of this condition will be
obtained from a discussion of how it can be tested. (See Section
9.6.4.) Using similar methods, another condition can also be
shown to be necessary.

9.6.3.2." Commutativity Rule.

MyyMmzy(@)] = My [mey (@]

whenever all four medians are defined.

In other terms, if we pick one intensity a in the left channel .
and four intensities x, y, z, and w in the right channel and take
the two medians M[U,,(a)] = m,y,(a@) = b1 and M[U,(e)] =
myy(a) = bg and, next, the two medians M[U,,(b1)] = my,(b1)
and M[U,,,(b2)] = my,(bs), then the two medians m,,(b;) and
m,(bg) should be equal. The commutativity rule is illustrated
in Figure 1.28. Lo _

It can be shown that if continuity assumptions are made,
then the implication can be reversed: the cancellation rule and
the commutativity rule together imply that Eq. (120) holds for
some scales fand g. A proof of this fact can be found in Falmagne
1976). .. .. . .

9.6.4.- A Test.” A test of the cancellation rule could proceed
as follows. '

Step-1.-- Choose one intensity a in the left channel and
three intensities x, y, and z in the right channel. Have the
subject find an intensity b in the left channel, so that (b,
z) matches (a,y) in loudness. Repeat 2p times. Order these
2p + 1values b; < bg < .. <bgp.1. Then by, is an estimate
of my.(a).

Step 2. Have the subject find an intensity c¢ such that (c,
¥) matches (b, 1,x) in loudness. Repeat g times. The obtained
empirical distribution is denoted by D.

Step 3. Have the subject find an intensity d, such that
(d,2) matches (a,x). Repeat k times. The obtained empirical
distribution is denoted D’.

Step 4. Test whether U,,(b,.1) and U,.(a) have the same
median, for example, by performing a median test com-
paring D and D’. (This test is known to be reasonably robust

to a difference in the shape of the distributions; cf. Pratt,
1964.) :

R { e
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A similar test can be designed for the cancellation rule. A
. discussion regarding the soundness of such procedures can be
found in Falmagne (1976).

Gigerenzer and Strube (1983) have applied this model to
binaural loudness data. The hypothesis that the two auditory
channels are additive, in the sense of Eq. (119), is convincingly
rejected. The data favor a model in which one channel dominates
when its intensity sufficiently exceeds that of the other.

9.7. Probabilistic Conjoint Measurement

Asreported in a number of papers, Falmagne and his coworkers
have investigated another way of injecting statistical consid-
erations into additive conjoint measurement (Falmagne, 1978,
1979; Falmagne & Iverson, 1979; Falmagne, Iverson, & Mar-
covici, 1979). Suppose that, in a 2AFC paradigm, the subject
must select one of the 2 two-component stimuli (a,x) and (b,y).
As before, we assume that a, b, x, and y are numbers denoting

physical variables. Let Py be the probability that (a,x) is.

chosen over (b,y). A general additive model is embodied in the
equation

Popy = Flfla) + gkx),f(b) + gyl , (121)
in which the real-valued functions F, f, and g in the right member
are unspecified, except for monotonicity and continuity prop-
erties: all three functions are continuous, F is strictly increasing

in the first variable and strictly decreasing in the second variable,
and f and g are strictly increasing. We also assume that the

function F in Eq. (121) satisfies the following balance property

(see the definition in Section 3.5.1):-

F(s,p) = 5 iff s = ¢ . (122)
The connections between this model and that previously dis-
cussed under the label random conjoint measurement must be
appreciated. Consider a situation in which the experimenter,
an expert in adaptive methods (see Section 6), fixes the values
of a, x, and y in Eq. (121) and has the subject’s performance
converging over trials—say, using stochastic approximation—
to a point B satisfying

Purgy = Flfl@ + gl),f(B) + g(y)]

The estimated value of B is actually a random variable, the
distribution of which depends on q, x, and y. Under reasonable
differentiability assumptions (see Section 6.2.1), the asymptotic
distribution of this random variable is normal and has an ex-
pectation equal to B. Let us denote this asymptotic random
variable by V(a). Notice that, using Eq. (122),

fla) + gx) = fB) + g(y,
and thus

E[Vy@] = f g - gy + fl@], (123)

which'is, for all practical purposes, equivalent to Eq. (120) con-
straining the medians, in our discussion of random conjoint
measurement. (Indeed, for normal distributions the expectation
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and the median are equal.) The model specified by Eq. (121)
can thus be tested by checking whether the cancellation and
commutativity rules are satisfied empirically by the expectations
E[V.,(a)]. A number of special cases of this model are of interest,
the defining equations of which are listed below. Note that the
function % in Eq. (124) is assumed to be strictly increasing and
continuous.

Paspy = FEfl@ + g@] — k) + gl . (124
Pupy = Flfla) + glx) — f(b) — gm»] . (125)
Pty = Filf@ + g@VIf®) + gl . (126)

Pozyy = Flfla)glx) — f(b)g(y] . (127

Diagnostic properties permitting one to sort out these models
have been developed (Falmagne, 1979). The behavior of the

..function @ = Py 5. is particularly instructive in this respect.

Assuming that Eq. (124) holds, it can be shown, for example
(Falmagne et al., 1979), that for a > b, the function

linear - independent of x;
k is {strictly convex }iﬁ‘ Poypx is {strictly increasing in x;
strictly concave strictly decreasing in x.
(We recall that strictly convex means curved upward and strictly
concave means curved downward; cf. Section 7.4.) Important
examples of (strictly) convex and concave functions are the log-
arithmic and exponential functions. Observe in this connection
that each of the Egs. (125), (126), and (127) follows from Eq.
(124) by assuming that % is a linear, a logarithmic, or an ex-
ponential function, respectively. (Obviously, a change of no-
tations vis-a-vis functions 7, f, and g is taking place between
Egs. (124) and (125), (126), and (127).
These models have been applied by Falmagne and colleagues
(1979) to binaural loudness data collected in a series of exper-
iments, using the 2AFC paradigm. A special case of Eq. (126)

. was found to yield a good fit. (See, however, Gigerenzer & Strube,

1983.) More will be said about this study in Section 9.8.

9.8. Homogeneity Laws

There is a class of empirical laws that deserves serious consid-
eration by the psychophysicist. (Let us avoid both misunder-
standing and a philosophical trap. By “law” we mean an im-
portant equation purporting to explain a body of data. The
equation derives its importance, and thus the label “law,” from
that of the data to be explained, from the consequences of the
equation regarding feasible theories, and possibly also from the
simplicity of its form. Scientific usage indicates that complete
accuracy of the prediction is not a major requirement, e.g., the
failure of Boyle’s law at low temperature.) Examples of laws
in that class are provided by two forms of Weber’s law encoun-
tered in Section 7. As defined in Section 7.2.3, it constrains the
psychometric functions and takes the form

Pra(AX) = pglx) . (128)
In words, a psychometric function is invariant under multipli-
cation of the intensities of the standard and the stimulus by
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the same constant A > 0. Equivalently (theorem in Section
. 7.2.6), Weber’s law concerns the Weber functions and states
~ that

Ar(Na) = NAz(a) . (129)
_ We recall that a real-valued function 4 of n real variables is
. homogeneous of degree B iff

h(Ax1,\%g, ..., )\Bh(xl,xg,

A'xfl.) = b xn) 3

for all A\ > O (see Section 7.2.2). Thus Eqgs. (128) and (129) mean

that the functions p and A are homogeneous of degree 0 and 1,
respectively.

A couple of additional examples of homogeneity laws will
be discussed. They show that such laws are typically easy to
verify experimentally and tend to have strong implications on
theorization. If Weber’s law is any indication, they may have
a more durable impact than specific process models, a prospect
that justifies the space allocated here to this topic.

No proof of any of the results discussed below will be given.

Incidentally, we mention that the arguments used to derive

the theoretical consequences of homogeneity laws often appeal
to results from a field of mathematics called functional equations,
_an introduction to which the reader can find in Aczél (1966).

9.8.1. The Conjoint Weber Laws. Let us go back to the

2AFC paradigm used by Falmagne and colleagues (1979), in-

which the subject was required to compare binaural stimuli
(a,x)-and (d,y). A test of the following generahzatlon of Weber s
law was performed:

Poayan,abny = Paxpy -

That is, using the decibel scale, the choice probability does not
vary when the same number of decibels is added to all four
intensities. This prediction, called the conjoint Weber law, was
found to be well supported by the data, at least for the relatively
modest range of stimulus intensities considered in the experi-
ment. The importance of this result from a theoretical standpoint
should not be underestimated. Researchers in this field are
concerned with the hypothesis that the two auditory channels

may be additive. As indicated in Section 9.7, a possible for-

'mahzatlon of this notion lies in Eq. (121)

Parpy = Flfla) + gk),f®) + gy,

in which the functions F f and g aré ﬁnspeciﬁed exéept forv
continuity and monotonicity properties. Falmagne and Iverson
(1979) show that if both the conjoint Weber law and Eq. (121)

hold, then the choice probabilities must have one of the followmg

three forms:
Pax,by - Gl + Sxﬂ)/_(b? + 8591 (130)
Povpy = GlaPxbPy"] ; | (131)
(132)

Pa.x,by = Q{a/x,b/y] s

in which 8 and vy are constants, G is strictly increasing and
continuous, and € is continuous, strictly increasing in the first
variable and strictly decreasing in the second variable. These
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three equations are easy to discriminate experimentally. For

-instance, Eq. (132) can be eliminated immediately, as a model

for binaural loudness, since it predicts that P, s, is decreasing
in x and increasing in y. A different way of separating these
equations leads us to introduce two other homogeneity laws,
each of which is'a strengthening of the conjoint Weber law:

Strong Conjoint Weber Law Type I (SCWI)

Py = Py, rb)ry)

Strong Conjoint Weber Law Type II (SCWII)

Porpy = Pooen),0biry) -

These equations are assumed to hold for all positive a, b, x, ¥,
X, and 7: These two laws provide a sharp method to distinguish.

" between Egs. (130), (131), and (132) from an experimental

standpoint: In particular, it is easy to'prove that SWCI is equiv--
alent to Eq. (132). It can also be shown that the additive form

~Eq: (121) together with SCWII is equivalent to Eq. (131). A
“useful conclusion follows: if the conjoint Weber law holds, but

both SCWI and SCWII fail, then the additive form Eq. (121)
has necessarily the form of Eq. (130).

~'This example shows how the experimental testing of ho-
mogeneity laws (with positive or negative outcomes) may result’
in a considerable strengthening of the hypotheses of a model.
Following is another example, along the same lines but with a
different motivation and a different paradigm.

9.8.2. Shift Invariance in Loudness Recruitment. A tone

" embedded in noise does not appear as loud as the same tone in
. quiet. As the intensity of the tone increases, however, the sub-

jective difference tends to disappear. In psychoacoustics, this
phenomenon is known as loudness recruitment. Let us denote
by @(x,n) the intensity of a tone in quiet matching an intensity
x of the same tone embedded in a noise of intensity n. These
matching functions'were recently investigated by Iverson and
Pavel (1981a, 1981b; see also Pavel, 1980), who demonstrated
that to an excellent approx1mat10n the following property was
satlsﬁed by the data for some 6 > 0 and all A >0

o \’n) = relen) . (133)

They investigated the theoretical consequences of this property, -

‘which they called shift invariance. The choice of this name is
justified by a geometrical interpretation of Eq. (133), an illus-
tration of which is given in Figure 1.29. Shift invariance can
be seen as a homogeneity property under a shght disguise:
deﬁmng the function ll;,

"¢<x,y) = ox,yY ,

it follows that

POAZAY) = o0xA%) = Aely) = Ax) -

That is, ¢ is homogeneous of degree 1.
Asin the preceding example, it may be asked whether shift

invariance may be assumed in conjunction with some general,
reasonable model, with the effect of strengthening the model
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. Figure 1.29. The property of shiftinvariance illustrated by two hypothetical
loudness matching curves. The right curve representing loudness matching
with noise A%n can be obtained by a rigid shift of the left curve (generated
by loudness matches with noise n) along the first bisector. (From M. Pavel,
Homogeneity in complete and partial masking. Unpublished doctoral dis-
sertation, New York University, 1980.)

in a useful way. Iverson and Pavel (1981a) assume that the
matching function p satisfies the gain control equation

ox,n) = F{g(x)/[h(x) + kMY, (134)
with the functions g, h k,and F bemg subJected only to natural
monotonicity and continuity conditions. They show then that

in the presence of shift invariance Eq. (134) can take only one
of two forms:

olr,n) = [Az¥G* + Kn¥e-e) (135)

or
r e 1
= an!/)]ll(uw‘) ;

ARG (136)

olx,n)
where A, K, o, o’, and 0 are appropriately chosen constants.
Note that a special case of Eq. (136) was proposed by Lochner
and Burger (1961) as an extension of the power law (cf. Section
10), incorporating the effects of a masking noise. Objections to
Eq. (136) as a possible model for recruitment can be found in
Scharf (1978). A plot of a least-square fit of Eq. (135) to some
data of Stevens and Guirao (1967) is presented in Figure 1.30.
Another example of homogeneity law arises in our discussion

of the bisection method in Section 9.9.

9.9. Bisection

This name refers to a class of paradigms in which, on each trial,

a subject is presented with a pair (a,b) of stimuli and is required
to “produce” (in a way depending on the experimental conditions)
a stimulus appearing “midway” between a and b. As before in
this section, a and b are physical intensities. We shall denote
by B(a,b) the midway intensity. produced by the subject. In
some situations, the subject may be asked to adjust a dial;
B(a,b) may then be estimated by averaging over trials. In other

1-53

cases, B(a,b) may be obtained by applying an adaptivé procedure
(cf. Section 6.2).

A frequently proposed model for the resulting data is for-
malized by the equation

u(a) + u(b)

2 2
in which the function u is assumed to be strictly increasing and
continuous but is otherwise arbitrary. The idea behind this
representation is that the subject performs the task by computing
the arithmetic average of a and b. This computation, however,
is not (necessarily) carried out in the physical scale, but may
involve instead some unknown psychophysical scale, represented
in Eq. (137) by the function z. It may seem that since u is
unspecified, Eq. (137) is not saying very much. But this is not
so. Equation (137) is telling us that B is an operation which
must behave essentially like an arithmetic average. In fact,
this model puts severe constraints on the data. A sunple example
is the commutativity equation”™

u[B(a,b)] = 137

Blad) = Bba) (138
which immediately results from Eq. (137) by observing that
the terms u(a) and u(b) commute in the right member. Equation
(137) also 1mpl1es that B must be zdempotent that is, we must
have : :

Blaa) = a (139)

for all stimuli a. This follows from the fact that |

- ulB@a)] = {u@ + u@l2 = ula)

which yields Eq. (139) since u is a one-to-one function. A less

obvious consequence of Eq. (137) is the condition
B[B(a,b),B(c,d)] = B[B(a,0),B(b,d)] , (140)

Wiliéh is often referred to as 'bisymmétry.'The' éasy prbof that '

Eq. (137) implies bisymmetry is left to the reader. This impli-

cation can be reversed;. under geneiial continuity and monoton-
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Figure 1.30. Best fit of Eq. (135) to scale data of Stevens and Guirao (1967).
(From G. J. lverson & M. Pavel, On the functional form of partial masking
functions in psychoacoustics, Journal of Mathematical Psychology, 1981,
24. Reprinted with permission.)
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icity properties of the midway function B, idempotent, com-
mutativity, and bisymmetry together imply the existence of a
function u satisfying Eq. (137) (Krantz et al., 1971).

An experimental test of bisymmetry in auditory perception
can be found in Cross (1965; cited by Coombs, Dawes, & Tversky,
1970). Bypassing such tests, it is also possible to “search” directly
for a function u satisfying Eq. (137). This is done by Weiss
(1975) and Anderson (1976, p. 107, 1981, p. 37). A good fit is
obtained for a power function u(a) = )\aé. As we shall see in
this section, this form of the scale u is of particular interest.

In some cases, commutativity may not hold. Consider a
situation in which @ and b are two intensities of a pure tone
presented monaurally and successively. It is conceivable (in
fact, likely) that the produced midway value will depend on
which of @ and b is presented first: the midway operation has
to be performed between two stimuli, one of which is being
kept in memory for some time and thus subject to the effects

of a possible decay. The idempotent property may also fail. In -
such cases, Eq. (137) may be generalized as follows. If bisym-

metry and idempotent hold, but not (necessarily) commutativity,
then the appropnate model i is

u[B(ab)] = au(a) + (1 - u®)

with a > 0, a constant,. If neither. ‘idempotent nor commutativity
is assumed to hold, but bisymmetry is satisfied, then we have
the still more general model '

u[B(a',b)] = au(a) + yu®d) + 3

with a > 0,vy.> 0. : :

Bisection provides an add1t10na1 example ofa homogenelty
law. In a classic application of this type of paradigm, Plateau
(1872) gave a pair of painted disks, one white and one black,
to each of eight artists and instructed them to return to their
respective studios and paint a gray disk midway between the
two. The resulting gray disks, reported Plateau, were almost
identical for all eight artists, in spite of the variation in the

illumination conditions under which they were produced. Let

‘us suppose that such results would hold for any pair of gray
disks. A possible formalization of this circumstance would be

as follows. Let (a,b) denote a pair of gray disks, in a specified "

viewing condition in Plateau’s laboratory. Let a and b denote
the luminance of the disks in conventional units. Let B(a,b)
denote the midway gray disk in the same viewing condition.
The artist, however, has performed the task in a studio, in
different illumination conditions, that is, with the pair (\a,\b)
(where \ is a positive constant equal to the ratio of the illu-
mination in the artist’s studio to that of Plateau’s laboratory).
By hypothesis, the resulting midway disk is independent of the

1llununat10r; As a consequence, the following equation must,

hold:

B(\a,\b) = AB(a,b) . (141)
Indeed, this means that the midway disk obtained in Plateau’s

laboratory is identical to that produced by the artist in the

studio, when seen under the same conditions. In other terms, -

B is homogeneous of degree 1 (cf. Section 7.2.2). But if both the
averaging model, Eq. (137), and the homogeneity property, Eq.
(141), are assumed to hold, then the possible forms of the function
u are very limited; u must be either a power function,
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u(a) = adf + v,
or a logarithmic function,
ula) = aloga + 8

(o, B, vy constants). No other forms exist which would satisfy
both Egs. (137) and (141). This was noted by Krantz (Note 3),
who also remarked that essentially the same argument applies
to the basic equal-spacing principle underlying the construction
of the Munsell system (Munsell, 1929). We recall in this con-
nection the results of Weiss (1975) and Anderson (1976, 1981)
who, using a different method, also obtained a power function
for their bisection data.

The bisection models discussed here are deterministic, which
renders their application to data delicate. Fortunately, proba-
bilistic versions of such models can be developed, which are
similar in spirit to the models discussed in Sections 9.6 and 9.7
for additive conjoint measurement. For the sake of illustration,
one possibility is outlined here." '

We begin by replacing the operation yielding a stimulus

- midway] between a and bbya random vanable B(a,b). Eq (137

becomes

u[B@)] = [u(@ + u®l2 + e@b), (142
in which e(a,b) is an error random varié.ble with a unique median
equal to 0. Let m(a,b) be the median of the random variable
B(a,b). By a simple argument along the lines of that used in
Section 9.6.3, Eq. (142) implies

“ulm(ab)] = [u(@ + u®)2,

an equation which has exactly the form of Eq. (137), with the
median m replacing the deterministic operation B. This means
that the conditions of idempotency, commutativity, and bisym-
metry must be satlsﬁed by the medlans In other terms, we
must have | :

m(a,a) = a ,

m(a, b) m(b, a) )

Il

" mim@,bimc,d) = min(a,o,m®,d)l .

Similarly, the homogeneity condition uncov’ered‘ in Plateau’s
experiment is formalized by the equation :

m(Aa\b) = Am(a,bd) .

As in the case of the random conjoint measurement model,
nonparametric tests can be used to evaluate the empirical va-
lidity of these conditions. :

9.10. Key References

Preoccupations with the role of chance in the improvement of
performance observed in multichannel perception were ex-
pressed early (Dawson, 1913). The first explicit formalization
of probability summation in the sense of this section is attributed
to Pirenne (1943). A review can be found in Blake and Fox
(1973). Chapter 9 in Green and Swets (1974) is devoted to models
for multichannel perception, including the integration model.
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Tests of a specific model of probability summation are described
in a recent paper by Nachmias (1981). The applications of prob-
ability summation considered in this chapter were limited to
a two-channel situation. The ideas developed are easily extended
to n-channels. However, when a large number of channels is
involved, a new situation arises, in which some convergence
theorems of probability theory are applicable. These issues are
considered in chapters by Watson; Arditi; Olzak and Thomas;
Regan, Kaufman, and Lincoln; Ginsburg; and Treisman in this
handbook.

Additive conjoint measurement is a standard topic of mea-
surement theory, a detailed exposition of which is contained in
Krantz and colleagues (1971) and Roberts (1979). The intro-
duction of probabilistic models in additive conjoint measurement
is in the spirit of the models encountered in probabilistic choice
theory (Luce & Suppes, 1965). The models discussed here were
developed by Falmagne and his coworkers (Falmagne, 1976,
1978, 1979; Falmagne & Iverson, 1979; Falmagne, Iverson, &
Marcovici, 1979).

- Implicitly, the study of homogeneity laws has been part of
psychophysics since its inception (Weber’s law is a homogeneity
law). Many psychophysical laws or models are instances of or
at least are consistent with some homogeneity law. A systematic
investigation of homogeneity laws and their impact on psycho-
physical theorizing has recently been undertaken by Falmagne,
Iverson, and Pavel (Falmagne & Iverson, 1979; Falmagne,
Iverson, & Marcovici, 1979; Iverson & Pavel, 1980, 1981a, 1981b;
Pavel, 1980). An introduction to the functional equation tech-
niques used in these papers can be found in Aczél (1966).

A treatment of bisection, from the viewpoint of measurement
theory, is contained in Krantz and colleagues (1971; see also
Pfanzagl, 1968). . . : -

There was a substantial amount of arbitrariness in the
choice of topics covered in this section. The reader may be sur-
prised, for example, that only a passing reference was made to
the work of Anderson and his collaborators (Anderson, 1970a,
1970b, 1974, 1976, 1981]. Actually, the organizing principle for
this section was to include multivariable models or techniques

only if they were a natural extension of “classical” psychophysics. )

Scaling models or techniques are covered in Section 10.

10. SCALING

Scaling covers a collection of models, procedures, and empirical
analyses, purporting to provide a representation of some data
in terms of one or more numerical scales. Such is, of course,
also the aim of measurement theory, a field in which, typically,
axiom systems are given justifying specific methods of scale
construction (cf. Section 2). In the work usually classified under
the scaling label, however, acquiring the scales is often regarded
as an end in itself, and the theoretical underpinnings are of
secondary importance. Objections have deservedly been made
to that state of affairs. The uses of a scale without a firm the-
oretical foundation are restricted. In particular, if the ¢ype of a
scale (see Section 10.1) is unknown, it may be difficult to decide
whether a given model or a mathematical expression employing
that scale makes sense from a certain logicophilosophical view-
point (see Section 10.10).

After an introduction to scale types, the most common uni-
dimensional scaling methods and data will be reviewed. Two
theoretical approaches will then be considered: the Shepard-
Krantz relation theory and the functional measurement pro-
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cedures, introduced by Norman Anderson. A brief discussion
of the issue of the psychophysical scale and the measurement
of sensation will follow. Finally, the notion of meaningful psy-
chophysical laws will be brought to the attention of the reader.
(Note that the so-called multidimensional scaling techniques
are considered by Wyszecki, Chapter 9.) ‘

10.1. Common Types of Scales

In most cases, numerical scales constructed from (and explaining)
some empirical data are not defined uniquely. It is usually agreed,
for example, that the numerical scale used for the measurement
of length is a ratio scale, which means that the numerical values
assigned to the objects are defined up to a multiplication by a
positive constant (e.g., a change of units from centimeter to
meter is admissible). In this exemplary case, the exact degree
of arbitrariness of the scale is a consequence derivable from a
completely axiomatized theory. One assumes that the data satisfy
the axioms of the theory, which in turn provides a procedure
for the construction of the scale and specifies the degree of
arbitrariness of such construction. How this applies in the case
of length has been discussed in detail in Sectio1. 2, The degree
of arbitrariness of the scale is referred to as its ¢ype. Despite
the variety of forms of data, only a few types of scales are
actually used in scientific practice. The reasons for this scarcity
are not very well understood (see, however, Narens, 1981). The
most commonly used types of scales are listed in Table 1.4.

10.2. Overview of (Unidimensional) Scaling
Methods

The psychophysical procedures discussed in earlier sections of
this chapter (such as that used in the yes-no paradigm) were

rather painstaking. In a typical experiment, several hundred.

observations per point are collected for each subject. By contrast,
the methods considered here may use only a few observations
per point (sometimes as few as one or two observations per
subject). However, the subject’s responses tend to be much more
elaborate. For example, the §ubject may be asked to identify
the stimulus presented, using a label previously attached to
that stimulus (as in the absqlute identification method) or be
required to evaluate the stimulus numerically, according to
some rule (as in magnitude estimation). There are a number of
such scaling methods, and ways of classifying them. In the next
four sections, we classify the methods by the type of response
required from the subject. Each subsection contains a brief de-

Table 1.4.. The Most Commonly Used Types of Scales.

Scale Type Admissible Transformations Examples

Absolute Identity: x — ¢(x) = x Counting

Ratio Similarity: x — ¢(x) = azx, Length, mass
with a >0

Interval Affine: x — 6(x) = ax + B, Temperature
witha >0

Log-interval x> dlx) = oxb, Density

withae > 0andB >0

Each type is defined by the class of admissible transformations of the scale;
for example, the ratio scale type is that defined by all the transformations of
the form x = ax, with o > 0. The case for density and other fundamental
physical quantities to be log-interval scales is made by Krantz, Luce, Suppes,
and Tversky (1971).

Se
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scription of the procedures and of the typical experimental re-
sults.

Under the impetus of S. S. Stevens, an impressive array
of experimental results were collected, which generally support
the contention that through subjective judgments the sensory
continua are related to each other and to the number continuum
by power laws (at least to a first approximation). The power
law was offered by Stevens as a substitute for the logarithmic
relation of Fechner (cf. Section 7.3). The merit of this proposal
is discussed in Section 10.10. In this connection, the reader
should bear in mind that the psychophysical methods discussed
_ in this section were often introduced in a spirit of criticism of
 the “classical” methods, such as the yes-no paradigm and its
| close relatives. These were thought to lack realism, to the extent
_ that the data were focusing on “local” effects (e.g., the discrim-
! ination of neighboring stimuli), while the natural environment
| involves the simultaneous apprehension of a large collection of
' widely distributed stimuli. The terms local and global are
| sometimes used to denote the two classes of procedures.

110.3. Absolute Identification

| In a preliminary period, the subject is trained to associate one
| of n labels (say, the numbers from 1 to n = 10) to each of n
| stimuli. During the main phase of the experiment the subject
| is presented a stimulus on each trial and is required to produce
| the appropriate label. The subject’s response is recorded. The
| succession of stimuli is random. Occasionally, immediate rep-
| etitions are avoided.

‘ A straightforward analysis of the data is in terms of the
proportlon of correct responses. Another measure of performance,
| not often used now, is the average information transmitted by
;the responses (cf. Coombs, Dawes, & Tversky, 1970; Garner,
11962; Miller, 1953). More recently, a measure based on the
'index d' of signal detection theory (cf. Section 8) has been pro-
| posed (Luce, Green, & Weber, 1976).

For stimuli varying along one sensory continuum, the main

finding is that the maximum number of stimuli that can be
identified perfectly by an untrained subject is between five and
nine, depending on the continuum, for example, Pollack (1952)
and Garner (1953). (See Miller, 1956, for a review of the facts.
Obviously, specialists, such as professional musicians for pitch
identification, may score much better than that.) This result is
regarded as puzzling since it appears to be at variance with the
data of local studies. For instance, only stimuli that are very
close on the physical scale (say, less than a couple of decibels
apart in auditory discrimination) are ever confused in a two-
alternative forced-choice (2AFC) paradigm. An extrapolation
|would lead to predict a perfect identification of several dozen
|suitably located stimuli in an absolute identification experiment.
iThe discrepancy may be due to the fact that efficient guessing
|strategies can be used in a 2AFC situation, which are no longer
lavailable in absolute identification.

At first, the absolute identification paradigm may seem

stralghtforward Actually, the data are plagued with a variety
of sequential effects and “anchoring” effects that render the
lanalysis extremely difficult. Regarding anchoring, or edge, ef-
fects, see, for example, Berliner and Durlach (1973), Berliner,
Durlach, and Braida (1977), Braida and Durlach (1972), Durlach
and Braida (1969), Gravetter and Lockhead (1973), Lippman,
Braida, and Durlach (1976), and Weber; Green, and Luce (1977).
Sequential effects in absolute identification have been explored,
for example, by Holland and Lockhead (1968), Jesteadt, Luce,
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and Green (1977), Purks, Callaghan, Braida, and Durlach (1980),
Ward (1972), and Ward and Lockhead (1970, 1971).

10.4. Category Rating

As with absolute identification, in category rating one stimulus
from a sensory continuum is presented at each trial. The subject
is instructed to assign each stimulus to one of m-ordered cat-
egories, for example, the numbers 1 to m. These categories are
assumed to be subjectively “equally spaced”; that is, the sub-
jective distance between category 3 and 4 is identical to that
between 10 and 11. The number m of categories is often smaller
than the number of stimuli and may vary from a few (5-7) to
several dozen.

In variations of this method, pairs of stimuli are presented
at each trial, and the subject is required to rate (that is, to
assign a category to) subjective “differences” or “ratios” of these
stimuli. In a rather extreme version, four stimuli are presented
simultaneously, and the subjects are asked to make very so-
phisticated judgments, such as rating the ratio of differences
or the difference of ratios (Birnbaum, 1978).

The most startling result is perhaps that the subjects not
only are capable of performing such tasks without major dif- °
ficulties but also provide surprisingly regular data: the average

- rating values often appear to vary smoothly with stimulus in-

tensity. The data may be analyzed in various ways. In an ex-

~ emplary case, the subjects rate subjective differences between

stimuli, and it is assumed that the average rating D, , corre-
sponding to physical intensities x, y satisfies a Fechnenan—type

. relatlon

D., = Flux) — u(yl, (143)
in which » and F are strictly increasing functions. In some
cases, F' is shown to be well approximated by a linear function.
Unfortunately, the subject’s performance in these tasks varies
markedly with the context. For example, the value of D, , in
Eq. (143) strongly depends on the distribution of all the stimuli
used in the experiment, specifically, the range, the spacing, and
the frequencies of these stimuli. Such facts, which are well
documented, may create problems for psychophysical theorizing,
depending on the locus of the effects. To pursue our example,

. a major.concern is-which of the two functions u, F' in the right -
~member-of Eq: (143) is affected by the context. The available .

evidence points out that only F is affected (Parducci, 1963, 1965,
1974; Parducci & Perrett, 1971; see Birnbaum, 1982, for a general
discussion and further references). Since the function u is a
candidate for the psychophysical scale, the key invariant, this
would leave open the possibility of a general theory.

10.5. Magnitude Estimation

In the widely used method of magnitude estimation, the main
advocate of which was S. S. Stevens, the subject is required to
provide “direct” numerical estimates of the magnitude of the
sensation evoked by the stimulation. Two variants of the method
have been employed.

In one, the subject is initially presented with a stimulus
(the standard) and told that the sensory magnitude of that
stimulus is assigned a certain value (modulus), say, 100. Other
stimuli are then presented in random order, and the subject is
instructed to estimate their sensory magnitude so as to preserve.
ratios. For instance, if the second stimulus presented seems to
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have a sensory magnitude which is half that of the standard,
its sensory magnitude should be estimated to be 50. Typically,
only a couple of observations are taken from each subject, and
the data of all subjects are combined by computing the median
or the geometrical mean.

The second variant has the favor of many investigators.
No standard and no modulus are provided. The subject is simply
told to assign to any stimulus presented any number that seems
suitable as an estimate of the sensation magnitude.

Interestingly, the results are very similar for the two
methods. For intensive continua, the mean or median response
&(x) is approximately a power function of the physical intensity
x

d@ = azP . (144)

In log-log coordinates, Eq. (144) becomes the equation of a
linear function with slope B, which can be fitted to the data by
linear regression. As exemplified in Figure 1.31, this prediction
holds reasonably well for much data, at least for moderate to
large intensities (see Marks, 1974, or S. S. Stevens, 1975, for a
presentation of the evidence). A better overall fit may be ob-
tained, at the cost of one extra parameter, by forms such as

ox) = axP + Y
or
o) = alx — P,
both of which are capable of handling the data at low intensities

(cf. Ekman, 1956, 1961; Fagot, 1963; Galanter & Messick, 1961;
Luce, 1959a; S. S. Stevens, 1959a).
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Brightness function: Binocular versus monocular stimulation, Perception and
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The magnitude estimation procedure is also used in other
paradigms. For example, in ratio estimation, the observer is
asked to evaluate the subjective “ratio” of two stimuli. At least
to a first approximation, the experimental results are consistent
with those reported for the magnitude estimation of single
stimuli. More is said about such consistency in Section 10.7.

It was strongly argued by S. S. Stevens (1957, 1959a, 19614,
1961b, 1961c¢) that Eq. (144) should be taken as the fundamental
psychophysical law, rather than the logarithmic Fechnerian
form derived from Weber’s law together with the difference
representation for choice probabilities (cf. Section 7.3). Accord-
ingly, serious consideration is given to the estimated value of
the exponent B in Eq. (144), which some believe could be a
measure of some basic feature of the subject’s sensory system.
Several dozen sensory continua were investigated by Stevens
and others, and the values of the exponent B were tabulated
(see, for example, Table 1 in S. S. Stevens, 1975). The claim
that the exponent in Eq. (144) is of fundamental importance
for psychophysical theory encounters difficulties with various
data, however, which indicate that its estimated value strongly
depends on the experimental conditions or even on the instruc-
tions given to the subject. Among other studies, we mention
Teghtsoonian (1971), who shows that the estimated values of
B are correlated with the range of the set of stimuli used in the
experiment, and Robinson (1976), who demonstrates how the
instructions can systematically affect this exponent. A review
of some of these effects can be found in Poulton (1968). In the
light of available evidence, it is clear that no single, basic sensory
factor is responsible for the variations of the exponent. In par-
ticular, as argued by Green and Luce (1974), its value may
reflect some aspects of the subject’s decision-making process.

10.6. Production and Matching Methods

In production and matching methods, the subject is requested
to react to the stimulation by “producing” a value of a sensory
variable, for example, by turning a dial. There are several com-
monly used procedures, some of which have been encountered
earlier in this chapter. The bisection method described in Section
9.9 belongs to that category.

The magnitude production reverses the procedure used in
magnitude estimation. The subject is given a number and asked
to produce a matching intensity. As in magnitude estimation,

" a power law can be fitted to the data. However, as observed by

many investigators, the estimated exponent tends to be larger
(see S: S. Stevens & Greenbaum, 1966, for a summary of the
data). :

In the ratio production method, the observer is instructed
to adjust the intensity of the stimulus in such a manner that
it appears to be a particular multiple or fraction of a standard.
(In this last case, the term fractionation method is also used.)
For example, the subject may be required to produce a tone
intensity appearing half as loud as the standard tone of the
same frequency. These methods have a long but scattered history
and were regarded with some suspicion until Stevens’s major
contribution to the field. By and large, the data are similar to
those obtained with magnitude estimation. (For details, see
Marks, 1974 or S. S. Stevens, 1975).

A rather startling prediction may be obtained for the data
of the so-called cross-modality matching method. Suppose that
for two sensory continua, denoted below as 1 and 2, the mag-
nitude estimation data are adequately summarized by the two
power laws

~ar
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da(y) = agyP? (145)

d1x) = ayzPt
* For concreteness, suppose that the two sensory continua are
_ loudness and brightness. Imagine now that in a third experiment

the subject, rather than matching physical quantities to numbers
_ as in a magnitude estimation experiment, is requested to match
_ the values directly from one sensory continuum to the other,
say, from loudness to brightness. At first, this instruction may
_seem rather bizarre. Actually, not only are the subjects capable
_ of performing such a task without undue hardship, but, once
. again, they provide reasonably regular data. Assuming that
_ the matching of brightness to loudness is achieved by equating
. the values of the two psychophysical scales, that is, the two
| right members in Eq. (145), we obtain

ol = agyP?

Writing ¢;2 for the cross-modality matching function (thus

v"bl 2(x) = y) and rearranging, yields
‘ b1200) = apxPlz, (146)
a power law with

B2 = Bi/B2 , (147)
fand'

are = ajfag . (148)

The prediction that the cross-modality matching function
is a power law has been verified by several authors, for many
continua, and it holds rather well (cf. Figure 1.32). For a number
of reasons, the verification of the specific relation linking the
exponents in cross-modality matching and magnitude estimation
is not as straightforward as it may seem. While S. S. Stevens
(1975) and Marks (1974) conclude that Eq. (147) is well supported
by the facts, doubt has been expressed by others, based on their
analysis of their own data (Baird, Green, & Luce, 1980; Mashour
% Hosman, 1968).

120
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10.7. Krantz-Shepard Theory

Despite the limitations, the array of results collected by Stevens
and his followers, and summarized in the last two subsections,
contains enough regularities to require a systematic explanation.

The relation theory outlined below represents the most sat-
isfactory effort made to account for a substantial part of the
data. Some seminal ideas were first proposed by Shepard, in
an unpublished manuscript, and were then elaborated and ax-
iomatized by Krantz (1972; see also Shepard, 1981). In presenting
this theory, we make a number of idealizations. We omit the
fact that the data are noisy, are the locus of important contextual
and sequential effects, and so forth. To simplify and shorten
the exposition, we also specify the theory by properties actually
derivable from more abstract axioms in Krantz's paper. (To
some extent, our presentation “trivializes” the theory but hope-
fully renders key notions more transparent.)

The data concern n sensory continua, numbered 1, 2, ..., n
We begin by tightening up the notations. The lettersx, y, ... (or
sometimes x;, ¥;, ..., 1 < i < n, to avoid ambiguities) will stand
for positive real numbers representing physical intensities of
the stimuli (energy level). We denote by:

N;( y]x,p).ﬂ" The magnitude estimation of stimulus y, with
standard x and modulus p, in the sensory continuum i, 1 < i<
n.

Pi(x,y). The ratio estimation of the pair (x,y) in the sensory
continuum 1.

C,,(y,lx,,x,) The cross-modality matching value of stimulus
; from sensory continuum j into sensory continuum Z, with mod-
ulus (x;j,x7):

In Krantz’s system, the cross-modality matching modulus
may be taken to be the stimulus-response pair of the preceding
trial. Six axioms, labeled RT1-RT6, specify the theory.

Axiom RT1. For every sensory continuum i, 1 < i < n, there
is a function (x,y) — li(x,y) mapping the pairs of stimuli onto
a subset of the positive reals (independent of i). These functions
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Figure 1.32. Cross-modality matching data between loudness and 10 other sensory continua. (From S.

1966, 1. Reprinted with permission.)
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. are continuous, strictly increasing in the first variable and
strictly decreasing in the second variable. Moreover, the func-
. tions /; are assumed to satisfy the two conditions:

- 1. lilx,y) = li(z,w) implies Li(w,2) = 1y, x).
2. If ;(x,y) = [j(x',y") and [;(y,2) = [;(y',2'), then [;(x,2) =
Li(x',2").

This is the basic notion. Every pair (x,y) in a sensory continuum
i is mapped into a sensation continuum by the function ;. We
shall see that the two conditions (1) and (2) ensure that the
quantities /;(x,y), [j(z,w), ..., and so forth, behave in a certain
sense like arithmetical ratios (see Eq. (149)). In the sequel, we
shall refer to /;(x,y) as the sensation “ratio” of (x,y). Any esti-
mation or production task is then carried out through the me-
diation of the sensation “ratios” of the pairs of stimuli involved.
Examples are given in the next two axioms.

Axiom RT2. There is a positive-valued, strictly increasing
function H such that for every sensory continuum i,

Pi(x,y) = H[lLi(x,»)] .

In words, the ratio estimates are strictly increasing with
the sensation “ratios.”

Axiom RT3. ' For every pair (j,7) of sensory continua,
Cji(yjlxj,x:) = i implies [i(y,x) = Li(yix:)

In words, with cross-modality matching modulus (x},%;), y;
is matched to y; only if the sensation “ratios” of (y;x;) and
(y:,x;) coincide.

The next two axioms emphasize the special role played by one
sensory continuum, arbitrarily numbered 1.

Axiom RT4. For the sensory continuum 1,

Pix,y) * Pi(32) = Pilx2) .

Axiom RT5." If li(y,x) = l1(z,w), then

Ni(ylx,p) = pfz,w) .

The special continuum is assumed to be length. Axiom RT4
states essentially that mental estimation of length ratios behaves
like physical measurement, an assumption which, Krantz ar-
gues, is supported by the fact that the estimated exponents of
the power law for judgments of distance are often close to 1.
(Some would question that fact. We postpone criticism at this
point.) Axiom RT5 is consistent with a mechanism in which
magnitude estimation in any sensory continuum i is obtained
through computation in the length continuum.

Axiom RT6. For any sensory continuum i and any positive real
numbers x, y, and A,

Lx,\y) = Lilx,y) .

Note that this last axiom, which will procure the power law,
has the form of Weber’s law but applies also to discriminable
stimuli. These six axioms have a number of consequences for
psychophysical judgments, examples of which follow.

From Axiom RT1 it can be derived that for any sensory
continuum
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lie,y) = GLAGfi(] , (149)

for strictly increasing, continuous functions G and f;. Combining
this result and Axiom RT2, we obtain

Pi(x,y) = H{GLfix)/fi(N]} . (150)

By a standard functional equation argument, applying Eq. (150)
and Axiom RT4 results in the function H[G(s)] having the
form

H[G()] = s (151)

for some positive constant y. From Eq. (150) and Axiom RTS,
we deduce

fiA)fi\y) = [i@fi(y) ,

‘a functional equation which (in the conditions of monotonicity

or continuity of f;) has only the solution

fi®) = axPi,

_for some constant a, B > 0. From Eq. (149), we obtain thus

Lxy = Gl . (152)
Replacing the sensation magnitudes in Axioms RT2, RT3, and
RT5 by their expressions as given by Eq. (152) and using also
Eq. (151) gives the expected predictions:

Pi(x,y) = (xly)Pi? ;
Ni(ylx,p) = pGiy)P ;
Cii(yjlzjx) = xily;x)PitPe

Notice that the cross-modality matching exponents B /B can
be predicted by the ratio of the magnitude estimation exponents
of the preceding equation. :
Various criticisms can.be made against this theory. In par-
ticular, (1) it is deterministic, while the data are highly variable,
within or across observers; (2) it omits important sequential

~and contextual effects, which- some believe to be important

enough to bias the picture seriously; and (3) the special role of
the length continuum™can be questioned, specifically the con-
tention that the estimated exponent of the power law is ap-
proximately equal to 1 (Baird, 1970).

In our opinion, even though the predictions of relation theory
may not be fully supported by the data, they certainly represent
useful approximations. If nothing more, relation theory may
be taken as a good summary of the way a sizable part of the
psychophysical community idealizes data, still a serviceable
device.

10.8. Functional Measurement

For some psychophysicists, the data of magnitude estimation
and production are hopelessly biased by uncontrollable nuisance
effects and such methods should be abandoned. Such is the
position of Anderson, who advocates an alternative collection
of procedures and models which he calls functional measurement
(see Anderson 1974, 1976, 1981, for numerous references).
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In a typical application of functional measurement, the
subject is presented with stimuli varying along several dimen-
sions or aspects, in a factorial design, and is required to produce
a rating value, say, on a 20-category rating scale. In one ex-
periment, for example, designed to assess the so-called size—
weight illusion, subjects were asked to rate the subjective
heaviness of cubical blocks varying in weight and size (Anderson,
1970a). One or more algebraic models are then applied, sym-
bolizing different combination rules for the factors. Let r;; stand
for the (average) rating in cell (i, j) of a two-factor design. The
most frequently used models are:

The Adding Model ri o= o + B
The Averaging Model rg = wic + wiB; .

w; + wj
The Multiplying Model ri; o= o ¢ B .

EXPERIMENT 1
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Figure 1.33. Anderson’s data for the size-weight illusion. Subjects lift and

judge heaviness of cubical blocks in a 3 x 5, gram weight x block size.

design. Verbal rating response plotted in upper graph (a); graphic rating
response in lower graph (b). (From M. H. Anderson, Averaging model applied
to the size-weight illusion, Perception and Psychophysics, 1970, 8. Reprinted
with permission.)

_———-——-
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Assuming appropriate distributions for the variances of the
errors, these models can be tested through standard analysis
of variance techniques. A graphic plot of the data is also used
to validate a model. In the case of the adding model, for instance,
since r; — rjz = o; — Bj, independent on &, a check of “paral-
lelism” can be'made. This is illustrated in Figure 1.33 for the
size-weight illusion experiment mentioned above (Anderson,
19702, 1981). This analysis favors a model in which subjective
heaviness (as evaluated by the ratings) is represented as the
sum of subjective weight and appearance.

Occasionally, the standard models cannot be fitted to the
rating data. A monotonic rescaling of the ratings is then carried
out by numerical techniques. When the fit of a model is taken
to be acceptable, the estimated values of the parameters «;, B;
can be plotted against the corresponding physical measure. The
resulting relation is called the psychophysical law for that sen-
sory continuum. It is assumed, or hoped, that this relation will
hold across situations varying the experimental design, the .
instructions, and the model but involving the same sensory
continuum. : o

Over the years, Anderson and his followers have applied
functional measurement -methods to a large body of data in
psychophysics and elsewhere and have often succeeded in parsing
out the effects of the factors on the ratings, through one or the
other of the standard models.

A number of criticisms of Anderson’s approach have been
made however. The major point of contention concerns the rating
response used and, in particular, the status of that response
measure with respect to scale type. The mathematical form of
the adding and averaging models is invariant under affine
transformations (i.e., transformations x — yx + 3). This property
led Anderson to argue that when one such model is found to fit
some data, it can be concluded that the rating response and the
estimated parameters are interval scales. The objections to this
controversial claim are reviewed in Birnbaum (1982).

10.9. | Measurement of Sensation
DO ,

It is impossible in a few pages to do justice to the diversity of
positions concerning the measurement of sensation and the:
form of the “psychophysical scale,” that is, the mathematical
function relating physical intensity to sensation magnitude.
(Foi"a recent sample, see Warren, 1981, and the comments
following the article.) These positions go from a rejection of the
issue (the measurement of sensation is a hopeless enterprise;
e.g., Tumarkin, 1981) to a strongly held opinion that given
appropriate experimental control, a particular method yields
the desired psychophysical scale (e.g., Anderson, 1981; or'S. S.
Stevens, 1975). A consensus is not in sight; it has been helpful
to distinguish two classes of sensible positions.

1. Category 1. Given a large collection of psychophysical
data considered important by the psychophysical community,
a psychophysical scale should be adopted that renders simple
or convenient the numerical expression of these data and of
the models explaining them. In line with such a position, it is
recognized that there is typically a degree of arbitrariness in
the choice of a scientific scale and that models and data can
usually be recoded if a monotonic rescaling is taking place.
Exemplars of this position are Luce and Galanter (1963a), Ellis
(1966), and Falmagne (1974). In this connection, we note that
there is an overwhelming tendency to plot psychophysical data
in logarithmic coordinates and that many models currently in
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use -have their variables in decibel units or could easily be

recast in such terms. From this viewpoint, the Fechnerian log-

~ arithmic scale would yet appear—notwithstanding all the at-
tacks—as a reasonable choice for the psychophysical scale.
One objection to this admittedly utilitarian position is that
there is no foreseeable agreement regarding what constitutes
the bulk of important psychophysical data.

2. Category 2. The psychophysicists in this second cat-
egory consider some particular data to be of primal value in
uncovering the psychophysical law. The basic idea is that stim-
ulus intensities have a numerical representation in the subject’s
organism, which can be accessed directly if the right response
is elicited from the subject in the right paradigm. In the same
vein, the logarithmic scale is rejected by observing, for example,
that pairs of stimuli which are equidistant on the logarithmic
scale do not appear to be equidistant subjectively or by showing
that this scale differs from that obtained by the selected direct
method. Many examples of tenants of such a position may be

" found among Stevens followers. The belief in the existence,
within the organism, of a numerical representation of sensory
intensities may perhaps strike a philosopher as a severe case
of reification. However, the surprising consistency of the results

- reported by different laboratories using the same direct method

. prevents a casual dismissal of the notion. As if some analog

device were available to them, the subjects are indeed able to
make sense of descriptions of stimuli, such as “half as loud” or

“twice as bright,” or to provide regular magnitude estimation

or rating data.

The difficulty for the advocates of a particular direct method
is, ‘again, that there is no agreement in the psychophysical
community regarding the choice of such a method. This is both
*understandable and justified, since the regularity and consis-
tency of the data generated by any direct method (however
surprising they may be) are not such that these data could
provide the foundation for a scientific scale. »

In our opinion, the choice of a psychophysical scale is in
part a matter of scientific strategy, with unavoidable political
overtones. What should be accomplished with such a scale? It
is easily conceivable that no scale could usefully serve the dual
purpose of (1) determining a convenient numerical notation

of scientific psychophysical facts and models and (2) providing

a medium of communication with a naive public on prac-
tical questions involving subjective impressions of sensory
intensities.

10.10. A Note on Meaningful Psychophysical Laws

One might suppose that the choice of a mathematical formula

‘to represent some data, say, in the form of a scientific law, is
solely a matter of goodness of fit. Of course, routine precautions

must be taken when evaluating the fit, such as accounting for .

the number of parameters. This can often be done by standard
statistical methods, such as likelihood ratio or minimum chi-
square. Granted a proper statistical analysis, the best-fitting
formula or model should be chosen, or so it may seem.
Actually, the above scheme is not completely accurate, and
considerations of a completely different nature may enter into
the selection of a formula. In particular, depending on the type
of the scale or scales involved, a given formula may or not be
a sensible choice. Suppose, for example, that in an application
* of the 2AFC paradigm, the binary choice probabilities are rep-
resented by the equation
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Pa,b (153)

a + 1.83

F (b + 1.83> ’
in which @ and b are stimulus intensities expressed in some
units of a standard ratio scale (say, sound pressure, weight, or
length), F' is a strictly increasing continuous function, and 1.83
is a constant. Equation (152) can be objected to on the grounds
that it conveys little information if the particular units of the
variables @ and b are not mentioned. One might ask, Why not
mention the units? It turns out that all the scientific laws of
importance satisfy the property that they can be quoted without
mentioning the units of the scales. Curiously, this is a statement
of fact, not a regulation. To illustrate, according to Coulomb’s
law, “The force in a homogeneous isotropic medium of infinite
extent between two point charges is proportional to the product
of their magnitude, divided by the square of the distance between
them” (Gray, 1957).

Note that this statement of Coulomb’s law remains true
no matter which units are adopted for the scales entering in
the formulation of the law. This statement is thus unambiguous.
Numerous similar examples could be given in physics and other
fields. By contrast, the form of Eq. (152) is not invariant with

-~ admissible transformations of the scales. A better formulation

for the lawfulness that Eq. (152) was attempting to capture

would be
a + A
Pap = F(b + x>

in which \ is a scale-dependent constant. In the technical jargon,
those mathematical formulas having a form invariant of the
units of the scales are called meaningful. As noted by Falmagne .
and Narens (1983), the strong liking of scientists for meaningful
formulas to represent laws is probably due to a combination of -

- practical and theoretical reasons. From a practical viewpoint,
* the adoption of nonmeaningful formulas would almost certainly

introduce chaos into scientific communication. From a theoretical

- viewpoint, mean1ngfulne§s appears to lead to coherent systems

of units (cf., Luce, 1959(b)). Our example involving Eq. (152)
may suggest that these matters are relatively trivial and that,
with some care, considerations of meaningfulness are easy to
apply. Actually, this is only true in the case of very simple
mathematical forms. , ,

The space available here only perrmts us to alert the reader
to this question, a full discussion of which would take many
rather technical pages. For an introduction to the issue of
meéaningfulness, see Suppes and Zinnes (1963), Roberts (1979),
or Falmagne and Narens (1983). Apphcatmns in psychophysms
can be found in Luce (1959b).

10.11. Key References

The field of scaling is among those covered regularly in the
Annual Review of Psychology; for example, Ekman and Sjoberg
(1965), Zinnes (1969), Cliff (1973), Carroll and Arabie (1980).
The last paper reviews the developments in multidimensional
scaling techniques.

The notion of the type of a measurement scale is analyzed
in basic measurement papers or books (Ellis, 1966; Krantz et
al., 1971; Roberts, 1979; Suppes & Zinnes, 1963).

Techniques, data, and philosophy of direct scaling are dis-
cussed in great detail in the books by Marks (1974) or S. S.
Stevens (1975).
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Introductions to functional measurement procedures are
contained in a number of papers and in one book by Anderson
(e.g., 1970a, 1970b, 1974, 1976, 1981). An axiomatic analysis
of functional measurement, from a measurement standpoint,
has been given by Luce (1981).

A recent discussion of some controversial issues in psycho-
logical measurement, with a special emphasis on rating scales
* (including functional measurement methods), can be found in
Birnbaum (1982).

" Since Fechner, numerous discussions of the issue of mea-
suring sensation have been published, few of which are really
enlightening. The last section of Krantz (1972)—although
written in a rather terse style-is useful reading in this con-
nection.

Space limitation forced us to consider in detail only two
theoretical viewpoints on psychophysical scaling, namely, the
Krantz-Shepard relation theory and Anderson’s functional

measurement procedures, both of which were chosen in view .
of the amount of data concerned by the theories. This selection

may give a distorted view of the field. Among other regrettable
omissions, we mention Green and Luce’s theory (1974; see also,
e.g., Green, Luce, & Duncan, 1977, and Levine, 1974).

REFERENCE NOTES

ey

Pavel, M. Personal communication, 1982.

2. Vorberg, D. Bayesian estimation of arbitrary points on psychometric
functions. Paper presented at the Thirteenth Annual Mathematical
Psychology Meeting, University of Wisconsin, August 1980.

3. Krantz, D.H. Personal communication.

REFERENCES

Aczél, J. Lectures on functional equations and their applications. New
York: Academic Press, 1966.

Alpern, M., Rushton, W. A. H., & Tori, S. The attenuation of rod signals
by backgrounds. Journal of Physiology, 1970, 206, 209-227. (a)

Alpern, M., Rushton, W. A. H., & Tori, S. The signals from cones.
Journal of Physiology, 1970, 207, 463—4175. (b)

Alpern, M., Rushton, W. A. H., & Tori, S. The size of rod signals. Journal
of Physiology, 1970, 206, 193-208. (c)

Anderson, N. H. Averaging model applied to the size—weight illusion.
Perception and Psychophysics, 1970, 8, 1-4. (a) ,

Anderson, N. H. Functional measurement and psychophysical judge-
ment. Psychological Review, 1970, 77, 153—170. (b)

Anderson, N. H. Information integration theory: A brief survey. In D,
H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemn-
porary developments in mathematical psychology, Vol. 2: Measure-
ment, psychophysics, and neural information processing. San Fran-
cisco: W. H. Freeman, 1974.

~

Anderson, N. H. Integration theory, functional measurement and the .

psychophysical law. In H. G. Geissler, & Y. U. M. Zabrodin (Eds.),
Advances in psychophysics. Berlin: VEB Deutscher Verlag, 1976.

Anderson, N. H. Foundations of information integration theory. New
York: Academic Press, 1981.

Anderson, T. W., McCarthy, P. I., & Tukey, I. W. Staircase methods of
sensitivity testing. Navord Reports, 1946, March 21, 46-65.

Baird, J. C. Psychophysical analysis of visual space. Oxford: Pergamon
Press, 1970.

Baird, J. C., Green, D. M., & Luce, R. D. Variability and sequential
effects in cross-modality matching of area and loudness. Journal

THEORY AND METHODS

of Experimental Psychology: Human Perception and Performance,
1980, 6, 277-289.

Berliner, J. E., & Durlach, N. 1. Intensity perception IV. Resolution in
roving-level discrimination. Journal of the Acoustical Society of
America, 1973, 53, 1270-1287.

Berliner, JE., Durlach, N. 1., & Braida, L. D. Intensity perception VII.
Further data on roving-level discrimination and the resolution
and bias edge effects. Journal of the Acoustical Society of America,
1977, 61, 1577-1585.

Birnbaum, M. H. Differences and ratios in psychological measurement.
In F. Restle & N. J. Castellan, Jr. (Eds.), Cognitive theory (Vol. 3).
Hillsdale, N.J.: Erlbaum, 1978.

Birnbaum, M. H. Controversies in psychological measurement. In B.
Wegener (Ed.), Social attitudes and psychophysical measurement.
Hillsdale, N.J.: Erlbaum, 1982.

Blake, R., & Fox, R. The psychophysical inquiry into binocular sum-
mation. Perception and Psychophysics, 1973, 14, 161-185.

Block, H. D., & Marschak, J. Random orderings and stochastic theories
of responses. In I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, &
.*H. Mann (Eds.), Contributions to probability and statistics. Stanford
" Stanford University Press, 1960.

Bock, R. D., & Jones, L. V. The measurement and prediction of judgement
and choice. San Francisco: Holden-Day, 1968.

Boring,E G., Langfeld, H. S., & Weld, H. P. Foundations of psychology.
- New York: Wiley, 1948.

Bradley, R.A. Incomplete block rank analysis: On the appropriateness
of the model for a method of paired comparisons. Biometrics, 10,

1 1954, 375-390. (a)
Bradley, R. A.Rank analysis of incomplete block designs. II. Additional
tables for the method of paired comparisons. meetrzka 41,1954,
-+ 502-537. (b)
Bradley, R. A. Rank analysis of incomplete block designs. III. Some
-+'large sample results on estimation and power for a method of paired
‘comparisons. Biometrika, 42, 1955, 450—-470.

Bradley, R. A., & Terry, M. E. Rank analysis of incomplete block designs.
I. The method of paired comparisons. Biometrika, 39, 1952, 324—
345.

Braida, L. D., & Durlach, N. I. Intensity perception. II. Resolution in
one-interval paradigms. Journal of the Acoustical Society of America,
1972, 51, 483-502.

Bramber, D. The area above the ordinal dominance graph and the area

-1 below the receiver operating characteristic graph. Journal of Math-
. ematical Psychology, 1975, 12, 387-415.

Broadbent, D. E., & Gregory, M. Vigilance considered as a statistical

+ decision. British Journal of Psychology, 1968, 54, 309-323.

Brown, J., & Cane, V. R. An analysis of the limiting method. British
Journal of Statistical Psychology, 1959, 12, 119-126.

Carroll dJ. B., & Arabie, P. Multidimensional scahng Annual Review
of Pscyhology, 1980, 31, 607-649.

Cliff, N. Scaling. Annual Review of Psychology, 1973, 24, 473-506.

Coombs, C. H., Dawes, R. M., & Tversky, A. Mathematical psychology:
An elementary mtroductzon Englewood Cliffs, N.J.: Prentice-Hall,
1970.

Cornsweet, T. N., & Pinsker, H. M. Luminance discrimination of brief
flashes under various conditions of adaptation. Journal of Physi-
ology, 1965, 17(6), 713-719.

Cramer, H. Mathematical methods of statistics. Princeton, N.J.: Princeton
University Press, 1963.

Cross, D. V. An application of mean value theory to psychological mea-

"~ surement. In Progress Report No. 6 (Report No. 05613-3-P). Ann
Arbor: The Behavioral Analysis Laboratory, University of Michigan,
1965.

Dawson, S. Binocular and uniocular discrimination of brightness. British
Journal of Psychology, 1913, 6, 78—-108.

Debreu, G. Topological methods in cardinal utility theory. In S. Karlin
& P. Suppes (Eds.), Mathematical methods in the social sciences.
Stanford: Stanford University Press, 1960.

Derman, C. Non-parametric up-and-down experimentation. Annals of
Mathematical Statistics, 1957, 28, 795-797.



PSYCHOPHYSICAL MEASUREMENT AND THEORY

Doignon, J. P., & Falmagne, J. C. Difference measurement and simple
scalability with restricted solvability. Journal of Mathematical
Psychology, 1974, 11(4), 473-499.

Durlach, N. I, & Braida, L. D. Intensity perception: I. Preliminary
theory of intensity resolution. Journal of the Acoustical Society of
America, 1969, 46, 372--383.

Egan, J. P. Signal detection theory and ROC analysis. New York: Ac-
ademic Press, 1975.

Ekman, G. Subjective power functions and the method of fractionation.
Report from the psychological laboratory (No. 34). Stockholm: Uni-
versity of Stockholm, 1956.

Ekman, G. Methodological note on scales of gustatory intensity. Scan-
dinavian Journal of Psychology, 1961, 2, 185-190.

Ekman, G., & Sjoberg, L. Scaling. Annual Review of Psychology, 1965,
16,451-474.

Ellis, B. Basic concepts of measurement London: Cambridge Umvers1ty
Press, 1966.

Engen, T. Psychophysics: Discrimination and detection. In J. W. Kling
& L. A. Riggs (Eds.), Experimental psychology New York: Holt,
Rinehart & Winston, 1971.

Fagot, R. F. On the psychophysical law and estimation procedures in
psychophysical scaling. Psychometrika, 1963, 28, 145-160.

Falinagne, dJ. C. Note on a simple property of binary mixtures. British
Journal of Mathematical & Statistical Psychology, 1968, 21(1), 131~
132.

Falmagne, J. C. The generalized Fechner problem and discrimination.
Journal of Mathematical Psychology, 1971, 8, 22-43.

Falmagne, J. C. Foundations of Fechnerian psychophysics. In D. H.
Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary
developments in mathematical psychology, Vol. 2. Measurement
psychophysics and neural information processing. San Francisco:
W. H. Freeman, 1974.

Falmagne, J. C. Random conjoint measurement and loudness summation.
Psychological Review, 1976, 83, 65-79.

- Falmagne, J. C. Note: Weber’s inequality and Fechner’s problem. Journal
' of Mathematical Psychology, 1977, 16, 267-271.

Falmagne, J. C. A representation theorem for finite random scales
systems. Journal of Mathematical Psychology, 1978, 18, 52-72.

Falmagne, J. C. On a class of probabilistic conjoint measurement models:
Some diagnostic properties. Journal of Mathematical Psychology,
1979, 19, 73-88. ,

- Falmagne, J. C. A probabilistic theory of extensive measurement.:
- Journal of Philosophy of Science, 1980, 47(2), 277-296.

Falmagne, d. C. Psychometric functions theory. Journal of Mathematical
Psychology, 1982, 25(1), 1-50.

Falmagne, J. C., & Iverson, G. J. Conjoint Weber laws and additivity.
Journal of Mathematical Psychology, 1979, 20, 164-183.

Falmagne, J. C., Iverson, G. J., & Marcovici, S. Binaural loudness sum-
mation: Probabilistic theory and data. Psychological Revzew, 1979,

: 86, 25-43.

. Falmagne, J. C., & Narens, L. Scales and meaningfulness of quantitative
laws. Synthese, 1983, 55(3), 287-326. ‘

Fechner, G. T. Elements of psychophysics. D. H. Howes and E. C. Boring
(Eds.), (H. E. Adler, trans.). New York: Holt, Rinehart & Winston,
:1966. (Originally published, 1860).

Fisher, R. A., & Tippett, L. H. C. Limiting forms of the frequency
dlstnbutxons of the largest or smallest member of a sample. Pro-

-

ceedings of the Cambridge Philosophical Soczety, 1928, 24, 180~

190.

Fréchet, M. Sur la loi de probabilité de '’écart maximum. Annales de
la Société Polonaise de Mathématiques (Cracow), 1927, 6, 93.
Galambos, J. The asymptotic theory of extreme order statistics. New

York: Wiley, 1978.
Galanter, E., & Messick, S. The relation between category and magnitude
scales of loudness. Psychological Review, 1961, 68, 363-372.

Garner, W. R. An informational analysis of absolute judgements of .

loudness. Journal of Experimental Psychology, 1953, 46, 373-380.
Garner, W. R. Uncertainty and structure as psychological concepts. New
York: Wiley, 1962.

1-63

Gescheider, G. A. Psychophysics: Method and theory. Hillsdale, N.J.;
Erlbaum, 1976.

Gigerenzer, G., & Strube, G. Are there limits to binaural additivity of
loudness? Journal of Experimental Psychology: Human Perception
and Performance, 1983, 9(1), 126—-136.

Gnedenko, B. V. Sur la distribution limite tu terme maximum d’une
serie aleatoire. Annals of Mathematics, 1943, 44, 423—453.

Gravetter, F., & Lockhead, G. R. Criterial range as a frame of reference
for stimulus judgments. Psychological Review, 1973, 80, 203-216.

Gray, D. E. (Ed.). American Institute of Physics handbook. New York
McGraw-Hill, 1957.

Green. D. M. An introduction to hearing. Hillsdale, N.J.: Erlbaum,
1978.

Green, D. M., & Luce, R. D. Variability of magnitude estimates: A
timing theory analysis. Perception and Psychophysics, 1974, 15,
291-300.

Green, D. M., & Swets, J. A. Signal detection theory and psychophysics.
New York: Krieger, 1974.

Green, D. M., & Luce, R. D. Parallel psychometric functions from a set
of mdependent detectors Psychological Bulletin, 1975, 82, 483—
486.

Green, D. M., Luce, R. D., & Duncan, J. E. Variability and sequential
effects in magnitude production and estimation of auditory intensity.
Perception and Psychophysics, 1977, 22, 450-456.

Gumbel, E. G. Statistics of extremes. New York: Columbia University
Press, 1958.

Helmbholtz, H. V. Zahlen und Messen erkenntnis-theoretisch betrachtet,
Philosophische Aufsutze Eduard Zeller gewidmet, Leipzig, 1887.
(Reprinted in Gesammelte Abhandl., 1895, 3, 356-391. (English
translation by C. L. Bryan), Counting and measuring. Princeton,
N.J.: Van Nostrand, 1930.

Holland, M. K., & Lockhead, G. R. Sequential effects in absolute judg-
ments of loudness Perception and Psychophysics, 1968, 3, 409-414.

Holway, A. H., & Pratt, C. C. The Weber-ratio for intensive discrimi-

_ nation. Psychological Review, 1936, 43, 322-340.

Iverson, G. J. Note: Conditions under which Thurstone Case III rep-
resentations for binary choice probabilities are also Fechnerian.
Journal of Mathematical Psychology, 1979, 20(3), 263-271.

Iverson, G. J. Weber’s inequality and asymptotic representations of
binary choice probabilities. Submitted to Journal of Mathematical
Psychology, 1983,

. Iverson, G.J., & Falljnagne dJ. C. Statistical issues in measurements.

Mathematzcal Social Sciences. In press.

Iverson, G.J., & Pavel, M. Invariant properties of masking phenomena
in psychoacousti¢s and their theoretical consequences. SIAM-AMS
Proceedings, 1980, 13, 17-24.

Iverson, G. J., & Pavel, M. On the functional form of partial masking
functxons in psychoacoustics. Journal of Mathematical Psychology,
1981, 24, 1-20. (a)

. Iverson G.d., & Pavel, M. Invariant characteristics of part1al masking:

Imphcatxons for mathematical models. Journal of the Acoustlcal
Society of America, 1981, 69, 1126-1131. (b) !

Jesteadt, W., & Bilger, R. C. Intensity and frequency dxscnmmatxon in
one- and two-interval paradigms. Journal of the Acoustical Society
of America, 1974, 55, 1266-1276.

Jesteadt, W., Luce, R. D., & Green, D. M. Sequential effects in judgments
of loudness. Journal of Experimental Pscyhology: Human Perception
and Performance, 1977, 3, 92-104.

Jesteadt, W., & Sims, S. L. Decision processes in frequency discrimi-
nation. Journal of the Acoustical Society of America, 1975, 57,
1161-1168.

Jesteadt, W., Wier, C. C., & Green, D. M. Intensity discrimination as
a function of frequency and sensation level. Journal of the Acoustical
Society of America, 1977, 61, 169-177.

Johnson, N. 1., & Kotz, S. Distributions in statistics: Discrete distributions.
Boston: Houghton Mifflin, 1969.

Johnson, N. L., & Kotz, S. Distributions in statistics: Continuous uni-
variate distributions (Vols. 1 & 2). Boston: Houghton Mifflin, 1970.
(a)



1-64

Johnson, N. I, & Kotz, S. Distributions in statistics: Continuous mul-
tivariate distributions. New York: Wiley, 1970. (b)

Kesten, H. Accelerated stochastic approximation. Annals of Mathe-
matical Statistics, 1958, 29, 41-59.

Kling, J. W., & Riggs, L. A. Experimental psychology (3rd ed.). New
York: Holt, Rinehart & Winston, 1971.

Krantz, D. H. Threshold theories of signal detection. Psychology Review,
1969, 76, 308-324.

Krantz, D. H. Integration of just noticeable differences. Journal of
Mathematical Psychology, 1971, 8, 591-599.

Krantz, D. H. A theory of magnitude estimation and cross-modality
matching. Journal of Mathematical Psychology, 1972, 9, 168-199.

Krantz, D. H.; Luce, R. D., Suppes, P., & Tversky, A. Foundation of
measurement (Vol. 1). New York: Academic Press, 1971.

Kristofferson, A. B., & Dember, W. N. Detectability of targets consisting
of multiple small points of light. University of Michigan: Vision
Research Laboratories, Technical Report No. 2144-298-T, 1958.

Laming, D. R. J. Sensory analysis. (Technical report), Department of
Experimental Psychology, Cambridge University, 1983.

Levelt, W. J. M., Riemersma, J. B., & Bunt, A. A. Binaural additivity
in loudness. British Journal of Mathematical and Statistical Psy-
chology, 1972, 25, 51-68. , , ,

Levine, M. V. Transformations that render curves parallel. Journal of
Mathematical Psychology, 1971, 7, 410—444.

Levine, M. V. Transforming curves into curves with the same shape. .~

Journal of Mathematical Psychology, 1972, 9, 1.
Levine, M. V. Geometric interpretations of some psychophysical results.

In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), .

Contemporary developments in mathematical psychology, Vol. 2,
Measurement, psychophysics, and neural information processing.
San Francisco: W. H. Freeman, 1974.

Levine, M. V. Additive measurement with short segments of curves.
Journal of Mathematical Psychology, 1975, 12, 212-224.

Levitt, H. Transformed up-down methods in psychoacoustics. Journal
of the Acoustical Society of America, 1970, 49, 467-476.

. Levitt, H. Decision theory, signal-dectection theory, and psychophysics. :

In E. E. David & P. D. Denas (Eds.), Human communication: A
unified view. New York: McGraw-Hill, 1972.

Lim, J. 8., Rabinowitz, W. M., Braida, L. D., & Durlach, N. L. Intensity
perception VIII: Loudness comparisons between different types of
stimuli. Journal of the Acoustical Society of America, 19717, 62,
1256-1267.

Llppman R. P, Braida, L. D., & Durlach, N. 1. Intensxty perception. V
Effect of payoff matrix on absolute indentification. Journal of the
Acoustical Society of America, 1976, 59, 121-134.

Lochner, J. P., & Burger, J. F. Form of the loudness function in the
presence of masking noise. Journal of the Acoustwal Soczety of
America, 1961, 33, 1705-1707."

Luce, R. D, Individual choice behavior: A theoretical analyszs New
York: Wiley, 1959. (a)

Luce, R. D. On the possible psychophysical laws. PsychologzcalRevzew, A

1959, 66(2), 81-95. (b) _

Luce, R. D. Detection thresholds: A problem reconsidered. Science, 1960,
132, 1495.

Luce, R. D. A threshold theory for simple detection experiments. Psy-
chological Review, 1963, 70, 61-69. (a)

Luce, R. D. Detection and Recognition. In R. D. Luce, R. R. Bush, & E.
Galanter (Eds.), Handbook of mathematical psychology (Vol. 2).
New York: Wiley, 1963. (b)

Luce, R. D. The choice axiom after twenty years. Journal of Mathematical
Psychology, 1971, 15, 215-233. (a)

Luce, R. D. Thurstone discriminal processes fifty years later. Psycho-
nometrika, 1977, 42(4), 461—-498. (b)

Luce, R. D. Axioms for the averaging and adding representations of
functional measurement. Mathematical Social Sciences, 1981, 1,
144-139.

Luce, R. D., & Edwards, W. The derivation of subjective scales from
just noticeable differences. Psychological Review, 1958, 65(4), 222
237.

THEORY AND METHODS

Luce, R. D., & Galanter, E. Discrimination. In R. D. Luce, R. R. Bush,
& E. Galanter (Eds.), Handbook of mathematical psychology (Vol.
1). New York: Wiley, 1963. (a)

Luce, R. D., & Galanter, E. Psychophysical scaling. In R. D. Luce, R
R. Bush, & E. Galanter (Eds.), Handbook of mathematical psy-
chology. New York: Wiley, 1963. (b)

Luce, R. D., & Suppes, P. Preference utility and subjective probability.
In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of
mathematical psychology (Vol. 3). New York: Wiley, 1965.

Luce, R. D., & Green, D. M. A neural timing theory for response times
and the psychophysics of intensity. Psychological Review, 1972, 79,

. 14-57.

Luce, R. D., & Green, D. M. Neural coding and psychophysical discrim-
ination data. Journal of the Acoustical Society of America, 1974,
56, 1554-1564. (a)

Luce, R. D., & Green, D. M. The response ratio hypothesis for magnitude
estimation. Journal of Mathematical Psychology, 1974, 11(1), 1—
14. (b)

Luce, R. D., Green, D. M., & Weber, D. M. Attention bands in absolute
identification. Perception and Psychophysics, 1976, 20, 49-54.
Manski, C. F. The structure of random utility models. In G. L. Eberlein,
" . W. Kroeber-Reil, W. Leinfellner, & F. Schick (Eds.), Theory and

decision. Dordrecht, Holland: D. Reidel, 1977.
Marks, L. E. Sensory processes. New York: Academic Press, 1974.

,Marséhak, J. Binary choice constraints on random utility indicators.

In K. E. Arrow, S. Karlin, & P. Suppes (Eds.), Standard symposium
on mathematical methods in the social sciences. Stanford, Calif,:
Stanford University Press, 1960.

Mashour, M., & Hosman, J. On the new “psychophysical law”: A val-
-idation study. Perception and Psychophysics, 1968, 3, 367-3175.
McFadden, D., & Richter, M. K. Revealed stochastic preferences. De~

partment of Economics, University of California, Berkeley, 1970.

. McFadden, D., & Richter, M. K. On the extension of a set function to a

-~ probability on the Boolean algebra generated by a family of events,

_ with applications. (Working paper No. 14), Mathematical Social
Science Board Workshop on the Theory of Markets under Uncer-
tainty, Department of Economics, University of California, Berkeley,
unpublished, 1971.

-McFadden, D. Quantal choice analysis: A survey. Annals of Economic

and Social Measurement, 1976, 5(4), 363-390.

McGill, W. J., & Goldberg, J. P. Pure-tone intensity discrimination and
e{ixergy detection. Journal of the Acoustical Society of America,
1968, 44, 576-581.

Miller, G. A. What is information measurement" American Psychologist,
1953, 8, 3-11.

Miller, G. A. The magical number seven, plus or minus two: Some
. limits on our capacity for processing information. Psychological
Review, 1956, 63, 81-97.

Mises, R. von. La distribution de la plus grande de n valeurs. Revue

mathématique de 'union interbalkanique, 1939, 1(1), 141-160. (Re-

printed in Selected papers II). American Mathematical Society,

Providence, R.I., 1954, pp. 271-294.

Munsell. Munsell Book of Color. 1929.

Nachmias, J. On the psychometric function for contrast detection. Vision
search, 1981, 21, 215-224.

Nachmias, J., & Steinman, R. M. Study of absolute visual detection by

- the rating-scale method. Journal of the Optical Society of America,
1963, 53, 1206-1213.

Naka, K. I, & Rushton, W. A. H. S-Potentials from colour units in the

retina of fish (Cyprinidae). Journal of Physiology, London, 1966,
© 185, 536-555. (a)

Naka, K. I., & Rushton, W. A. H, An attempt to analyse color perception
by electrophysiology. Journal of Physiology, London, 1966, 185,
556-586. (b)

Naka, K. 1., & Rushton, W. A. H. S-Potentials from luminosity units
in the retina of fish (Cyprinidae). Journal of Physiology, London,
1966, 185, 587-599. (c) :

Narens, L. On the scales of measurement. Journal of Mathematical
Psychology, 1981, 24, 249-275.




PSYCHOPHYSICAL MEASUREMENT AND THEORY

Narens, L., & Luce, R. D. The algebra of measurement. Journal of Pure
and Applied Algebra, 1976, 8, 197-233.

_ Neyman, J., & Pearson, E. S. On the problem of the most efficient tests
of statistical hypothesis. Royal Society London, Series A, 1933, p.
289.

Parducci, A. Range-frequency compromise in judgment. Psychological
Monographs, 1963, 77 (2, Whole No. 565).

Parducci, A. Category judgment: A range-frequency model. Psychological
Review, 1965, 72, 407—-418.

Parducci, A. Contextual effects: A range-frequency analysis. In E. C.
Carterette & M. P. Friedman (Eds.), Handbook of perception (Vol.
2). New York: Academic Press, 1974.

Parducci, A., & Perrett, L. F. Category rating scales: Effects of relative
spacing and frequency of stimulus values. Journal of Experimental
Psychology, 1971, 89, 427-452.

Parker, S., & Schneider, B. Loudness and loudness discrimination. Per-
ception and Psychophysics, 1980, 28(5), 398—-406.

Parzen, E. Stochastic processes. San Francisco, Calif.: Holden-Day, 1962.

Pavel, M. Homogeneity in complete and partial masking. Unpublished
doctoral dissertation, New York University, 1980.

Peterson, W. W., Birdsall, T. L., & Fox, W. C. The theory of signal
detectability. (Trans.) IRE Prof. Group on Info Theory, PGIT-4,
1954, 171-212.

Pfanzagl, J. Theory of measurement (2nd ed) New York: Wiley, 1968,
1971.

Pirenne, M. M. Binocular and uniocular thresholds for vision. Nature,
1943, 153, 698-699.

Plateau, M. J. Sur la mesure des sensations physiques, et sur la loi qui
lie I'intensité de ces sensations a 'intensité de la cause excitante.
Bull. Acad. Royale Belge, 1872, 33, 376-388.

Pollack, I. Information in elementary auditory displays. Journal of the
Acoustical Society of America, 1952, 24, 7145-750.

Poulton, E. C. The new psychophysics: Six models for magnitude es-

‘ timation. Psychological Bulletin, 1968, 69, 1-19.

Pratt, J. W. Robustness of some procedures for the two-sample location
problem. Journal of the American Statistical Association, 1964,59,
665-680.

Purks, S. R., Callaghan, D. J., Braida, L. D., & Durlach, N. L. Intensity
perception. X. Effect of preceding stimulus on identification per-
formance. Journal of the Acoustical Society of America, 1980, 67,
634-637.

Pynn, C. T., Braida, L. D., & Durlach, N. L. Intensity perception. III:

Resolution in small-range identification. Journal of the Acoustical -

Society of America, 1972, 51, 559-566.

Quick, R. F. A vector magnitude model of contrast detection. Kybernetw,
1974, 16, 65-67.

Robbins, H., & Monro, S. A stochastic approximation method. Annals
of Mathematical Statistics, 1951, 22, 400-407. :

Roberts, F. S. Measurement theory. In Gian-Carlo Rota (Ed.), Encyclo-
pedia of mathematics and its applications (Vol. 7): Mathematics
and the social sciences. Reading, Mass.: Addison-Wesley, 1979.

Robinson, G. H. Biasing power law exponents by magnitude estimation -

instructions. Perception and Psychophysics, 1976, 19, 80—84. :
Scharf, B. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of

- perception. Vol. 4: Hearing. New York: Academic Press, 1978, 187"

242.

Shepard, R. N. Psychological relations and psychophysical scales: On
the status of “direct” psychophysical measurement. Journal of
Mathematical Psychology, 1981, 24, 21-57.

Sirovich, L., & Abramov, I. Photopigments and pseudo-pigments. Vision
Research, 1977, 17, 5-16.

Stevens, J. C. Brightness function: Binocular versus monocular stim-
ulation. Perception and Psychophysics, 1967, 2, 189-192, 452.
Stevens, S. S. On the psychophysical law. Psychological Review, 1957,

64, 153-181.

Stevens, S. S. Cross-modality validation of subjective scales for loudness,
vibration, and electric shock. Journal of Experimental Psychology,
1959, 57, 201-209. (a)

Stevens, S. S. Review of L. L. Thurstone, “The measurement of values.”

1-65

Contemporary Psychology, 1959, 4, 388-389. (b)

Stevens, S. S. Procedure for calculating loudness: Mark VI. Journal of
the Acoustical Society of America, 1961, 33, 1577-1585. (a)

Stevens, S. S. The psychophysics of sensory function. In W. A. Rosenblith
(Ed.), Sensory communication. New York: Wiley, 1961, 1-33. (b)

Stevens, S. S. To honor Fechner and repeal his law. Science, 1961, 133,
80-86 (c)

Stevens, S. S. Matching functions between loudness and ten other con-
tinua. Perception and Psychophysics, 1966, 1, 5-8. (a)

Stevens, S. S. A metric for the social consensus. Science, 1966, 151,
530-541. (b)

Stevens, S. S. Psychophysics: Introduction to its perceptual, neural, and
social prospects. New York: Wiley, 1975.

Stevens, S. S., & Greenbaum, H. B. Regression effect in psychophysical
judgment. Perception and Psychophysics, 1966, 1, 439—446.

Stevens, S. S., & Guirao, M. Loudness functions under inhibition. Per-
ception and Psychophysics, 1967, 2, 459—465.

Strackee, G., & van der Gon, J. J. D. The frequency distribution of the
difference between two Poisson variables. Statistica Neerlandica,
1962, 16, 17-23.

Suppes, P., & Zinnes, J. L. Basic measurement theory. In Handbook of
mathematical psychology (Vol. 1). New York: Wiley, 1963.

Swets, J. A. Detection theory and psychophysics: A review. Psychom-
‘etrika, 1961, 26, 49-63.

Swets, J. A. (Ed.) Signal detection and recognition by human observers:
Contemporary readings. New York: Wiley, 1964.

Tanner, W. P, Jr., & Swets, J. A. A new theory of visual detectzon
(Technical Report No. 18), University of Michigan: Electric Defense
Group, 1953.

Tanner, W. P, Jr., & Swets, J. A. The human use of information: I.
Signal detection for the case of the signal known exactly. (Trans.)
IRE Prof. Group on Info. Theory, PGIT-4, 1954, 213-221. (a)

Tanner, W. P, Jr., & Swets, J. A. A decision-making theory of visual
detection. Psychological Review, 1954, 61, 401-409. (b)

’ Teghtsoonian, R. On the exponents in Stevens’ law and the constant

in Ekman’s law. Psychological Review, 1971, 78, 71-80.
Thompson, W. A,, Jr., & Singh, J. The use of limit theorems in paired
comparison model-building. Psychometrika, 1967, 32, 255-264. .
Thurstone, L. L. A law of comparative judgment. Psychophysical Review,
1927, 34, 273-286. (a)
Thurstone, L. L. Psychophysical analysis. American Journal of Psy-
chology, 1927, 38,1368-389. (b)

“Tumarkin, A. A bloloélst looks at psychoacoustics. A commentary to:

Warren, R. M. Measurement of sensory intensity. The Behavioral
and Brain Sciences, 1981, 4, 175-223.

" Urban, F. M. On the method of just perceptible differences. Psychological '

Review, 1907, 14, 244-253.

Van Meter, D., & Middleton, D. Modern statistical approaches to re-
ception in communication theory. (Trans.) IRE Prof. Group onInfo.
Theory. PGIT-4, 1954, 119-141.

* Wald, A. Sequential analysis. New York: Wiley; London: Chapman and

Hall, 1947.

Wald, A. Statistical decision functions. New York: Wiley, 1950.

Wandell, B, & Luce, R. D. Pooling peripheral information: Average
versus extreme values. Journal of Mathematical Psychology, 1978,
17(3), 220-235.

Ward, L. M. Category of judgments of loudness in the absence of an
experimenter-induced identification function: Sequential effects of
power-function fit. Journal of Experimental Psychology, 1972, 94,
179-184.

Ward, L. M., & Lockhead, G. R. Sequential effects and memory in
category judgments. Journal of Experimental Psychology, 1970,
84, 27-34.

Ward, L. M., & Lockhead, G. R. Response system processes in absolute
judgment. Perception and Psychophysics, 1971, 9, 73-78.

Warren, R. M. Measurement of sensory intensity. The Behavioral and
Brain Sciences, 1981, 4, 175-223.

Wasan, M. T. Stochastic approximation. Cambridge: University Press,
1969.




1-66

Watson, C. S., Rilling, M. E., & Bourbon, W. T. Receiver-operating
characteristics determined by a mechanical analog to the rating
scale. Journal of the Acoustical Society of America, 1964, 36, 283—
288.

Weber, D. L., Green, D. M., & Luce, R. D. Effects of practice and dis-
tribution of auditory signals on absolute identification. Perception
and Psychophysics, 1977, 22, 223-231.

Weiss, D. J. Quantifying private events: A functional measurement
analysis of equisection. Perception and Psychophysics, 1975, 17,
351-357.

Wetherill, G. B. Sequential estimation of quantal response curves.

THEORY AND METHODS

Journal of Royal Statistical Society, 1963, B25, 1-48.

Wetherill, G. B., Chen, H., & Vasudeva, R. B. Sequential estimation
of quantal response curves: A new method of estimation. Biometrika,
1966, 53, 439-454.

Wilks, S. S. Mathematical statistics. New York: Wiley, 1962.

Yellot, J. L., Jr. The relationship between Luce’s choice axiom, Thur-
stone’s theory of comparative judgment, and the double exponential
distribution. Journal of Mathematical Psychology, 1977, 15, 109—
144.

Zinnes, J. L. Scaling. Annual Review of Psychology, 1969, 20,
447-478.





